
Open
Networks
Author:
Diarmuid Ó Briain

2 Open Networks

Diarmuid Ó Briain

Diarmuid is a Chartered Engineer (CEng) with
experience in Telecommunications, Information
Networking and Security. He has designed and
implemented next-generation networks and
information security solutions for major multi-
national communications companies as well as an
Irish Internet Service Provider. He has also lectured
on Telecommunications and Computing programmes
at the Lifelong Learning Department of the Institute
of Technology, Carlow (ITC) in Ireland.

Second edition: April 2015

Diarmuid Ó Briain

All rights are reserved

of this edition, Diarmuid Ó Briain

Copyright © 2015 Diarmuid Ó Briain.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in
the section entitled "GNU Free Documentation License".

ISBN-13: 978-1512135145
ISBN-10: 1512135143

v2.0.3

Diarmuid O'Briain Free Technology Academy

Open Networks 3

Preface

Software has become a strategic societal resource in the last few decades. The emergence of
Free Software, which has entered in major sectors of the Information ICT market, is
drastically changing the economics of software development and usage. Free Software –
sometimes also referred to as “Open Source” or “Libre Software” – can be used, studied,
copied, modified and distributed freely. It offers the freedom to learn and to teach without
engaging in dependencies on any single technology provider. These freedoms are considered a
fundamental precondition for sustainable development and an inclusive information society.

Although there is a growing interest in free technologies (including Free Software and Open
Standards), still a limited number of people have sufficient knowledge and expertise in these
fields. The FTA attempts to respond to this demand.

Introduction to the FTA

The Free Technology Academy (FTA) is a joint initiative from several educational institutes in
various countries. It aims to contribute to a society that permits all users to study, participate
and build upon existing knowledge without restrictions.

What does the FTA offer?

The Academy offers an online master level programme with course modules about Free
Technologies. Learners can choose to enrol in an individual course or register for the whole
programme. Tuition takes place online in the FTA virtual campus and is performed by
teaching staff from partner universities. Credits obtained in the FTA programme are
recognised by these universities. See http://ftacademy.org/courses/recognition

Who is behind the FTA?

The FTA was initiated in 2008 supported by the Life Long Learning Programme (LLP) of the
European Commission, under the coordination of the Free Knowledge Institute (FKI) and in
partnership with three European universities: Open Universiteit Nederland (The Netherlands),
Universitat Oberta de Catalunya (Spain) and University of Agder (Norway).

Since 2012 the FTA has continued hosted by the Free Knowledge Institute in collaboration
with its Partner Network and community of volunteers. http://ftacademy.org/about/partners

For who is the FTA?

The Free Technology Academy is specially oriented to IT professionals, educators, students
and decision makers.

Free Technology Academy Diarmuid O'Briain

4 Open Networks

What about the licensing?

All learning materials used in and developed by the FTA are Open Educational Resources,
published under copyleft free licenses that allow them to be freely used, modified and
redistributed. Similarly, the software used in the FTA virtual campus and in its courses is Free
Software and is built upon an Open Standards framework.

Evolution of this book

The original course was developed by Enric Peig Olivé of the Universitat Oberta de
Catalunya (UOC) together with LibreSoft staff from the Universidad Rey Juan Carlos. Since
its publication in 2010 there have been significant changes in networking and this Second
version of the course aims to address this change.

Participation

Users of FTA learning materials are encouraged to provide feedback and make suggestions for
improvement. A specific space for this feedback is set up on the FTA website. These inputs
will be taken into account for next versions. Moreover, the FTA welcomes anyone to use and
distribute this material as well as to make new versions and translations.

See for specific and updated information about the book, http://ftacademy.org/materials/fsm/3.
For more information and enrolment in the FTA online course programme, please visit the
Academy's website: http://ftacademy.org/. I sincerely hope this course book helps you in your
personal learning process and helps you to help others in theirs. I look forward to see you in
the free knowledge and free technology movements!

Happy learning!

