
A report on the status of Network Functions
Virtualisation

Diarmuid Ó Briain∗†, David Denieffe∗, Yvonne Kavanagh∗ and Dorothy Okello†
∗GameCORE Research Centre,

Department of Computing & Networking,
Institute of Technology, Carlow, Ireland

Email: diarmuid.obriain@itcarlow.ie
†netLabs!UG Research Centre,

Department of Electrical and Computer Engineering,
College of Engineering, Design, Art and Technology,

Makerere University, Kampala, Uganda

Abstract—Cloud computing has been a disruptive force in
computing over the last decade. The virtualisation computing
paradigm developed in the 1990s, describes a single physical
server that could host many Virtual Machines (VM) hosting
guest Operating Systems (OS). Amazon Web Services (AWS) saw
the opportunity to develop a compute resource on a pay-per-use
basis and developed a product called Elastic Compute. Cloud
services developed into classes, Infrastructure, Platform and
Software as a Service. Enterprise and the consumer suddenly
had choice not seen before, centralised across the Internet.

The traditional Service Providers (SP) were relegated to
the role of bit stream delivery providers while Application
Service Providers (ASP) developed centralised Over the Top
(OtT) services on the SP networks. SPs found they could
not compete with the scale of the globalised ASPs with their
own application offerings. Things are changing however, SPs
tired of paying for expensive networking hardware while ASPs
benefit from cheap Elastic Compute and Storage launched an
initiative to develop Network Functions Virtualisation (NFV).
The idea is to develop Elastic Network and migrate away from
expensive hardware based solutions, in a similar way to that
being employed by the Data Centres with Software Defined
Networking (SDN).

For Ugandan and other developing countries NFV presents a
challenge and an opportunity, the challenge, to do nothing and
be left behind as against the opportunity to embrace the change
and use it to leap ahead and put in place the next generation of
Internet.

There are three main projects, the Open NFV (OPNFV)
project, hosted by the Linux Foundation that uses OpenStack as
an upstream project for Virtual Infrastructure Manager (VIM).
However in April 2016 with its Mitaka release, OpenStack
introduced a new service called Tacker to provide the remaining
Management and Network Orchestration (MANO) elements.
Two other projects launched in 2016, one has its origins in
the laboratories of Telefónica in Spain and now hosted by
the European Telecommunications Standards Institute (ETSI)
called Open Source MANO (OSM) and a second driven initially
by the Chinese companies China Mobile and Huawei, hosted
by the Linux Foundation originally called Open Orchestrator
Project (OPEN-O) but recently merged with AT&T open source
Enhanced Control, Orchestration, Management and Policy
(ECOMP) on the 23 February 2017 to create the Open Network

Automation Platform (ONAP) Project.

This paper describes the NFV concept, current MANO
projects and considers OpenStack as a means to deliver it.

I. NETWORK FUNCTIONS VIRTUALISATION

In October 2012 a group of SPs launched an initiative
called NFV at the SDN & OpenFlow (OF) World Congress
in Darmstadt, Germany (Chiosi, Clarke, Willis, Reid, Feger,
Bugenhagen, Khan, Fargano, Cui & Denf, 2012). Having
seen the impact of cloud computing, how new ASPs like
Skype, Whatsapp and Facebook Messenger were selling OtT
services in direct competition to their traditional voice and
Short Message Service (SMS) services. In particular SPs
experienced major falls in their once lucrative international
roaming services (Heinrich, 2014). These same carriers have
invested heavily in their network infrastructure, installing
fibre networks while ASPs exploit their networks without
associated costs due in part to Net Neutrality (A guide
to the Open Internet, n.d.). NFV essentially virtualises

Figure 1. NFV Concept

services on a hypervisor running on Commercial Off The

International Conference on Information and Communication Technologies (ICICT-2017)

Shelf (COTS) hardware called a virtual Customer Premise
Equipment (vCPE) as demonstrated in Figure 1. Managing
the hypervisor using IT cloud orchestration tools would
allow new services to be established and torn down on the
same device without the need for expensive site visits by
technicians. High quality broadband links from the data
centre to an vCPE at the customer premises means the SP is
poised to maximise the benefit of investment by migrating
services from physical devices to virtual functions.

