Institiúid Teicneolaíochta Cheatharlach

College of Engineering, Design, Art and Technology Makerere University

The Access Tier ISP, considering upstream connectivity

ວໂລຊການເປັ Ó Bríaín GameCORE / netLabs!UG

30 January 2018

gamecore engaging people with technology

30 Jan 2018

MikroTik MUM, Nairobi 2018

MUM Internet The Access ISP, connection to the Internet

- Access ISPs connectivity to the Internet falls into one of these general categories:
 - ISP with minimal L3 address from upstream provider
 - ISP with L3 address from upstream provider
 - Full ISP, with ASN, IPv4 and IPv6 blocks
 - Full ISP with IXP Connection
 - Virtualised ISP

Nairobi 2018 ISP with minimal L3 address from upstream provider

- Access customers connected to upstream provider using Network Address Translation (NAT)
- Easy to setup but limits size of network
- Gateway NAT router high workload
- Dependence from upstream provider/ISP
 - Renumbering headaches
 - When scaling up
 - When changing providers
- No ability to multi-home
- Dependency on NAT limits services to customers

Nairobi 2018 ISP with L3 address from upstream provider

- Dependence from upstream provider/ISP
 - Renumbering headaches if changing providers
 - Difficult to change providers
- Cannot multi-home between different upstream ISPs
- Services to end customers limited by services of upstream provider
- Routing policies dictated by upstream provider

Nairobi 2018 Full ISP, with ASN, IPv4 and IPv6 blocks AFRINIC

- Operational Advantage
- Independence from upstream provider/ISP
 - no renumbering headaches when changing providers
- Ability to multi-home
- No dependency on NAT, can offer enhanced services to end customers
- Simpler to implement routing policies that suit the company and services

Nairobi 2018 | Full ISP with IXP Connection AFRINIC

- All of the previous advantages
- Plus;
 - Local traffic kept local
 - Reduced transit costs
 - Reduced latency to local content and content caches
 - Improved service to customers

Internet

MUM Virtualused ISP Nairobi 2018

AFRINIC

- Access rollout someone else's problem
- Common with "brand" ISPs like Sky and Tesco

Usually offer additional services

Institiúid Teicneolaíochta Cheatharlach

College of Engineering, Design, Art and Technology Makerere University

Inter Autonomous System routing

What exactly is an Autonomous System and how is routing carried out in one ?

30 Jan 2018

MikroTik MUM, Nairobi 2018

MUM | The Autonomous System & BGP

• **NEXT HOP**: defines the IP address of the next hop router

engaging people wit

MUM BGP Finite State Machine (FSM)

MUM Basic BGP Message flow

MUM BGP Update IPv4

MUM BGP Update IPv6

Institiúid Teicneolaíochta Cheatharlach

College of Engineering, Design, Art and Technology Makerere University

Internet eXchange Points

How can an IXP help me? Are they not just for the big boys?

Mairobi 2018

30 Jan 2018

MikroTik MUM, Nairobi 2018

MUM | The make-up of the Internet

num Tromboning Nairobi 2018

MikroTik MUM, Nairobi 2018

Nairobi 2018 | IXP – Keeping local traffic local

30 Jan 2018

MikroTik MUM, Nairobi 2018

MUM Route server – Route reflector

birdc> show route

165.253.0.0/23 via 197.243.54.38 on eth0 [ISP1 2017-05-15] * (100) [AS2434i] 105.179.200.0/22 via 197.243.54.51 on eth0 [ISP2 2017-05-15] * (100) [AS34565i] 198.51.100.0/24 via 197.243.54.46 on eth0 [ISP3 2017-05-15] * (100) [AS4565i] 41.221.89.0/24 via 197.243.54.33 on eth0 [ISP4 2017-05-15] * (100) [AS38675i]

birdc> show route export ISP4

41.221.89.0/24 via 196.243.54.33 on eth0 [ISP4 2017-05-15] * (100) [AS38675i]
Type: BGP unicast univ
BGP.origin: IGP
BGP.as_path: 38675
BGP.next_hop: 196.243.54.33
BGP.med: 0
BGP.local_pref: 100

