
BSc in Computer Engineering
CMP4103
Computer Systems and Network Security

Lecture 7

Secure Software Development

Eng Diarmuid O'Briain, CEng, CISSP

7-2 CMP4103 - Computer Systems and Network Security

Copyright © 2017 Diarmuid Ó Briain

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free
Documentation License".

CMP4103 Secure Software Development 21 Sep 2017

CMP4103 - Computer Systems and Network Security 7-3

Table of Contents
1. SOFTWARE DEVELOPMENT CONTROLS.. 5

1.1 SOFTWARE ASSURANCE...5
1.2 AVOIDING SYSTEM FAILURE..5
1.3 PROGRAMMING LANGUAGES..5
1.4 SYSTEMS DEVELOPMENT LIFE CYCLE (SDLC)...10
1.5 LIFE CYCLE MODELS...12
1.6 GANTT CHART...18
1.7 PROGRAM EVALUATION AND REVIEW TECHNIQUE (PERT)...18
1.8 CHANGE CONTROL AND CONFIGURATION MANAGEMENT..22
1.9 SOFTWARE TESTING..23
1.10 SECURITY CONTROL ARCHITECTURE...24
1.11 SERVICE LEVEL AGREEMENT (SLA)..25

2. OPEN WEB APPLICATION SECURITY PROJECT (OWASP)...26

2.1 OWASP TOP-10 WEB VULNERABILITY LIST (2017)..26
2.2 OWASP TOP-10 MOBILE VULNERABILITY LIST (2016)..27
2.3 OWASP PRO ACTIVE CONTROLS 2016...28
2.4 CONTROLS MAPPING TO THE TOP-10 2016..32

21 Sep 2017 Secure Software Development CMP4103

7-4 CMP4103 - Computer Systems and Network Security

This page is intentionally blank

CMP4103 Secure Software Development 21 Sep 2017

CMP4103 - Computer Systems and Network Security 7-5

1. Software Development Controls

1.1 Software Assurance
Software Assurance (SwA) is defined as 'the level of confidence that software is free
from vulnerabilities, either intentionally designed into the software or accidentally
inserted at anytime during its lifecycle and that the software functions in the intended
manner'.

1.2 Avoiding System Failure

1.2.1 Fail-secure

Fail-secure describes a device or feature which, in the event of failure, responds in a
way that will put the system into the highest level of security until the problem is
diagnosed and repaired. For example, a fail-secure lock will remain locked during a
failure, but cannot be unlocked even by the correct key.

1.2.2 Fail-open

Fail-open describes a device or feature which, in the event of failure allows users to
bypass failed security controls, assuming those that want access should have access.

1.3 Programming Languages

A programming language is an artificial language designed to express computations
that can be performed by a machine, particularly a computer. Programming languages
can be used to create programs that control the behaviour of a machine, to express
algorithms precisely, or as a mode of human communication.

Many programming languages have some form of written specification of their syntax
(form) and semantics (meaning). Some languages are defined by a specification
document. For example, the C programming language is specified by an ISO Standard.
Other languages, such as Perl, have a dominant implementation that is used as a
reference.

21 Sep 2017 Secure Software Development CMP4103

7-6 CMP4103 - Computer Systems and Network Security

The earliest programming languages pre-date the invention of the computer, and were
used to direct the behaviour of machines such as Jacquard looms and player pianos.
Thousands of different programming languages have been created, mainly in the
computer field, with many more being created every year. Most programming
languages describe computation in an imperative style, i.e., as a sequence of
commands, although some languages, such as those that support functional
programming or logic programming, use alternative forms of description.

1.3.1 Programming Language Generations

• First Generation Languages (1GL)

◦ Machine-level programming language.

◦ Originally, no translator was used to compile or assemble the first-
generation language. The first-generation programming instructions were
entered through the front panel switches of the computer system.

• Second Generation Languages (2GL)

◦ Assembly languages

◦ The term was coined to provide a distinction from higher level third-
generation programming languages (3GL) such as COBOL and earlier
machine code languages.

• Third Generation Languages (3GL)

◦ First introduced in the late 1950s, Fortran, ALGOL and COBOL are early
examples of this sort of language.

◦ Most "modern" languages (BASIC, C, C++, C#, Pascal, and Java) are also
third-generation languages.

• Fourth Generation Languages (4GL)

◦ High-level computer language such as Structured Query Language (SQL)
that allows non-programmer users to write (usually short) programs to query
databases and to generate custom reports.

• Fifth Generation Languages (5GL)

◦ Solve problems using constraints given to the program, rather than using an
algorithm written by a programmer.

◦ Most constraint-based and logic programming languages and some
declarative languages are fifth-generation languages.

◦ This generation allows programmers to create code using visual interfaces.

CMP4103 Secure Software Development 21 Sep 2017

CMP4103 - Computer Systems and Network Security 7-7

1.3.2 Object-oriented Programming (OOP)

Example: C++, Java

OOP is a programming paradigm that uses "objects", data structures consisting of
datafields and methods together with their interactions, to design applications and
computer programs. Programming techniques may include features such as information
hiding, data abstraction, encapsulation, modularity, polymorphism, and inheritance. It
was not commonly used in mainstream software application development until the early
1990s.