The SPs formed an Industry Specification Group (ISG)
under the ETSI. The initial phase of work for the group
involved the development of applicable frameworks and
standards (ETSI, 2012). Progress White Papers were issued
in October 2013 (ETSI, 2013a) and October 2014 (ETSI,
2014). In January 2015 with the release of ETSI NFV ISG
(ETSI, n.d.) documents the focus of the group switched from
requirements to NFV adoption.

The NFV concept provides the possibility of two other
new models of service delivery. Functions can be virtualised
on Compute nodes in the SPs own data centre, called virtual
Provider Edge (vPE) or the SP can use the customers own
hypervisor to run functions in a model known as virtual
Customer Edge (vCE). The vCE model could be particularly
useful for a Global Service Provider (GSP) offering services
on a partner Local Service Provider (LSP) network (Weldon,
2015).

Since the inception of NFV, both SDN and NFV have
been seen to compliment each other without necessarily being
inter-dependent. Having said that it is becoming increasingly
evident that there is an inter-dependency and recent industry
discussion of the term Software Defined NFV (SDNFV) (Pitt,
2016) underlines it. New NFV functional services which
link multiple functions that may or may not be in the same
location are being developed that require the flexibility and
control of SDN to chain them.

NFV presents a number of significant challenges yet to
be resolved. Issues like the performance trade-off between
specialist hardware and virtualised functions on COTS
hardware, the new network models provide new information
security attack vectors. However these challenges are more
than outweighed by the strength of the NFV case. The
potential benefits are huge and major SPs normally associated
with cautious, long-term planning and roll-out are jumping to
NFV models even before the technological solutions are fully
developed (Verizon, 2016). The carrot of increased speed
to market as well as new services delivered on virtualised
infrastructure is quite compelling and provide the motivation
for development.

In September 2016 ETSI announced the second release
of NFV (Dahmen-Lhuissier, 2016). This version introduced
11 new group specifications to detail functional requirements,

interface descriptions and information models to define the
management of virtualised resources as well as lifecycle
management of network services and VNFs, fault/performance
management of network services and capacity management
of virtualised resources.

A. The NFV ecosystem

Figure 2. NFV Ecosystem.

Figure 2 outlines the overall NFV ecosystem (ETSI,
2013b). At its foundation is the NFVI which supports the
Compute, Network and Hypervisor/Virtualisation domains.
The Compute domain consists of the computer and storage
hardware supporting the hypervisors. Virtualisation on these
platforms is provided by existing hypervisor technologies like
KVM, Xen, VMWare or a container technology like Docker.
While networking can be provided utilising traditional
switching and routing technologies it is becoming evident
that this domain will become the reserve of SDN. VIMs are
used to manage each domain within the NFVI.

The NFV Orchestrator (NFVO) orchestrates through the
Virtual Network Function Manager (VNFM). The VNFM
is responsible for the lifecycle, the Fault, Configuration,
Accounting, Performance and Security Management (FCAP)
of VMs and their Virtual Network Functions (VNF). The
VNFM carries out these functions by instructing the relevant
domain VIM. The associated ETSI standards are still in
development and various vendor MANO solutions existing
today are still unclear on the specific dividing lines between
these functions. It is expected that the standards will
harmonise in the medium term.

II. OPENSTACK

OpenStack started in 2010, as a joint project of Rackspace
Hosting and National Aeronautics and Space Administration
(NASA). NASA contributed their Nebula platform, which later
developed into Nova. Rackspace contributed their Cloud Files
platform, which later became Swift. In April of 2011, the
OpenStack Bexar release was introduced in Ubuntu. Later that
same year, Debian GNU/Linux included OpenStack Cactus

Page 2 of 8

International Conference on Information and Communication Technologies (ICICT-2017)

in their distribution. In 2012, Redhat announced a preview
of their OpenStack distribution. Since then, many others
followed, including Oracle, HP, and Dell Vmware. Figure 3

Figure 3. OpenStack.

shows a basic setup of OpenStack. At the ecosystem core is
the Controller node, this hosts the major OpenStack services.
Compute and Storage nodes can be connected to the Controller
node such that capacity can be added to the system as required.
On Compute nodes a Nova agent interfaces with the hypervisor
and can be directed by the central Nova service while on
Storage nodes the Cinder service can access volumes via the
Cinder volume agent. Networking is achieved by the Neutron
service on the Controller node managing layer 2 agents like
Open vSwitch (OvS) or using the Modular Layer 2 (ML2)
plugin to control SDN Controllers or legacy networking hard-
ware. The OpenStack ecosystem has a number of networks.
The Public network permits management access to the nodes
as well as an access point to the Internet. The management
network is a Private network used for intercommunication
between the various OpenStack services while the Provider
network is used as a public network for VMs and Containers
(CT) instances.