Wouter Tebbens

President of the Free Knowledge Institute

Diarmuid O'Briain Free Technology Academy

Open Networks 5

Table of Contents
1. Networking Device...11

1.1 Introduction..11
1.1.1 Minibian..12
1.1.2 Add SWAP partition..15
1.1.3 Update and upgrade..15
1.1.4 Set-up users...15
1.1.5 Set-up locale...16
1.1.6 Set-up hostname..16

1.2 mactelnet..17
1.2.1 Install mactelnet on GNU/Linux..17
1.2.2 Create user..17
1.2.3 Set default IP address..18
1.2.4 Running a server on your GNU/Linux Server..18
1.2.5 Accessing the server...18
1.2.6 mactelnet frames...19

1.3 Additional Interface..21
1.3.1 DHCP request on new interface..21
1.3.2 Default gateway to eth2..22
1.3.3 Test routing...22

2. Network Simulation..23
2.1 Getting started..23
2.2 Operating the CORE environment...24

3. Networking..27
3.1 Introduction to Network Administration..27
3.2 Introduction to TCP/IP (TCP/IP suite)...28

3.2.1 Services on TCP/IP...29
3.2.2 What is TCP/IP?...30

3.3 Physical network devices (hardware)...31
3.3.1 Copper..31
3.3.2 Fibre Optic..32
3.3.3 Wireless...33

3.4 GNU/Linux interface..34
3.5 TCP/IP Concepts..36

4. Switching..41
4.1 Bridging and Switching..41

4.1.1 Why use Bridges...42
4.1.2 Switches..42
4.1.3 Transparent Bridging..43

4.2 Spanning Tree Protocol..45
4.2.1 Configuration of a Bridge interface on GNU/Linux...48
4.2.2 Create a bridge and add interfaces..49

4.3 Virtual LANs (VLANs)..49
4.3.1 Removing the Physical Boundaries..50
4.3.2 IEEE 802.1P/Q...51

4.4 Provider tagging...55

Free Technology Academy Diarmuid O'Briain

6 Open Networks

4.5 VLANs on GNU/Linux..57
4.5.1 IEEE 802.1ad support on GNU/Linux...59
4.5.2 IEEE 802.1ad support on GNU/Linux as a switch...60

4.6 GNU/Linux as a Service Provider bridge...61
5. Internet Protocol..63

5.1 GNU/Linux IP networking (iproute2)..67
5.1.1 iproute2 ip command..68
5.1.2 Network Manager (network-manager)...69
5.1.3 Check there is no configuration in /etc/network/interfaces....................................70

5.2 Network interfaces...71
5.2.1 Bring up the eth0 interface...71
5.2.2 Add IP Address to the eth0 interface..71
5.2.3 Confirm IP Address is configured..71
5.2.4 Add an IPv4 Default gateway...71
5.2.5 Add a static route..72
5.2.6 Confirm that the route has taken...72

5.3 Monitoring..72
5.4 Internet Protocol v6..72

5.4.1 Features of IPv6..73
5.4.2 IPv6 Address Architecture..74
5.4.3 IPv6 Address Scope..77
5.4.4 IPv6 Addressing Model..78
5.4.5 Loopback Address..78
5.4.6 IPv6 Packet Structure...79
5.4.7 Applications for IPv6..80
5.4.8 IPv6 EUI-64 host..82
5.4.9 IPv6 link-local..82
5.4.10 IPv6 Stateless Address Auto-configuration (SLAAC)...82
5.4.11 IPv6 transition mechanisms..85
5.4.12 IPv6 Interior Gateway Routing...87
5.4.13 IPv6 Exterior Gateway Routing..87
5.4.14 IPv6 Configuration...87

6. Routing..91
6.1 Introduction to Routing..91

6.1.1 Standard Routing Model...92
6.1.2 Routing Tables..93

6.2 Open Shortest Path First (OSPF)..93
6.2.1 OSPF Overview..94
6.2.2 Benefits of Using OSPF versus Distance Vector protocols....................................94
6.2.3 OSPF Concepts...94
6.2.4 SPF Algorithm..96