An OOP may thus be viewed as a collection of interacting objects, as opposed to the
conventional model, in which a program is seen as a list of tasks (subroutines) to
perform. In OOP, each object is capable of receiving messages, processing data, and
sending messages to other objects and can be viewed as an independent 'machine'
with a distinct role or responsibility. The actions (or "operators") on these objects are
closely associated with the object. For example, the data structures tend to 'carry their
own operators around with them' (or at least "inherit" them from a similar object or
class).

OOP Terms

• Class

◦ Defines the abstract characteristics of a thing (object), including the thing's
characteristics (its attributes, fields or properties) and the thing's behaviours
(the things it can do, or methods, operations or features). i.e. the class Cat
would consist of traits shared by all cats, such as breed and characteristics
(coat colour), and behaviours.

• Object

◦ A pattern (exemplar) of a class. The class of Cat defines all possible cats by
listing the characteristics and behaviours they can have, the object Tom is
one particular cat, with particular versions of the characteristics. A Cat has a
coat. Tom has brown coat.

• Instance

◦ One can have an instance of a class or a particular object. The instance is
the actual object created at runtime. In programmer jargon, the Tom object
is an instance of the Cat class. The set of values of the attributes of a
particular object is called its state. The object consists of state and the
behaviour that's defined in the object's class.

21 Sep 2017 Secure Software Development CMP4103

7-8 CMP4103 - Computer Systems and Network Security

• Method

◦ An object's abilities. In language, methods (sometimes referred to as
"functions") are verbs. Tom, being a cat, has the ability to purr. So purr() is
one of Tom's methods. She may have other methods as well, for example
sit() or eat() or walk() or groom(). Within the program, using a method
usually affects only one particular object, all cats can purr, but you need only
one particular cat to do the purring.

• Message passing

◦ "The process by which an object sends data to another object or asks the
other object to invoke a method." Also known to some programming
languages as interfacing. For example, the object called Breeder may tell
the Tom object to sit by passing a "sit" message which invokes Tom's "sit"
method.

• Inheritance

◦ "Subclasses" are more specialised versions of a class, which inherit
attributes and behaviours from their parent classes, and can introduce their
own.

◦ i.e. the class Cat might have sub-classes called Tabby, White, and
ColourPoint. In this case, Tom would be an instance of the Tabby subclass.
Suppose the Cat class defines a method called purr() and a property called
coatColor. Each of its sub-classes (Tabby, White, and ColourPoint) will
inherit these members, meaning that the programmer only needs to write the
code for them once.

• Abstraction

◦ Abstraction is simplifying complex reality by modelling classes appropriate
to the problem, and working at the most appropriate level of inheritance for a
given aspect of the problem.

◦ i.e. Tom the Cat may be treated as a Cat much of the time, a Tabby when
necessary to access Tabby specific attributes or behaviours, and as an
Animal (perhaps the parent class of Cat) when counting the pets.

CMP4103 Secure Software Development 21 Sep 2017

CMP4103 - Computer Systems and Network Security 7-9

• Encapsulation

◦ Encapsulation conceals the functional details of a class from objects that
send messages to it.

◦ i.e. the Cat class has a purr() method. The code for the purr() method
defines exactly how a purr happens (e.g., by inhale() and then exhale(), at a
particular pitch and volume).

• Polymorphism

◦ Polymorphism allows the programmer to treat derived class members just
like their parent class' members. More precisely, Polymorphism in OOP is
the ability of objects belonging to different data types to respond to method
calls of methods of the same name, each one according to an appropriate
type-specific behaviour.

◦ i.e. If a Cat is commanded to speak(), this may elicit a purr(). However, if a
Dog is commanded to speak(), this may elicit a bark(). They both inherit
speak() from Animal, but their derived class methods override the methods
of the parent class; this is Overriding Polymorphism.

• Decoupling

◦ Decoupling allows for the separation of object interactions from classes and
inheritance into distinct layers of abstraction. A common use of decoupling
is to polymorphically decouple the encapsulation, which is the practice of
using reusable code to prevent discrete code modules from interacting with
each other. However, in practice decoupling often involves trade-offs with
regard to which patterns of change to favour. The science of measuring
these trade-offs in respect to actual change in an objective way is still in its
infancy.

21 Sep 2017 Secure Software Development CMP4103

7-10 CMP4103 - Computer Systems and Network Security

1.4 Systems Development Life Cycle (SDLC)

The SDLC in systems engineering and software engineering, is the process of creating
or altering systems, and the models and methodologies that people use to develop
these systems. The concept generally refers to computer or information systems.

In software engineering the SDLC concept underpins many kinds of software
development methodologies. These methodologies form the framework for planning
and controlling the creation of an information system: the software development
process.

1.4.1 Concept Definition

Creation of a basic concept statement for the system. The Stakeholders must agree this
before moving to the next phase.