A. Role of the OpenStack Foundation
The OpenStack Foundation promotes the global develop-

ment, distribution, and adoption of the cloud OS. It provides
shared resources to grow the OpenStack cloud. It also enables
technology vendors and developers to assist in the production
of cloud software. (OpenStack Foundation, n.d.).

B. The structure of OpenStack
OpenStack is a framework encompassing multiple services.

There are a number of ’Core’ services and a substantial
number of ’Other’ services that allows an organisation build
for many configurations.

1) Nova ’Compute’ Service: Nova is the central core
project in OpenStack as it handles the Compute environment,
the VM instance lifecycle. It implements VMs on a number
of different hypervisors like Xen, KVM/Quick Emulator

(QEMU), VMware vSphere. Nova installs an agent on the
Compute node to manage the hypervisor. Nova spawns,
schedules, and decommissions of VMs on demand.

2) Neutron ’Networking’ Service: OpenStack Neutron is
the OpenStack SDN enabler. It seperates the physical underlay
network from logical VM instance overlay networks. In fact
project users need not be aware of the underlay network
topology. Such users can see an abstraction network at a
higher level and SDN permits the project user to create
logical networks that do not require the consideration of
the underlying physical network. Neutron provides an ML2
Plug-in, a layer 2 agent to allow interfacing with the physical
network architecture using a pluggable architecture that
supports many networking vendors and technologies.

3) Cinder ’Block Storage’ service: Cinder block storage
provides persistent storage to instances. By default, the
storage in the VM instances is ephemeral, non-persistent.
Cinder allows for the attachment of persistent block devices
to instances such that data can be saved. The Cinder scheduler
and API on the Controller node interact with the Cinder
volumes on Storage nodes to allow for functionality such as
create volume, delete volume and attach.

4) Swift ’Object Storage’ service: OpenStack Swift
service provides an object-based storage model. This provides
scalability where the Cinder ’Block Storage’ service interacts
with Swift ’Object Storage’ service over a RESTful API
which in turn can communicate with many, storage nodes.
Swift uses a proxy service which, when it receives data from
Cinder, creates chunks of data called binary objects.
Swift includes a replication algorithm which stores the binary
objects on multiple storage nodes. Efficiency is also achieved
because, the moment an application needs to retrieve the data,
it will address the Swift proxy via the Cinder service which
uses an advanced algorithm to determine exactly where the
binary objects reside. It then sends calls to all the storage
nodes that are involved, these are capable of working in
parallel. The data will arrive at the Swift proxy, and onwards
to the application via Cinder quickly and efficiently.

5) Keystone ’Identity’ service: The Keystone Identity
service is a core element in OpenStack and is used to
authenticate and authorise. It also lists all current services and
endpoints. To access the Nova service for example it must be
defined as a service within Keystone. The endpoint provides a
Uniform Resource Locator (URL) that provides access to the
specific service. In Keystone, Users and Roles are created and
they are assigned to Projects. A Project typically represents a
customer of OpenStack.

6) Glance ’Image store’ service: The Glance Image store
service is used to store VM disk images. VMs, which are the
actual instances are not installed each time, instead they are
spawned off from an image. Glance provides the image store.

Page 3 of 8

International Conference on Information and Communication Technologies (ICICT-2017)

If an administrator wants to boot an instance, then the instance
will be booted from the Glance image store.

7) Other Services:
• Horizon - Provides the Dashboard, which is a web-based

user interface to manage the OpenStack Service
• Heat - Provides a service to orchestrate composite cloud

applications, using a declarative template format through
an OpenStack-native REST API

• Ceilometer - It is part of the Telemetry project and
provides data collection services for billing and other
purposes

• Aodh - Triggers actions based on defined rules against
event data collected by Ceilometer

• Monasca - Multi-tenant Monitoring-as-a-Service (MON-
aaS)

• Trove - Create and manage databases
• Sahara - provides a simple means to provision a data-

intensive application cluster
• Magnum - provides for CT orchestration engines like

Docker Swarm, Kubernetes and Apache Mesos. Magnum
uses Heat to orchestrate an OS image which contains
Docker and Kubernetes and runs that image in either VMs
or bare metal in a cluster configuration

• Ironic - a bare metal provisioning program and was
developed to deploy physical machines (and not VMs)

• Tacker - deploy and operate Network Services and
Virtual Network Functions (VNFs) on an OpenStack as
an NFV infrastructure platform.