6.3 Quagga Introduction...102
6.4 Install Quagga...103
6.5 Configure the Quagga configuration files..103

6.5.1 debian.conf..103
6.5.2 vtysh.conf - the VTY terminal conf file..104

6.6 zebra.conf - the routing daemon conf file..104
6.6.1 The OSPFv2 (IPv4) daemon conf file..105

Diarmuid O'Briain Free Technology Academy

Open Networks 7

6.6.2 The OSPFv3 (IPv6) daemon conf file..105
6.7 Restart the Quagga service...105
6.8 Accessing the Quagga router for configuration..106

6.8.1 Access TCP Ports..106
6.8.2 Accessing the zebra daemon...106

6.9 Configuring zebra daemon - the routing daemon...107
6.10 Configuring the OSPFv2 daemon..109
6.11 Configure the OSPFv3 (for IPv6) daemon...110
6.12 Quagga Summary...112

7. Wireless LANs..113
7.1 Introduction to WiFi...113

7.1.1 Spectrum...114
7.1.2 IEEE 802.11 WLAN Summary..117
7.1.3 IEEE 802.11 MAC (Media Access Control)...117
7.1.4 WiFi Elements...118
7.1.5 WiFi Security..119

7.2 Configuration of a WiFi network on GNU/Linux..124
7.2.1 Install the wireless-tools package...124
7.2.2 Using WPA2...126
7.2.3 WPA Supplicant..126

8. Virtual Private Networks (VPN)...131
8.1 IPv4 OpenVPN tunnel..132

8.1.1 Server set-up...132
8.1.2 Client set-up..133
8.1.3 Run the OpenVPN Server...134
8.1.4 Connect with the OpenVPN client...134

8.2 IPv6 OpenVPN tunnel..136
8.2.1 OpenVPN Server - tap..136
8.2.2 OpenVPN Client - tap...137

8.3 SSH VPN..139
8.3.1 Set-up VNC Server ran as localhost only...139

8.4 VNC on the client side...140
8.5 SSH connection and VNC connection...141

9. IP Telephony..143
9.1 Audio Streams..144
9.2 Real-Time Transport Protocol..144
9.3 Delay..146

9.3.1 Network Delay..147
9.3.2 CODEC Latency...147
9.3.3 Jitter..148
9.3.4 Packet Loss...150
9.3.5 Voice Compression...150

9.4 CODEC..151
9.4.1 RTP Audio & Video Payloads...152

9.5 Other Voice Quality Factors...153
9.5.1 Silence Suppression..153
9.5.2 Echo..153

9.6 Voice Quality Measurements..153

Free Technology Academy Diarmuid O'Briain

8 Open Networks

9.6.1 P.800 MOS..153
9.6.2 P.861 PSQM..154

9.7 The SIP Protocol and Server Functions..154
9.7.1 Session Description Protocol..155
9.7.2 SIP Redirect (Proxy) Server...156
9.7.3 SIP Registrar...156
9.7.4 Location Server...156
9.7.5 User Agent Client (UAC)...156
9.7.6 User Agent Server...157
9.7.7 SIP UA and Server Roles..157
9.7.8 SIP Multimedia Protocol Stack...157
9.7.9 SIP Commands and Responses...158
9.7.10 SIP Registration..160
9.7.11 SIP Call Setup...162
9.7.12 SIP Call Terminate..165

9.8 IPT and the PSTN...166
9.8.1 Softswitch...166
9.8.2 Call Agent...167
9.8.3 Media Gateway...167

9.9 MG Controllers...168
9.9.1 Signalling Gateway...168

9.10 Services..169
9.11 FOSS Implementations...170
9.12 Test network...171

9.12.1 Asterisk Server..171
9.12.2 SIP Softphone Client..176
9.12.3 SIP Phone..178
9.12.4 Configuring voice-mail...178

9.13 Testing the configuration..180
9.13.1 Registration test - IP Phone..181
9.13.2 Registration test - Softphone..183
9.13.3 Voice call test..186
9.13.4 Hangup test...194