1.4.2 Functional Requirements

The Functional Requirements Definition is put together by the development team. From
this document the development team will design the elements of the system. At the end
of the project this document will be used by Project Managers to ensure the
functionality is met by the system.

1.4.3 Protection Specification

This is a specification of the security requirements of the system and how they will be
developed within the system development.

CMP4103 Secure Software Development 21 Sep 2017

CMP4103 - Computer Systems and Network Security 7-11

1.4.4 Design Review

Once the Functional Specification and the Protection Specification have been complete
the System Designers determine how the elements of the system will interoperate and
communicate. The output of this stage is a Design Document.

1.4.5 Code Review Walk through

This should be a series of software code reviews as various stages of the development
of code complete. This is managed by the development Project Manager (PM).

1.4.6 System Test Review

This is the period of intense testing by the Systems Test Group. The working code is
sent to beta sites to test in near live environments and the discovered bugs are
recorded.

1.4.7 Maintenance

Once the product is released a maintenance cycle is necessary to keep the product
operational as expected. Maintenance code releases with bug fixes will become
necessary from time to time.

21 Sep 2017 Secure Software Development CMP4103

7-12 CMP4103 - Computer Systems and Network Security

1.5 Life Cycle Models

1.5.1 Waterfall Model

The waterfall model shows a process, where developers are to follow these steps in
order:

After each step is finished, the process proceeds to the next step, just as builders don't
revise the foundation of a house after the framing has been erected.

There is a misconception that the process has no provision for correcting errors in early
steps (for example, in the requirements). In fact this is where the domain of
requirements management comes in, which includes change control. The counter
argument, by critics to the process, is the significantly increased cost in correcting
problems through introduction of iterations. This is also the factor that extends delivery
time and makes this process increasingly unpopular even in high risk projects.

CMP4103 Secure Software Development 21 Sep 2017

CMP4103 - Computer Systems and Network Security 7-13

1.5.2 Spiral Model

The spiral model is a software development process combining elements of both design
and prototyping in stages, in an effort to combine advantages of top-down and bottom
up concepts. Also known as the spiral lifecycle model combines the features of the
prototyping model and the waterfall model. The spiral model is intended for large,
expensive and complicated projects.

21 Sep 2017 Secure Software Development CMP4103

7-14 CMP4103 - Computer Systems and Network Security

The steps in the spiral model iteration can be generalised as follows:

1) The new system requirements are defined in as much detail as possible. This
usually involves interviewing a number of users representing all the external or
internal users and other aspects of the existing system.

2) A preliminary design is created for the new system. This phase is the most
important part of "Spiral Model". In this phase all possible (and available)
alternatives, which can help in developing a cost effective project are analysed
and strategies are decided to use them. This phase has been added specially in
order to identify and resolve all the possible risks in the project development. If
risks indicate any kind of uncertainty in requirements, prototyping may be used
to proceed with the available data and find out possible solution in order to deal
with the potential changes in the requirements.

3) A first prototype of the new system is constructed from the preliminary design.
This is usually a scaled down system, and represents an approximation of the
characteristics of the final product.

4) A second prototype is evolved by a fourfold procedure:

a) Evaluating the first prototype in terms of its strengths, weaknesses, and
risks

b) Defining the requirements of the second prototype

c) Planning and designing the second prototype

d) Constructing and testing the second prototype.

CMP4103 Secure Software Development 21 Sep 2017

CMP4103 - Computer Systems and Network Security 7-15

1.5.3 Software Capability Maturity Model

The Capability Maturity Model (CMM) is a service mark and a model for understanding
the capability maturity of an organisation's software development business processes.
Because the CMM is about process maturity, it differs from more common maturity
models that provide a structured collection of elements that describe certain aspects of
maturity in an organisation. The CMM is useful as a general theoretical model, to aid in
the definition and understanding of an organisation's process capability maturity. For
software development, the CMM has been superseded by Capability Maturity Model
Integration (CMMI).

• Level 1 - Initial

◦ It is characteristic of processes at this level that they are (typically)
undocumented and in a state of dynamic change, tending to be driven in an
ad-hoc, uncontrolled and reactive manner by users or events. This provides
a chaotic or unstable environment for the processes.

• Level 2 - Repeatable

◦ It is characteristic of processes at this level that some processes are
repeatable, possibly with consistent results.

◦ Process discipline is unlikely to be rigorous, but where it exists it may help to
ensure that existing processes are maintained during times of stress.

21 Sep 2017 Secure Software Development CMP4103

7-16 CMP4103 - Computer Systems and Network Security

• Level 3 - Defined

◦ It is characteristic of processes at this level that there are sets of defined
and documented standard processes established and subject to some
degree of improvement over time. These standard processes are in place
and are used to establish consistency of process performance across the
organisation.

• Level 4 - Managed

◦ It is characteristic of processes at this level that, using process metrics,
management can effectively control the process. In particular, management
can identify ways to adjust and adapt the process without measurable loss
of quality or deviations from specifications. Process Capability is established
from this level.

• Level 5 - Optimised

◦ It is characteristic of processes at this level that the focus is on continually
improving process performance through both incremental and innovative
technological changes/improvements.