III. OPEN PLATFORM NFV

Figure 4. OPNFV example.

The Collaborative Project OPNFV was launched in
October 2014 under the auspices of the Linux Foundation
(Linux Foundation, 2014). Its intend is to make the ETSI
NFV standards a reality through the provision of NFVI,
VIM and open APIs to other NFV elements already in
Free/Libre Open Source Software (FLOSS) projects to form
an NFV architecture. The initial focus is the NFVI and VIM
elements of the architecture and the project is achieving this
through building interfaces between existing upstream FLOSS
projects like OpenStack, Kernel Virtual Machine (KVM),
Xen, LinuX Containers (LXC), OvS, Linux bridge, Data
Plane Development Kit (DPDK), Open Dataplane (ODP)
and the GNU/Linux kernel. Creating a functional reference
platform in this manner will contribute to the goals of phase
2 of the ETSI NFV ISG.

A lab ready version of OPNFV was released in March
2016 called Brahmaputra (OPNFV, 2016) which was
followed by the Colorado release in August 2016. Colorado
while still a lab release doubled the number of scenarios
supported. OPNFV has integrated upstream FLOSS projects
to build the platform. In the Figure 4 example, OpenStack
is seen as a major element, incorporated to provide MANO
functionality. Nova provides Compute on a KVM hypervisor
with Neutron interfacing over ML2 to the ODL RESTful API
to control OvS switches. In this way OpenStack, KVM, ODL
and OvS are considered upstream projects.

A. OpenStack Heat

Figure 5. OpenStack Heat.

OpenStack has a specific Orchestration service (OpenStack
Heat documentation, n.d.). While the Nova service can be
used to create a VM instance or the Neutron service can

Page 4 of 8

International Conference on Information and Communication Technologies (ICICT-2017)

create networks there are many scenarios where there is a
need to create an launch a group of VM instances, all of these
VM instances need not be of the same type as the template
can define individual VMs as required. These VM instances
typically require a network and storage.
The Heat service provides an OpenStack orchestration engine
that is designed to receive a Heat Orchestration Template
(HOT) template (HOT Guide, n.d.) to launch multiple
composite cloud applications. As demonstrated in Figure 5
the HOT template is applied to the Heat service via the
heat-api, it is interpreted and the heat-engine creates jobs that
are passed to the core services to create the cloud storage,
network and VM instances as defined in the template. Heat
has a second API called the heat-api-cfn which allows it to
interpret AWS CloudFormation templates also.

HOT uses YAML Ain’t Markup Language (YAML) which
is an easily readable data serialisation language that is
commonly used for configuration files (Ben-Kiki & Evans,
2009). In the first section of Figure 6 a simple HOT template
in YAML can be seen which describes a single instance
of Debian GNU/Linux. The OS::Nova::Server type is a
resource for managing Nova instances, it is used to launch
and manage the running VM instance. For more complex
stacks with networks the OS::Neutron::Net type resource
is used for creating and managing networks while the
OS::Cinder::Volume type implements Cinder block storage
devices.

The openstack stack create command interprets the

Figure 6. HOT Template.

HOT template and orchestrates the stack by calling on
the OS::Nova::Server resource, in other words the Nova
API. Finally when the stack instance(s) are launched
the openstack stack list command will show a status of
CREATE COMPLETE. At this stage the VM instances are
running and active.

B. OpenStack Tacker
OpenStack has launched a project of its own called Tacker

(Tacker Documentation, n.d.). The objective of Tacker is to
produce a generic VNFM and NFVO which will make it easy
to deploy and operate VNFs with OpenStack acting as the

MANO. The Tacker API will be used to deploy VNFs either
on remote customer networks as a vCE, on a SP provided
vCPE or on the SP’s own vPE infrastructure. This will form
an important cog in the OPNFV architecture.