30 Jan 2018

Institiúid Teicneolaíochta Cheatharlach

College of Engineering, Design, Art and Technology Makerere University

BGP Peering Configuration

30 Jan 2018

MikroTik MUM, Nairobi 2018

Nairobi 2018 Demonstration testbed

30 Jan 2018

MikroTik MUM, Nairobi 2018

Nairobi 2018 Demonstration testbed

30 Jan 2018

netLabs!UG

MikroTik MUM, Nairobi 2018

Enable IPv6

system package print

Flag	gs: X – disabled	
#	NAME	VERSION
0	routeros-mipsbe	6.38.7
1	system	6.38.7
2 X	L ipv6	6.38.7
3	wireless	6.38.7
4	hotspot	6.38.7
5	dhcp	6.38.7
6	mpls	6.38.7
7	routing	6.38.7
8	ppp	6.38.7
9	security	6.38.7
10	advanced-tools	6.38.7

system package enable 2

Reset configuration

system reset-configuration no-defaults=yes

• System identity

system identity set name=ISP1

SCHEDULED

30 Jan 2018

Nairobi 2018 | ISP1 – Initial IP addressing for transit

Add IP Addresses to the interfaces

```
interface bridge add name=loopback0
ip address add address=200.1.1.1/32 interface=loopback0
```

```
ip address add address=199.1.1.1/24 interface=ether2
ipv6 address add address=2a99:1:1::1/48 interface=ether2
```

ip address add address=199.5.5.11/24 interface=ether5
ipv6 address add address=2a99:5:5::11/48 interface=ether5

```
ip address print
Flags: X - disabled, I - invalid, D - dynamic
 #
    ADDRESS
                                      INTERFACE
                      NETWORK
  200.1.1.1/32
                     200.1.1.1
0
                                      loopback0
                    199.9.9.0
1 199.9.9.11/24
                                      ether1
  199.5.5.11/24 199.5.5.0
 2
                                      ether5
ipv6 address print
Flags: X - disabled, I - invalid, D - dynamic, G - global, L - link-local
     ADDRESS
                                     FROM-POOL INTERFACE
                                                          ADVERTISE
 #
 0 DL fe80::20c:42ff:fec2:117c/64
                                               ether2
                                                          no
1 DL fe80::20c:42ff:fec2:117e/64
                                               ether4
                                                          no
2 DL fe80::20c:42ff:fec2:117f/64
                                               ether5
                                                          no
3 IG 2a99:9:9::11/48
                                               ether1
                                                          ves
```


30 Jan 2018

4 G 2a99:5:5::11/48

Nairobi 2018 | ISP1 – BGP configuration

• Create a BGP instance and add networks to be routed

routing bgp instance add name=ASN5111 as=5111 router-id=200.1.1.1

routing bgp network add network=199.1.1.0/24 routing bgp network add network=2a99:1:1::/48

routing bgp instance print from=ASN5111

Flags: * - default, X - disabled

0 name="ASN5111" as=5111 router-id=200.1.1.1 redistribute-connected=no redistribute-static=no redistribute-rip=no redistribute-ospf=no redistribute-other-bgp=no out-filter="" client-to-client-reflection=yes ignore-as-path-len=no routing-table=""

routing bgp network print

Flags: X – disable	ed
# NETWORK	SYNCHRONIZE
0 199.1.1.0/24	yes
1 2a99:1:1::/48	B yes

MUM BGP ingress Filters

- Ingress filters are used to filter advertisements into the network
- Best practice for ingress filters for all peers are:
 - Discard receiving ones own prefix
 - Discard receiving a default route as we are doing full routing
 - Discard special purpose address registry entries stated at RFC 6890
- RFC6890 Special-Purpose IP Address Registries
 - IETF reserved blocks that should not be received in routing update messages

MUM Create BGP ingress Filters for transit

- Create a BGP ingress filter for IPv4
 - Discard own network
 - Discard Default route
 - Jump the filter to the RFC-6890 IPv4 filter

```
routing filter add chain=IN-ISP3-IPv4 prefix=199.1.1.0/24 action=discard
routing filter add chain=IN-ISP3-IPv4 prefix=0.0.0.0/0 action=discard
routing filter add chain=IN-ISP3-IPv4 action=jump jump-target=IN-RFC-6890-IPv4
```