CMP4103 Secure Software Development 21 Sep 2017

CMP4103 - Computer Systems and Network Security 7-17

1.5.4 IDEAL model

The IDEAL model is an organisational improvement model that serves as a roadmap for
initiating, planning, and implementing improvement actions. The IDEAL model is named
for the five phases it describes:

• Initiating
• Diagnosing
• Establishing
• Acting
• Leveraging.

21 Sep 2017 Secure Software Development CMP4103

7-18 CMP4103 - Computer Systems and Network Security

1.6 Gantt Chart

A Gantt chart is a type of bar chart that illustrates a project schedule. Gantt charts
illustrate the start and finish dates of the terminal elements and summary elements of a
project. Terminal elements and summary elements comprise the work breakdown
structure of the project. Some Gantt charts also show the dependency (i.e., precedence
network) relationships between activities. Gantt charts can be used to show current
schedule status using percent complete shadings and a vertical "TODAY" line as
shown here.

1.7 Program Evaluation and Review Technique (PERT)
PERT is a method to analyse the involved tasks in completing a given project,
especially the time needed to complete each task, and identifying the minimum time
needed to complete the total project.

PERT was developed primarily to simplify the planning and scheduling of large and
complex projects. It was able to incorporate uncertainty by making it possible to
schedule a project while not knowing precisely the details and durations of all the
activities. It is more of an event-oriented technique rather than start and completion
oriented, and is used more in projects where time, rather than cost, is the major factor.
It is applied to very large-scale, one-time, complex, non-routine infrastructure and
Research and Development projects.

This project model was the first of its kind, a revival for scientific management, founded
by Frederick Taylor "Taylorism" and later refined by Henry Ford "Fordism". DuPont
Corporation’s critical path method was invented at roughly the same time as PERT.

CMP4103 Secure Software Development 21 Sep 2017

CMP4103 - Computer Systems and Network Security 7-19

1.7.1 Determine the Critical Path

The Critical Path is the longest necessary path through a network of activities when
respecting their interdependencies.

There are two terms related to the Critical Path. These are the terms Forward Pass and
Backward Pass. These terms are related to ways of determining the early or late start
[forward pass] or early or late finish [backward pass] for an activity.

Forward pass is a technique to move forward through a diagram to calculate activity
duration. Backward pass is its opposite.

To determine the paths use a Program Evaluation and Review Technique (PERT) tool
to layout the activity steps.

1.7.2 Forward pass calculations

• Early Start Date (ES)

◦ Earliest possible point in time an activity can start, based on the network
logic and any schedule constraints.

• Duration (DU)

◦ Number of work periods, excluding holidays or other non-working periods,
required to complete the activity, expressed as workdays or workweeks.

• Early Finish Date (EF)

◦ Earliest possible time the activity can finish.

Starting at the beginning (left) of the network develop ES and EF dates for each task,
progressing to end (right-most box) of the network where EF = ES + DU – 1.

21 Sep 2017 Secure Software Development CMP4103

EF = ES + DU - 1
Task

LF

EF

LS

ES DU

Prepara tion

31 DU=3

Ins ta ll CIX

44 DU=1

Ins ta ll Te leCity

44 DU=1

Commiss ion CIX

65 DU=2

Commiss ion Te leCity

75 DU=3

Establish NOC

64 DU=3 108 DU=3

FL

Test & Handover

7-20 CMP4103 - Computer Systems and Network Security

1.7.3 Backward pass calculations

• Late Start Date (LS)

◦ Latest point in time that an activity may begin without delaying that activity’s
successor.

◦ If the activity is on the critical path, the project end date will be affected.

• Float or Slack (FL)

◦ Latest point in time a task may be delayed from its earliest start date without
delaying the project finish date.

• Late Finish (LF)

◦ Latest point in time a task may be completed without delaying that activity’s
successor If the activity is on the critical path, the project end date will be
affected.

Calculate LS and LF dates by starting at project completion, using finish times and
working backwards.

CMP4103 Secure Software Development 21 Sep 2017

EF = ES + DU – 1
LS = LF - DU + 1 Task

LF

EF

LS

ES DU

Prepara tion

31 DU=3

Ins ta ll CIX

44 DU=1

Ins ta ll TeleCity

44 DU=1

Commiss ion CIX

Commiss ion Te leCity

Es tablish NOC

64 DU=3

Test & Handover

FL

31 FL=0 75 FL=1 108 FL=0

44 FL=0 75 FL=0

55 FL=1 76 FL=1

65 DU=2

75 DU=3

108 DU=3

CMP4103 - Computer Systems and Network Security 7-21

1.7.4 Forward and backward pass summary table

1.7.5 Calculating the Critical Path

The Critical Path is the longest possible continuous pathway taken from the initial event
to the terminal event.

It determines the total calendar time required for the project. Therefore, any time delays
along the critical path will delay the reaching of the final event by at least the same
amount.