1) VNF Descriptor: VNFs are described in a VNF De-
scriptor (VNFD) file that is based on Organisation for the
Advancement of Structured Information Standards (OASIS)
Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) standard (TOSCA, n.d.). TOSCA is also a
YAML formatted file. VNFs are described in the VNFD as
three basic node types;

• Virtual Deployment Unit (VDU):
– describes the VM instance that hosts the VNF, for

example the image to be used and the flavour,
monitoring policies. etc.. (tosca.nodes.nfv.VDU). It
equates to Nova servers in OpenStack.

• Connection point (CP):
– describes the virtual NIC or Single Root I/O Vir-

tualisation (SR-IOV) NIC that is virtually bound to
a VDU. (tosca.nodes.nfv.CP). It equates to Neutron
ports in OpenStack.

• Virtual Links (VL):
– describes the logical virtual link entity that provides

connectivity between VDUs. (tosca.nodes.nfv.VL). It
equates to Nova networks in OpenStack.

Figure 7. Tacker as NFVO/VNFM.

The diagram in Figure 7 outlines the complete NFV ecosys-
tem. OpenStack core services act as VIM as defined in the
ETSI NFV specifications managing the NFVI in the form of

Page 5 of 8

International Conference on Information and Communication Technologies (ICICT-2017)

OpenStack Compute Nodes, OpenDaylight SDN Controllers
and legacy networking hardware as well as whitebox OF
switches. The OpenStack Tacker service fulfils the role of
NFVO and VNFM from the ETSI NFV specifications. It can
orchestrate and manage multi-site VIMs to give the operator
a single view for centralised management. In fact it can also
act as NFVO/VNFM to a number of VIM type options:

• OpenStack
• VMware ESXi
• AWS

This means OpenStack Tacker can orchestrate with either
AWS as a VIM using AWS NFVI or a VMWare ESXi as a
VIM.

2) VNF setup: Before Tacker can have a virtual
environment orchestrated it received a VNFD file. This file is
sent to the heat-translator which uses the TOSCA parser to
translate TOSCA to HOT format.
The Tacker engine stores the HOT template in a Tacker
catalogue. When the VNF is launched the tacker engine
passes the HOT template to the heat-api on the VIM
site where it is to be orchestrated. The Heat service then
orchestrates the VM instances, storage and network resources
as defined in the HOT template. These resources can be
managed via the Tacker service.

3) Function chains: On the networking side Tacker
can manage function chains through the Service Function
Chaining (SFC) API. This API manages SDN Controllers
through the Neutron service ML2 plugin. SFC is a capability
that allows for control of network packet flows to select paths
that may not be the one chosen by the routing table.
It facilitates managing the network policy of an SDN
Controller to direct traffic from one service to another, for
example as demonstrated in Figure 7, traffic of a particular
type being directed to a firewall service and then to a
load balancing service even though these services are not
necessarily in the routing path to the final destination. This
flow control is managed through the flow control tables on
the OvS switches.

4) VNF example: Before Tacker can orchestrate a VNF
a few items need to be in place, these are demonstrated in
Figure 8. The VNF image must exist in the Glance store.
The addition of a Debian8 image is demonstrated with the
openstack image create command. The next step is the creation
of a TOSCA formatted YAML VNFD file, in the example
vnfd-debian8.yaml. This YAML file contains the basic config-
uration of the VNF with tosca.nodes.nfv.VDU.Tacker defining
the VDU capabilities, number of Central Processing Units
(CPU), memory, disk size and other configuration for the VNF
as necessary. The tosca.nodes.nfv.VL type defines the network
and tosca.nodes.nfv.CP.Tacker links the defined VDU to the
defined network. This VNFD is then added to the Tacker
Catalogue with the tacker vnfd-create command. Finally the
VNF is deployed with the tacker vnf-create command.

Figure 8. Tacker example.

IV. VNF MONITORING AND FAULT MANAGEMENT

The ETSI specifications have clear expectations for scalable,
available, fault tolerant VNF and state that a scalable NFVI
supporting thousands of VMs must have a high degree of
automation in failure situations (ETSI, 2015). It specifies
a fault management interface and performance management
interface for virtualised Resources. The fault management
interface reports fault alarms such as VM crashes, networking
errors, VM to storage volume disonnections from the VIM
to the VNFM while the performance management interface
reports on resource consumption level. To meet the high
demands of the specification the VNFM must react to this
information to automatically deal with faults in such a way
that the service availability classification level is maintained
(ETSI, 2016).