MUM Create BGP ingress Filters for transit

- Create a BGP ingress filter for IPv6
 - Discard own network
 - Discard Default route
 - Jump the filter to the RFC-6890 IPv6 filter

```
routing filter add chain=IN-ISP3-IPv6 prefix=2a99:1:1::/48 action=discard
routing filter add chain=IN-ISP3-IPv6 prefix=::/0 action=discard
routing filter add chain=IN-ISP3-IPv6 action=jump jump-target=IN-RFC-6890-IPv6
```

```
routing filter add chain=IN-RFC-6890-IPv6 prefix=::1/128 action=discard
routing filter add chain=IN-RFC-6890-IPv6 prefix=::/128 action=discard
routing filter add chain=IN-RFC-6890-IPv6 prefix=64:ff9b::/96 action=discard
routing filter add chain=IN-RFC-6890-IPv6 prefix=::ffff:0:0/96 action=discard
routing filter add chain=IN-RFC-6890-IPv6 prefix=100::/64 action=discard
routing filter add chain=IN-RFC-6890-IPv6 prefix=2001::/23 action=discard
routing filter add chain=IN-RFC-6890-IPv6 prefix=2001::/32 action=discard
routing filter add chain=IN-RFC-6890-IPv6 prefix=2001:2::/48 action=discard
routing filter add chain=IN-RFC-6890-IPv6 prefix=2001:2::/48 action=discard
routing filter add chain=IN-RFC-6890-IPv6 prefix=2001:10::/28 action=discard
routing filter add chain=IN-RFC-6890-IPv6 prefix=2002::/16 action=discard
routing filter add chain=IN-RFC-6890-IPv6 prefix=fc00::/7 action=discard
```


MUM Create BGP egress Filters for transit

- Egress filters are used to filter advertisements from the network, limiting it to only advertise the specific local networks
 - *invert-match=yes* statement, this instructs the filter to discard all but the prefix specified

routing filter add chain=OUT-IPv4 prefix=199.1.1.0/24 invert-match=yes action=discard

routing filter add chain=OUT-IPv6 prefix=2a99:1:1::/48 invert-match=yes action=discard

Nairobi 2018 Add BGP Peers for transit

- Create the peer link to the other BGP peer at IXP3 for IPv4 and IPv6
 - Note that IPv4 family is the default and for IPv6 the family must be specified

routing bgp peer add name=isp3 instance=ASN5111 remote-as=5333 remote-address=199.5.5.33 in-filter=IN-ISP3-IPv4 out-filter=OUT-IPv4

routing bgp peer add name=isp3 instance=ASN5111 remote-as=5333
remote-address=2a99:5:5::33 address-families=ipv6
in-filter=IN-ISP3-IPv6 out-filter=OUT-IPv6

Nairobi 2018 Confirm routing with transit ISP3

• Confirm that the routes have been learnt from ISP3

```
routing bgp peer print
Flags: X - disabled, E - established
    INSTANCE
 #
               REMOTE-ADDRESS
                                                         REMOTE-AS
0 E ASN5111
                  199.5.5.33
                                                         5333
 1 E ASN5111
                    2a99:5:5::33
                                                         5333
ip route print
Flags: X - disabled, A - active, D - dynamic,
C - connect, S - static, r - rip, b - bgp, o - ospf, m - mme,
B - blackhole, U - unreachable, P - prohibit
       DST-ADDRESS PREF-SRC GATEWAY
199.1.1.0/24 199.1.1.1 ether2
 #
                                                          DISTANCE
0 ADC 199.1.1.0/24 199.1.1.1
                                                                 0
1 ADb 199.3.3.0/24
                                       199.5.5.33
                                                                20
2 ADC 199.5.5.0/24
                   199.5.5.11 ether5
                                                                 0
3 ADC 200.1.1.1/32 200.1.1.1 loopback0
                                                                 \cap
```


MUM BGP ingress Filters Team Cymru

- http://www.team-cymru.org/
- A bogon prefix should never appear in the Internet routing table.
 - bogon route-servers
 - 65333:888
 - fullbogon route-servers
 - 65332:888

http://www.team-cymru.org/bgp-examples.html#mikrotik-full

30 Jan 2018

MikroTik MUM, Nairobi 2018

Institiúid Teicneolaíochta Cheatharlach

College of Engineering, Design, Art and Technology Makerere University

Internet eXchange Point (IXP) Configuration

gamecore engaging people with technology

30 Jan 2018

MikroTik MUM, Nairobi 2018

Nairobi 2018 Demonstration testbed, IXP added

30 Jan 2018

MikroTik MUM, Nairobi 2018

Nairobi 2018 Demonstration testbed, IXP added

30 Jan 2018

MikroTik MUM, Nairobi 2018

MUM ISP1 – IP Address on IXP interface

Add IP Addresses to the interface facing the IXP

ip address add address=199.9.9.11/24 interface=ether1

ipv6 address add address=2a99:9:9::11/48 interface=ether1

ip address print

Flac	gs: X - disabled,	I – invalid, D	– dynamic
#	ADDRESS	NETWORK	INTERFACE
0	200.1.1.1/32	200.1.1.1	loopback0
1	199.5.5.11/24	199.5.5.0	ether5
2	199.1.1.1/24	199.1.1.0	ether2
3	199.9.9.11/24	199.9.9.0	ether1