21 Sep 2017 Secure Software Development CMP4103

Prepara tion

31 DU=3

Ins ta ll CIX

44 DU=1

Ins ta ll Te leCity

44 DU=1

Commiss ion CIX

Commiss ion Te leCity

Es tablish NOC

64 DU=3

Tes t & Handover
31 FL=0 75 FL=1 108 FL=0

44 FL=0 75 FL=0

55 FL=1 76 FL=1

65 DU=2

75 DU=3

108 DU=3

Task
LF

EF

LS

ES DU

FL

7-22 CMP4103 - Computer Systems and Network Security

1.8 Change Control and Configuration Management
Once the product is released an organised method of Change Control and dealing with
reported bugs must be created.

• Request Control

◦ This is a process framework whereby users can request modifications,
managers can conduct cost/benefit analysis and developers can prioritise
tasks.

• Change Control

◦ This is a developer’s process to recreate a situation reported by a user in
order to make appropriate changes to remedy the situation.

• Release Control

◦ Once changes are made a release control process must be adhered to.
Does the change warrant going through system test group etc..

1.8.1 Configuration Management

Within a system the security administrator should formally track versions of code and
configurations.

• Configuration Identification

◦ This is the documentation of the configuration on systems.

• Configuration Control

◦ If changes to the configuration become necessary they must be made in
accordance to a change control process.

• Configuration Status Accounting

◦ Formalised procedures to track of all authorised changes that take place.

• Configuration Audit

◦ Periodic audits to ensure the production system is consistent with the
accounting records and that unauthorised changes have not occurred.

CMP4103 Secure Software Development 21 Sep 2017

CMP4103 - Computer Systems and Network Security 7-23

1.9 Software Testing

1.9.1 White box testing

White box testing uses an internal perspective of the system to design test cases based
on internal structure. It requires programming skills to identify all paths through the
software. The tester chooses test case inputs to exercise paths through the code and
determines the appropriate outputs.

While white box testing is applicable at the unit, integration and system levels of the
software testing process, it is typically applied to the unit. While it normally tests paths
within a unit, it can also test paths between units during integration, and between
subsystems during a system level test. Though this method of test design can uncover
an overwhelming number of test cases, it might not detect unimplemented parts of the
specification or missing requirements, but one can be sure that all paths through the
test object are executed.

Typical white box test design techniques include:

• Control flow testing
• Data flow testing
• Branch Testing.

1.9.2 Black box testing

Black box testing takes an external perspective of the test object to derive test cases.
These tests can be functional or non-functional, though usually functional. The test
designer selects valid and invalid inputs and determines the correct output. There is no
knowledge of the test object's internal structure.

This method of test design is applicable to all levels of software testing: unit, integration,
functional testing, system and acceptance. The higher the level, and hence the bigger
and more complex the box, the more one is forced to use black box testing to simplify.
While this method can uncover unimplemented parts of the specification, one cannot be
sure that all existent paths are tested.

21 Sep 2017 Secure Software Development CMP4103

7-24 CMP4103 - Computer Systems and Network Security

1.9.3 Grey Box Testing

Grey box testing involves having access to internal data structures and algorithms for
purposes of designing the test cases, but testing at the user, or black box level.
Manipulating input data and formatting output do not qualify as grey box, because the
input and output are clearly outside of the "black box" that we are calling the system
under test. This distinction is particularly important when conducting integration testing
between two modules of code written by two different developers, where only the
interfaces are exposed for test. However, modifying a data repository does qualify as
grey box, as the user would not normally be able to change the data outside of the
system under test. Grey box testing may also include reverse engineering to determine,
for instance, boundary values or error messages.

1.10 Security Control Architecture

1.10.1 Process Isolation

Process isolation is a set of different hardware and software technologies designed to
protect each OS process from other processes. It does so by preventing process A
from writing into process B.

Process isolation can be implemented by with virtual address space, where process A's
address space is different from process B's address space, preventing A to write into B.

Security is easier to enforce by disallowing interprocess memory access, than
compared to less secure architectures (such as DOS) in which any process can write to
any memory in any other process.

1.10.2 Protection Rings

Protection rings, are a mechanism to protect data and
functionality from faults (fault tolerance) and malicious
behaviour (computer security). This approach is
diametrically opposite to that of capability based security.

Computer Operating Systems (OS) provide different
levels of access to resources. A protection ring is one of
two or more hierarchical levels or layers of privilege
within the architecture of a computer system. This is
generally hardware enforced by some CPU architectures
that provide different CPU modes at the firmware level.
Rings are arranged in a hierarchy from most privileged
(most trusted, usually numbered zero) to least privileged
(least trusted, usually with the highest ring number). On most OSs, Ring 0 is the level
with the most privileges and interacts most directly with the physical hardware such as
the CPU and memory.

CMP4103 Secure Software Development 21 Sep 2017

CMP4103 - Computer Systems and Network Security 7-25

Special gates between rings are provided to allow an outer ring to access an inner
ring's resources in a predefined manner, as opposed to allowing arbitrary usage.
Correctly gating access between rings can improve security by preventing programs
from one ring or privilege level from misusing resources intended for programs in
another. For example, spyware running as a user program in Ring 3 should be
prevented from turning on a web camera without informing the user, since hardware
access should be a Ring 1 function reserved for device drivers. Programs such as web
browsers running in higher numbered rings must request access to the network, a
resource restricted to a lower numbered ring.