• Level 1 - Network operator control, Government, Emer-
gency services. May require 1+1 redundancy with instan-
taneous switchover

Page 6 of 8

International Conference on Information and Communication Technologies (ICICT-2017)

• Level 2 - Network operators as customers, Enterprise.
May require 1:1 redundancy with fast switchover

• Level 3 - Consumer Internet traffic. Best effort traffic.
Satisfactory levels of availability.

A. Tacker VNF fault management
In the initial release, Tacker has minimal support for

monitoring VNFs. It monitors the VNF by using ping
to the IP address of the VNF. If the function is browser
based curl could be used. For example the following simple
curl example shows that the VNF httpd daemon is operational:

$ curl -Is <VNF> | grep HTTP

HTTP/1.1 200 OK

Thus by means of ping or curl driver it can be determined if
a VNF becomes unreachable. What Tacker cannot currently
do however is monitor things like CPU and memory usage of
VNFs. Currently if an unreachable VNF is detected Tacker
can perform one or both of the following actions:

• respawn - Recreation of the VNF
• log - Note the failure in OpenStack logs

OpenStack has a seperate Telemetry project called
Ceilometer whose function it is to provide data collection
services and Aodh a service that tiggers actions based on
defined rules against event data collected by Ceilometer.
An example of their implementation with Tacker
would see a policy like tosca.policies.tacker.Alarming
establishing monitoring in Ceilometer. An alarm trigger of
typetosca.events.resource.utilization would occur in Aodh if
utilisation was detected to have risen above a threshold for
example 85%. This could then cause the an additional VDU
to be spawned (Tacker documentation, n.d. b).

Work is ongoing in the OpenStack project to design a
generic monitoring framework. An alarm monitor driver in
Tacker could monitor events collected by Ceilometer (or even
Monasca MONaaS) where it collects data directly from the
VNF like CPU and memory usage. To make this happen it is
necessary to add support for inserting Ceilometer alarms to
trigger scaling in Heat resource groups using a HOT template,
this does not exist today (Tacker Specs documentation, n.d.)).

V. OTHER SOLUTIONS

While the OPNFV project is using upstream projects like
OpenStack as the means to rapidly develop the required
MANO elements, it is not the only solution. Telefónica’s
NFV Reference Laboratory (Telefónica NFV Reference Lab,
n.d.) has been working on a MANO project since 2014 and
folded its work into the OSM project when it launched in
2016 giving it a good head start (Hoban, Sepulveda, de
Blas, Kashalkar, Shuttleworth, Harpe, & Velandy, 2016). The
OSM project has attracted lots of other SP members like
Telekom Austria, British Telecom (BT), Korea Telecom, the
Norwegian SP Telenor and Canonical the company behind
Ubuntu Linux. Another new project is the Linux Foundation

ONAP (ONAP, n.d.) which also launched in 2016 as OPEN-
O. It launched with significant funding from the Chinese
companies China Mobile and Huawei while it has been joined
by mainly vendors like Ericsson, Intel and Brocade. Redhat the
opensource solution developer is a counterweight on OPNAP
project to Canonical at the OSM project.

A. Open Source MANO
OSM is a project hosted by ETSI to deliver an opensource

MANO stack under the Apache Public License 2.0. The first
release of OSM was in October 2016 is a basic implementation
not suitable for commercial deployment. It is built on Ubuntu
Server and can orchestrate and manage three VIM types:

• Open VIM: This is an OSM sub-project.
• OpenStack: OSM can use OpenStack as a VIM.
• VMware vCloud Director.

Like OpenStack, OSM can act as MANO to non OSM VIMs,
in this case OpenStack and VMWare vCloud Director.

B. Open Network Automation Platform
ONAP is another Linux Foundation project that aims to

enable SPs to deliver end-to-end services across an architecture
compliant with ETSI NFV specifications. ONAP has a strong
SDN element as the project sees NFV and SDN as both part
of the solution. In ONAP, SDN is seen as the interconnector
between VNFs to provide end-to-end services. It has also
adopted the TOSCA standard as a VNFD language. ONAP
has three main functions:

• Global Services Orchestrator (GS-O): provides end-to-
end orchestration of any service on any network.

• Network Function Virtualisation Orchestrator (NFV-O):
Service life cycle manager, NFV resource manager and
NFV monitor. Using the south bound SBI, NFVO inter-
works with several NFV SDN controllers, Multi-vendor
VNFMs and different VIMs.