ipv6 address print

-		▲				
Fla	ags:	X - disabled, I - invalid,	D –	dynamic, G -	global, L -	link-local
#		ADDRESS		FROM-POOL	INTERFACE	ADVERTISE
0	DL	fe80::20c:42ff:fec2:117c/64			ether2	no
1	DL	fe80::20c:42ff:fec2:117e/64			ether4	no
2	DL	fe80::20c:42ff:fec2:117f/64			ether5	no
3	G	2a99:5:5::11/48			ether5	yes
4	DL	fe80::20c:42ff:fec2:117d/64			ether3	no
5	G	2a99:1:1::1/48			ether2	yes
6	DL	fe80::20c:42ff:fec2:117b/64			ether1	no
7	G	2a99:9:9::11/48			ether1	yes

Nairobi 2018 | ISP1 – Routing filters for IXP

 Chains IN-IXP-IPv4 and IN-IXP-IPv6 are input filters that discards receiving ones own prefix or a default route as full routing is taking place

- IPv4

```
routing filter add chain=IN-IXP-IPv4 prefix=199.1.1.0/24 action=discard
routing filter add chain=IN-IXP-IPv4 prefix=0.0.0.0/0 action=discard
routing filter add chain=IN-IXP-IPv4 action=jump jump-target=IN-RFC-6890-IPv4
```

- IPv6

```
routing filter add chain=IN-IXP-IPv6 prefix=2a99:1:1::/48 action=discard
routing filter add chain=IN-IXP-IPv6 prefix=::/0 action=discard
routing filter add chain=IN-IXP-IPv6 action=jump jump-target=IN-RFC-6890-IPv6
```


MUM Add IXP Route Server as a BGP Peer

- Create the peer link to the IXP for IPv4 and IPv6
- Note that IPv4 family is the default and for IPv6 the family must be specified
 - IPv4

routing bgp peer add name=ixp instance=ASN5111 remote-as=5999
remote-address=199.9.9.1 in-filter=IN-IXP-IPv4 out-filter=OUT-IPv4

- IPv6

routing bgp peer add name=ixp instance=ASN5111 remote-as=5999
remote-address=2a99:9:9::1 address-families=ipv6 in-filter=IN-IXP-IPv6
out-filter=OUT-IPv6

Nairobi 2018 Confirm peering with IXP

Confirm that the routes have been learnt from IXP

routing bgp peer print

Flags: X - disabled,	E - established	
# INSTANCE	REMOTE-ADDRESS	REMOTE-AS
0 E ASN5111	199.5.33	5333
1 E ASN5111	2a99:5:5::33	5333
2 E ASN5111	199.9.9.1	5999
3 E ASN5111	2a99:9:9::1	5999

ip route print

```
Flags: X - disabled, A - active, D - dynamic,
C - connect, S - static, r - rip, b - bqp, o - ospf, m - mme,
B - blackhole, U - unreachable, P - prohibit
 #
       DST-ADDRESS
                          PREF-SRC
                                          GATEWAY
                                                             DISTANCE
 0 ADC
      199.1.1.0/24
                          199.1.1.1
                                          ether2
                                                                    0
      199.2.2.0/24
                                          199.9.9.22
                                                                   20
 1 ADb
 2 ADb
      199.3.3.0/24
                                          199.5.5.33
                                                                   20
 3 ADC 199.5.5.0/24
                          199.5.5.11
                                          ether5
                                                                    0
 4 ADC 199.9.9.0/24
                          199.9.9.11 ether1
                                                                    0
 5 ADC 200.1.1.1/32
                          200.1.1.1 loopback0
                                                                    \cap
```


Institiúid Teicneolaíochta Cheatharlach

Thank you for your attention

Complete configurations can be found at:

http://www.obriain.com/mikrotik

diarmuid.obriain@itcarlow.ie diarmuid.obriain@netlabsug.org http://www.netlabsug.org

30 Jan 2018