1.11 Service Level Agreement (SLA)
An SLA is a negotiated agreement between two parties where one is the customer and
the other is the service provider. This can be a legally binding formal or informal
"contract".

The SLA records a common understanding about services, priorities, responsibilities,
guarantees, and warranties. Each area of service scope should have the "level of
service" defined. The SLA may specify the levels of availability, serviceability,
performance, operation, or other attributes of the service, such as billing. The "level of
service" can also be specified as "target" and "minimum," which allows customers to be
informed what to expect (the minimum), whilst providing a measurable (average) target
value that shows the level of organisation performance. In some contracts, penalties
may be agreed upon in the case of non-compliance of the SLA (but see "internal"
customers below). It is important to note that the "agreement" relates to the services the
customer receives, and not how the service provider delivers that service.

21 Sep 2017 Secure Software Development CMP4103

7-26 CMP4103 - Computer Systems and Network Security

2. Open Web Application Security Project (OWASP)

OWASP is an open community dedicated to enabling organistions to conceive,
develop, acquire, operate, and maintain applications that can be trusted. All of the
OWASP tools, documents, forums, and chapters are free and open to anyone
interested in improving application security.

2.1 OWASP Top-10 Web Vulnerability List (2017)
OWASP produce a Top-10 vulnerability list every two years or so. Here is the current
list. There is a current Top 10 - 2016 Data Call.

• A1: Injection

• A2: Broken Authentication and Session Management

• A3: Cross-Site Scripting (XSS)

• A4: Broken Access Control

• A5: Security Misconfiguration

• A6: Sensitive Data Exposure

• A7: Insufficient Attack Protection

• A8: Cross-Site Request Forgery (CSRF)

• A9: Using Components with Known Vulnerabilities

• A10: Under-protected APIs.

Reference

OWASP. 2016. OWASP Top 10 Release Candidate 1. 2017. [online]. Available:
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_f
or_2017_Release_Candidate_1 [accessed: 20 Sept 2017].

CMP4103 Secure Software Development 21 Sep 2017

CMP4103 - Computer Systems and Network Security 7-27

2.2 OWASP Top-10 Mobile Vulnerability List (2016)
OWASP have also represented the mobile application threat landscape from an
industry poll of vulnerability statistics.

• M1: Improper Platform Usage

• M2: Insecure Data Storage

• M3: Insecure Communication

• M4: Insecure Authentication

• M5: Insufficient Cryptography

• M6: Insecure Authorisation

• M7: Poor Code Quality

• M8: Code Tampering

• M9: Reverse Engineering

• M10: Extraneous Functionality.

Reference

OWASP. 2016. Mobile Top 10 2016-Top 10 [online]. Available:
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10 [accessed: 20 Sept 2017].

21 Sep 2017 Secure Software Development CMP4103

7-28 CMP4103 - Computer Systems and Network Security

2.3 OWASP Pro Active Controls 2016
OWASP have produces a set of Top 10 Proactive Controls to raise awareness about
application security by describing the most important areas of concern that software
developers must be aware of. OWASP encourage the use of the controls to aid in the
building of secure software.

• C1: Verify for Security Early and Often

• C2: Parameterise Queries

• C3: Encode Data

• C4: Validate All Inputs

• C5: Implement Identity and Authentication Controls

• C6: Implement Appropriate Access Controls

• C7: Protect Data

• C8: Implement Logging and Intrusion Detection

• C9: Leverage Security Frameworks and Libraries

• C10: Error and Exception Handling.

2.3.1 C1: Verify for Security Early and Often

Across many organisations security testing is performed outside the development
testing loops, following a ’scan – then - fix’ approach. The security team runs a
scanning tool or conducts a pen test, triages the results, and then presents the
development team a list of vulnerabilities to be fixed, referred to as ‘ the hamster wheel
of pain’.

A better way is to make security testing an integral part of a developer’s software
engineering practice. Security testing should not be left to the end of a project, it needs
to be verified early and often, whether through manual testing or automated tests and
scans as the software is being developed.

CMP4103 Secure Software Development 21 Sep 2017

CMP4103 - Computer Systems and Network Security 7-29

2.3.2 C2: Parameterise Queries

SQL Injection is one of the most dangerous web application risks. SQL Injection is easy
to exploit with many open source automated attack tools available. SQL injection can
be simply devastating to an application by the simple insertion of malicious SQL code
into a web application meaning that the entire database could potentially be stolen,
dropped, or modified or even used to run dangerous OS commands against the system
host.

To mitigate SQL injection, untrusted input should be prevented from being interpreted
as part of a SQL command. The best way to do this is with the programming technique
known as ‘Query Parameterisation’. In this case, the SQL statements are sent to and
parsed by the database server separately from any parameters.