– NBI: RESTful API between GS-O and NFV-O.
– SBI: RESTful API to SDN Controllers (ODL and

ONOS), OpenStack or VMWare as a VIM.
• SDN Orchestrator (SDN-O): provides network service

orchestration over SDN and legacy networks.

VI. CONCLUSION

NFV is still in the early stages of development. ETSI have
provided the early specifications for the architecture and a
number of projects have evolved to fulfil them. The OPNFV
project under the Linux Foundation saw the potential of using
existing, what it terms upstream projects like OpenStack,
ODL, ONOS, KVM and OvS. It sees its role as a facilitator
for the development and evolution of the upstream projects
NFV components across various open source ecosystems.

It runs the Pharos Community Laboratory as a distributed
NFV test laboratory for the deployment and testing of
OPNFV software releases. OPNFV has focused on building
NFVI and VIM elements of MANO. Like the first three
releases, the fourth and latest Danube release, OpenStack is

Page 7 of 8

International Conference on Information and Communication Technologies (ICICT-2017)

the upstream project for the VIM function.

The OpenStack project has worked in parallel on a service
to include NFVO and VNFM in the OpenStack ecosystem.
The first version of it called Tacker was released as part of
OpenStack Mitaka release in March 2016. This provides a
working NFV stack that can be used for NFV deployment
testing.

Additionally there are two other main projects in the
NFV space, the ETSI hosted OSM project and the Linux
Foundation project ONAP. These aim to develop SP carrier
quality MANO to accelerate moving NFV from the laboratory
and trial deployments to mainstream.

NFV presents SPs with an opportunity to reduce their
reliance on specialist hardware and migrate customers
to COTS hardware supporting VNFs while also laying
the foundation for the next stage of Cloud computing
development. To support the tactile Internet of the future
where applications require extremely low latency and no
jitter while certain Internet of Things (IoT) applications have
zero tolerance to any latency (Curry, 2016) it is necessary
to move the applications closer to the end-user. Centralised
applications that have been the hallmark of cloud computing
will have to change and NFV presents a model for the
cloudlet concept to develop. GSPs can have cloudlet capacity
close to the end-user provided by the SP. This presents SPs
the opportunity to move back up the value chain.

From a Ugandan and developing world perspective it is
essential that this and other Software Defined technologies
are embraced. They present a major opportunity to skip a
technology generation and prepare for the Internet of the
future.

REFERENCES

Chiosi, M., Clarke, D., Willis, P., Reid, A., Feger, J., Bugenhagen, M., Khan,
W., Fargano, M., Cui, C., Denf, H. (2012). Network functions virtualisation: An
introduction, benefits, enablers, challenges and call for action. In SDN and OpenFlow
World Congress (pp. 2224).

A guide to the Open Internet. (n.d.). Retrieved 14 July 2016, from
http://www.theopeninter.net/

Heinrich, E. (2014, June 23). Telecom companies count $386 billion
in lost revenue to Skype, WhatsApp, others. Fortune. Retrieved from
http://fortune.com/2014/06/23/telecom-companies-count-386-billion-in-lost-revenue-to-
skype-whatsapp-others/

ETSI, (2012, October 3). ISG NFV Proposal. Terms of Reference of
the Industry Specification Group on NFV (ISG NFV) Retrieved from
https://portal.etsi.org/nfv/ETSI%20ISG%20NFV%20ToR v5 4 October 2012.pdf

ETSI, (2013a). Network Functions Virtualisation Network Operator Perspectives
on Industry Progress - 2013. Updated White Paper, (1). Retrieved from
https://portal.etsi.org/nfv/nfv white paper2.pdf

ETSI, (2014). Network Functions VirtualisationNetwork Operator Perspectives
on Industry Progress - 2014. Updated White Paper, (1). Retrieved from
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV White Paper3.pdf

ETSI. (n.d.). Network Functions Virtualisation. Retrieved 5 December 2015,
from http://www.etsi.org/technologies-clusters/technologies/nfv

Weldon, M. K. (2015). The Future X Network: A Bell Labs Perspective. CRC
PressINC. Retrieved from https://books.google.ie/books?id=DZEZjgEACAAJ

Pitt, D. (2016, June 14). What Is SDNFV & Why Should You Use It? Retrieved 10 July
2016, from http://www.lightreading.com/nfv/nfv-mano/what-is-sdnfv-and-why-should-
you-use-it/a/d-id/724090

