

CMP4204 Wireless Technologies

Lecture 08

Cellular Mobile 2G, GSM and CDMA

Diarmuid Ó Briain CEng, FIEI, FIET, CISSP

diarmuid@obriain.com

Multiple Access methods

Spread Spectrum

Spread Spectrum

CDMA Spreading

CDMA Spreading

Bandwidth of Digital signal = 2 * Bit rate

 $f_{\rm c} + f_{\rm i} \approx f_{\rm c} \operatorname{as} f_{\rm c} >> f_{\rm i}$

- Processing Gain (G_p) is the theoretical system gain that results from the spreading effect.
- This gain is also known as the Spreading Factor and is given by:

 $- G_{p} = f_{c} / f_{i}$

- Spreading Factor is the ratio of the chips (i.e. 3.8 Mchips/s) to the baseband information rate.
 - So for QPSK for example:
 - G_p = 3.8 Mchips/s / 15 K Symbols/s = 3800000 / 15000 = 253
 - 10log253 = 24dB gain

- CDMA units use Rake receivers. These are essentially a set of several correlators.
- Each correlator in a Rake receiver is called a Rake-receiver finger. The base station combines the outputs of its RAKE-receiver fingers.
- Typically mobile receivers have 3 Rake-receiver fingers and base station receivers had 4 or 5 depending on the equipment manufacturer.
- There are two primary methods used to combine the Rake-receiver finger outputs:
 - equal-gain combining.
 - maximal-ratio combining.
 - Uses the data to estimate weights which maximize the SNR.

Hard Handover in FDMA & TDMA systems

- In FDMA fA cells are separated from each other by other cells with frequency B or C necessitating a hard handover mechanism.
- TDMA employs a similar mechanism using time as the separator.
- Hard handover means that the mobile station must break the connection in the cell it is leaving before making a connection in the new cell it is entering.
- Hard handover can be seamless or non-seamless.

Soft Handover in CDMA systems

- As all cells in CDMA use the same frequency, it is possible to make the connection to the new cell before leaving the current cell.
- This is known as a "make-beforebreak" or "soft" handover.
- Soft handovers require less power, which reduces interference and increases capacity.
- "Softer" handover is a special case where the radio links that are added and removed belong to the same cell node.
- The cell node entity is called a Node B.

Mobile Evolution

• 1G

- Initial analogue mobile systems
- 2G
 - GSM, D-AMPS, cdmaOne
 - SMS
 - WAP, i-mode
- 2.5G
 - GPRS
 - EDGE
 - EDGE Evolution

2G Spectrum

GSM

GSM Base Station Sub-system (BSS)

European GSM Channels

- GSM-900 system, two frequency bands:
 - 124 Channels (1 124)
 - 890 915 MHz for the uplink (direction MS to BS)
 - 935 960 MHz for the downlink (direction BS to MS).
- GSM-1800 system, two frequency bands:
 - 374 Channels (512 885)
 - 1710 1785 MHz for the uplink (direction MS to BS)
 - 1805 1880 MHz for the downlink (direction BS to MS).
- 25 MHz bands split into 124 pairs of frequency duplex channels with 120 kHz carrier spacing.
 - One or more sets are assigned to each TRX in the BTS.

GSM Cellular scheme

Seven sets of frequencies are sufficient to cover a typical large area, providing the repeatdistance *d* is larger than twice the maximum radius *r* covered by each transmitter.

TDMA Frame Structure

- Frame consists of a 200 kHz radio channel divided into 26 TDMA timeslots.
- Each TDMA timeslot is split into 8 bursts (a burst is assigned to a single user).
- GSM Terminal is therefore only transmitting for 1/8 4.615 mS (0.577 mS).

Transcoder and Rate Adaption Unit

Regular Pulse Excited-Long Term Prediction (RPE-LPC)

Network Switching Sub-system (NSS)

Subscriber Identity Module (SIM)

- Removable smart card for mobile cellular telephony devices.
- SIM cards store the International Mobile Subscriber Identity (IMSI) subscriber ID.

International Mobile Subscriber Identity (IMSI)

- The IMSI is derived from the following steps.
 - Mobile Network Code (MNC): 011
 - Mobile Country Code (MCC): 256
 - Mobile Subscriber Identity Number (MSIN): 705446743
- Result: 011256705446743

General Packet Radio Service (GPRS)

- Serving GPRS Support Node (SGSN)
 - Tracks the location of an individual MS.
 - Performs security functions and access control for packet services.
- Gateway GPRS Support Node (GGSN)
 - Gateway routing function for the GPRS network.
 - IP Router from the perspective of external packet data networks.
 - Firewall and filtering functionality, to protect the GPRS core network.
 - Billing functionality for packet data services.

- Access Point Name (APN)
 - Abstract Syntax Notation One (ASN.1)
 - Provides routing info for SGSN and GGSN.
 - The APN consists of two parts:
 - APN Network ID (APN-NI) identifies the external PDN which the MS wishes service.
 - makerere
 - APN Operator ID (APN-OI) specifies the GGSN is located (Optional).
 - mnc<MNC#>.mcc<MCC#>.gprs
 - mnc011.mcc256.gprs
 - APN: makerere.mnc011.mcc256.gprs

GPRS Data Call

makerere.mnc011.mcc256.gprs

GSM Data uplifts

- Enhanced Data Rates for GSM Evolution (EDGE)
 - Unofficial standard 2.75G, due to its slower network speed.
 - DL speeds up to 236.8 kb/s.

- EDGE Evolution
 - EDGE Evolution improves on EDGE in a number of ways.
 - Lower Latency.
 - Bit rates are increased up to 1 Mb/s peak.
 - Improved Signal quality.

Thank You

diarmuid@obriain.com