2.3.3 C3: Encode Data

Encoding involves translating special characters into some equivalent form that is no
longer dangerous in the target interpreter. Encoding is needed to stop various forms of
injection including command injection (Unix command encoding, Windows command
encoding), LDAP injection (LDAP encoding) and XML injection (XML encoding).

2.3.4 C4: Validate All Inputs

Any data which is directly entered by, or influenced by, users should be treated as
untrusted. An application should check that this data is both syntactically and
semantically valid before using it in any way. Additionally, the most secure applications
treat all variables as untrusted and provide security controls regardless of the source of
that data. Syntax validity means that the data is in the form that is expected.

2.3.5 C5: Implement Identity and Authentication Controls

Authentication is the process of verifying that an individual or an entity is who it claims
to be and is commonly performed by submitting a username or ID and one or more
items of private information that only a given user should know.

Session Management is a process by which a server maintains the state of an entity
interacting with it. This is required for a server to remember how to react to subsequent
requests throughout a transaction. Sessions are maintained on the server by a session
identifier which can be passed back and forth between the client and server when
transmitting and receiving requests. Sessions should be unique per user and
computationally impossible to predict.

Identity Management is a broader topic that not only includes authentication and
session management, but also covers advanced topics like identity federation, single
sign on, password management tools, delegation, identity repositories and more.

21 Sep 2017 Secure Software Development CMP4103

7-30 CMP4103 - Computer Systems and Network Security

2.3.6 C6: Implement Access Controls

Access Control or Authorisation is the process where requests to access a particular
feature or resource should be granted or denied. It should be noted that authorisation is
not equivalent to authentication. Access control design requirements should be
considered at the initial stages of application development as it is difficult and time
consuming to re-engineer access control at a later stage of development.

2.3.7 C7: Protect Data

Encrypting data in Transit. When transmitting sensitive data, at any tier of an
application or network architecture then encryption of the data in transit must be
considered. Transport Layer Security (TLS) is by far the most common and widely
supported model used by web applications for encryption in transit.

Encrypting data at Rest. Cryptographic storage is difficult to build securely. It's critical
to classify data and determine that data needs to be encrypted, such as the need to
encrypt credit cards per the Payment Card Industry (PCI) - Data Security Standard
(DSS) compliance standard. Instead of building from scratch consider using open
libraries like:

• Google KeyCzar project

• Bouncy Castle

• functions included in SDKs.

A common weakness in encrypting data at rest is using an inadequate key, or storing
the key along with the encrypted data. Keys should be treated as secrets and only exist
on the device in a transient state, entered by the user so that the data can be
decrypted, and then erased from memory. An alternative is to use of specialised crypto
hardware such as a Hardware Security Module (HSM) for key management and
cryptographic process isolation.

2.3.8 C8: Implement Logging and Intrusion Detection

Application logging should not be an afterthought or limited to debugging and
troubleshooting. Logging is also used in other important activities:

• Application monitoring

• Business analytics and insight

• Activity auditing and compliance monitoring

• System intrusion detection

• Forensics.

CMP4103 Secure Software Development 21 Sep 2017

CMP4103 - Computer Systems and Network Security 7-31

Logging and tracking security events and metrics helps to enable ‘attack driven
defence’: Security testing and controls must be aligned with real world attacks against
systems. For example a PCI DSS audit log will contain a chronological record of
activities to provide an independently verifiable trail that permits reconstruction, review
and examination to determine the original sequence of attributable transactions. It is
important not to log too much, or too little. Make sure to always log the timestamp and
identifying information like the source Internet Protocol (IP) address and user-ID, but be
careful not to log private or confidential data. Protect logs from ‘ log Injection’ by making
sure to perform encoding on untrusted data before logging it.

2.3.9 C9: Leverage Security Frameworks and Libraries

It is a waste of time ‘re-inventing the wheel’ when it comes to developing security
controls and can lead to massive security holes. Secure coding libraries and software
frameworks with embedded security help software developers guard against security
related design and implementation flaws. It is preferable to have developers take
advantage of what they're already using instead of forcing yet another library on them.
Web application security frameworks to consider include:

• Spring Security

• Apache Shiro

• Django Security

• Flask security.

2.3.10 C10: Error and Exception Handling

Implementing correct error and exception handling is an important part of defensive
coding, critical to making a system reliable as well as secure. Mistakes in error handling
can lead to different kinds of security vulnerabilities.

• It is recommended to manage exceptions in a centralised manner to avoid

duplicated try/catch blocks in the code, and to ensure that all unexpected
behaviours are correctly handled within the application.

• Ensure that error messages displayed to users do not leak critical data, but are

still verbose enough to explain the issue to the user.

• Ensure that exceptions are logged in a way that gives enough information for

Q/A, forensics or incident response teams to understand the problem.

OWASP. 2016. OWASP Top 10 Proactive Controls 2016 [online]. Available:
https://www.owasp.org/index.php/OWASP_Proactive_Controls [accessed: 20 Sept 2017].

21 Sep 2017 Secure Software Development CMP4103

7-32 CMP4103 - Computer Systems and Network Security

2.4 Controls mapping to the Top-10 2016
The table below maps the address vulnerabilities to the implementable controls to
address them.