SDN-NFV Reference Architecture. (2016, February 1). Verison. Retrieved
from http://innovation.verizon.com/content/dam/vic/PDF/Verizon SDN-
NFV Reference Architecture.pdf

Dahmen-Lhuissier, S. (2016, September 27). ETSI brings virtualization of
telecommunication networks closer with announcement of NFV Release 2.
Retrieved 23 January 2017, from http://www.etsi.org/index.php/news-events/news/1128-
2016-09-news-etsi-brings-virtualization-of-telecommunication-networks-closer-with-
announcement-of-nfv-release-2

ETSI, (2013b). Network Functions Virtualisation (NFV); Use Cases. V1, 1,
201310.

Linux Foundation. (2014, October 30). OPNFV - OPNFV - An open platform to accel-
erate NFV. Retrieved from https://www.opnfv.org//sites/opnfv/files/pages/files/opnfv -
whitepaper 103014.pdf

OPNFV. (2017, April 13). OPNFV issues its fourth release, Danube
— Open Platform for NFV (OPNFV). Retrieved 21 May 2017, from
https://www.opnfv.org/community/2017/04/13/opnfv-issues-its-fourth-release-danube

OpenStack Heat documentation. (n.d.). Retrieved 25 January 2017, from
http://docs.openstack.org/developer/heat/

Heat Orchestration Template (HOT) Guide (n.d.). Retrieved 25 January 2017,
from http://docs.openstack.org/developer/heat/template guide/hot guide.html

Oren Ben-Kiki, & Clark Evans. (2009, January 10). YAMLAintMarkupLanguage(YAML)
Version1.2. Retrieved 23 January 2017, from http://www.yaml.org/spec/1.2/spec.html

Tacker Documentation. (n.d.). Retrieved 23 January 2017, from
http://docs.openstack.org/developer/tacker/

TOSCA Simple Profile in YAML Version 1.0. (n.d.). OASIS. Retrieved from
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/os/TOSCA-Simple-
Profile-YAML-v1.0-os.pdf

Telefónica NFV Reference Lab. (n.d.). Retrieved 26 January 2017, from
http://www.tid.es/es/long-term-innovation/network-innovation/telefonica-nfv-reference-
lab

Adrian Hoban, Alfonso Tierno Sepulveda, Gerardo Garia de Blas, Kiran Kashalkar, Mark
Shuttleworth, Matt Harpe, & Rajesh Velandy. (2016, October). Open Source MANO.
ETSI. Retrieved from https://osm.etsi.org/images/OSM-Whitepaper-TechContent-
ReleaseONE-FINAL.pdf

ONAP. (n.d.). Retrieved 24 February 2017, from
https://www.onap.org/announcement/2017/02/23/the-linux-foundation-announces-
the-formation-of-a-new-project-to-help-accelerate-innovation-in-open-networking-
automation

Alesander Curry. (2016, September 3). Edge Computing for network operators,
opportunities, business models and partnerships.

ETSI GSNFV. (2015, July 1). Network Functions Virtualisation (NFV); Resiliency
Requirements. ETSI. Retrieved from http://www.etsi.org/deliver/etsi gs/NFV-
REL/001 099/001/01.01.01 60/gs NFV-REL001v010101p.pdf

ETSI GSNFV. (2016, April 20). Network Functions Virtualisation (NFV); Management
and Orchestration; Vi-Vnfm reference point - Interface and Information Model
Specification. ETSI. Retrieved from http://www.etsi.org/deliver/etsi gs/NFV-
IFA/001 099/006/02.01.01 60/gs NFV-IFA006v020101p.pdf

Tacker documentation. (n.d.) Alarm monitoring framework . Retrieved 28
January 2017, from http://docs.openstack.org/developer/tacker/devref/alarm monitor-
ing usage guide.html

Tacker Specs documentation. (n.d.) Add alarm-based monitoring driver to
Tacker . Retrieved 28 January 2017, from https://specs.openstack.org/openstack/tacker-
specs/specs/newton/alarm-based-monitoring-driver.html

Ó Briain, D., Denieffe, D., Kavanagh, Y. & Okello, D. (2016). The move to a
software defined future and the implications for Uganda. Presented at the National
Conference on Communication (NCC), Mbarara, Uganda: Uganda Communications
Commission.

Page 8 of 8