Control Vulnerability addressed

C1: Verify for Security Early and Often All Top 10

C2: Parameterise Queries Injection

Weak Server side controls

C3: Encode Data Injection

Cross Site Scripting (XSS)

Client Side Injection

C4: Validate All Inputs Injection (in part)

Cross-Site_Scripting_(XSS) (in part)

Unvalidated Redirects and Forwards

Security Decisions Via Untrusted Inputs (in part)

C5: Identity and Authentication Controls Broken Authentication and Session Management

Poor Authorisation and Authentication

C6: Implement Access Controls Insecure Direct Object References

Missing Function Level Access Control

Poor Authorisation and Authentication

C7: Protect Data Sensitive Data Exposure

Insecure Data Storage

C8: Implement Logging and Intrusion Detection All Top 10

Unintended Data Leakage

C9: Leverage Security Features and Libraries All Top 10

C10: Error and Exception Handling All Top 10

Reference

OWASP. 2016. OWASP Proactive Controls mapping [online]. Available:
https://www.owasp.org/index.php/OWASP_Proactive_Controls?refresh=123#tab=Top_10_Mapping_2016
[accessed: 20 Sept 2017].

CMP4103 Secure Software Development 21 Sep 2017

	1. Software Development Controls
	1.1 Software Assurance
	1.2 Avoiding System Failure
	1.2.1 Fail-secure
	1.2.2 Fail-open

	1.3 Programming Languages
	1.3.1 Programming Language Generations
	1.3.2 Object-oriented Programming (OOP)

	1.4 Systems Development Life Cycle (SDLC)
	1.4.1 Concept Definition
	1.4.2 Functional Requirements
	1.4.3 Protection Specification
	1.4.4 Design Review
	1.4.5 Code Review Walk through
	1.4.6 System Test Review
	1.4.7 Maintenance

	1.5 Life Cycle Models
	1.5.1 Waterfall Model
	1.5.2 Spiral Model
	1.5.3 Software Capability Maturity Model
	1.5.4 IDEAL model

	1.6 Gantt Chart
	1.7 Program Evaluation and Review Technique (PERT)
	1.7.1 Determine the Critical Path
	The Critical Path is the longest necessary path through a network of activities when respecting their interdependencies.
	There are two terms related to the Critical Path. These are the terms Forward Pass and Backward Pass. These terms are related to ways of determining the early or late start [forward pass] or early or late finish [backward pass] for an activity.
	Forward pass is a technique to move forward through a diagram to calculate activity duration. Backward pass is its opposite.
	To determine the paths use a Program Evaluation and Review Technique (PERT) tool to layout the activity steps.
	1.7.2 Forward pass calculations
	Early Start Date (ES)
	Earliest possible point in time an activity can start, based on the network logic and any schedule constraints.
	Duration (DU)
	Number of work periods, excluding holidays or other non-working periods, required to complete the activity, expressed as workdays or workweeks.
	Early Finish Date (EF)
	Earliest possible time the activity can finish.
	1.7.3 Backward pass calculations
	Late Start Date (LS)
	Latest point in time that an activity may begin without delaying that activity’s successor.
	If the activity is on the critical path, the project end date will be affected.
	Float or Slack (FL)
	Latest point in time a task may be delayed from its earliest start date without delaying the project finish date.
	Late Finish (LF)
	Latest point in time a task may be completed without delaying that activity’s successor If the activity is on the critical path, the project end date will be affected.
	Calculate LS and LF dates by starting at project completion, using finish times and working backwards.
	1.7.4 Forward and backward pass summary table
	1.7.5 Calculating the Critical Path
	The Critical Path is the longest possible continuous pathway taken from the initial event to the terminal event.
	It determines the total calendar time required for the project. Therefore, any time delays along the critical path will delay the reaching of the final event by at least the same amount.

	1.8 Change Control and Configuration Management
	1.8.1 Configuration Management

	1.9 Software Testing
	1.9.1 White box testing
	1.9.2 Black box testing
	1.9.3 Grey Box Testing

	1.10 Security Control Architecture
	1.10.1 Process Isolation
	1.10.2 Protection Rings

	1.11 Service Level Agreement (SLA)

	2. Open Web Application Security Project (OWASP)
	2.1 OWASP Top-10 Web Vulnerability List (2017)
	2.2 OWASP Top-10 Mobile Vulnerability List (2016)
	2.3 OWASP Pro Active Controls 2016
	2.3.1 C1: Verify for Security Early and Often
	2.3.2 C2: Parameterise Queries
	2.3.3 C3: Encode Data
	2.3.4 C4: Validate All Inputs
	2.3.5 C5: Implement Identity and Authentication Controls
	2.3.6 C6: Implement Access Controls
	2.3.7 C7: Protect Data
	2.3.8 C8: Implement Logging and Intrusion Detection
	2.3.9 C9: Leverage Security Frameworks and Libraries
	2.3.10 C10: Error and Exception Handling

	2.4 Controls mapping to the Top-10 2016