9.14 Asterisk GUI...196
9.14.1 Install Asterisk-gui..196
9.14.2 Asterisk configuration files...198
9.14.3 Connect to the Asterisk Server GUI...199

9.15 Conclusion..200
10. IP Services...201

10.1 Configuration of inetd or xinetd...201
10.2 Other network services...204

10.2.1 Additional configuration: protocols and networks...204
10.2.2 Security aspects..205
10.2.3 IP Options...206
10.2.4 Commands for solving problems with the network..207

10.3 DHCP Configuration..207
10.3.1 DHCP Server..208

10.4 IP Masquerade..209

Diarmuid O'Briain Free Technology Academy

Open Networks 9

11. Software Defined Networking (SDN)...211
11.1 Introduction...211
11.2 Software Defined Networking..211
11.3 SDN operation..212

11.3.1 Flow Tables...215
11.3.2 Group Tables...215
11.3.3 Meter Tables..215

11.4 SDN Controllers...216
11.5 SDN Applications...216

11.5.1 SDN Routing Service..216
11.6 Link Discovery Module..217
11.7 Topology Manager..217
11.8 Virtual Routing Engine (VRE)...218
11.9 Using Mininet to experment with SDN..218
11.10 Set-up a guest VM with the mininet image..218

11.10.1 Add rights to wireshark for user...219
11.11 Confirm Wireshark works over SSH..220
11.12 Build a mininet test network...220

11.12.1 Exiting mininet...225
11.13 Configuring hosts...226
11.14 Configuring links..226
11.15 Reviewing OpenFlow traffic..227
11.16 Webserver test...233
11.17 Custom Topologies...236

11.17.1 Create custom topology..238
11.18 OpenDaylight...242

11.18.1 Install OpenDaylight...242
11.18.2 Running OpenDaylight...243
11.18.3 OpenDaylight User Experience (DLUX)...243
11.18.4 Start mininet network..245

12. Networks Function Virtualisation (NFV)..249
12.1 Providing NFV to the customer..251
12.2 NFV Standards...252
12.3 OPNFV...253
12.4 Conclusion..254

13. Abbreviations..255
14. Bibliography..263
15. GNU Free Documentation License...269

Free Technology Academy Diarmuid O'Briain

10 Open Networks

This page is intentionally blank

Diarmuid O'Briain Free Technology Academy

Open Networks 11

1. Networking Device

1.1 Introduction
In order to participate on this course it will be necessary to have a number of networking
devices for labs. To keep costs to a minimum I recommend the use of the versatile Raspberry
Pi. Here is a tool-kit I put together for a single networking device. I used a Raspberry Pi 2
Starter Kit which includes:

• Raspberry Pi 2 Model B (Quad Core, 1GB RAM)

• Sandisk Ultra Class 10 MicroSD

• The PiHut UK 5V 2A Power Supply

• Black Case

• High-Definition Multimedia Interface (HDMI) cable

• Ethernet Cable

• Ethernet USB adaptors

For the initial set-up a screen with a HDMI interface or with a HDMI - Video Graphics Array
(VGA) adaptor.

Free Technology Academy Diarmuid O'Briain

12 Open Networks

1.1.1 Minibian

For the networking device required for this course it is not necessary to have the full Rasbian
Operating System (OS) with graphical interface. Download the latest version of Minibian.
Minibian is a Debian based OS without a graphical interface. Install it on the MicroSD card as
follows:

 $ ls
 2015-02-18-wheezy-minibian.tar.gz

 $ tar -xzvf 2015-02-18-wheezy-minibian.tar.gz
 2015-02-18-wheezy-minibian.img

 $ ls
 2015-02-18-wheezy-minibian.img 2015-02-18-wheezy-minibian.tar.gz

Put the microSD card in a slot on your computer (may have to use an SD/microSD adaptor).
The lsblk command will show the devices on the system. The microSD card on the system is
/dev/mmcblk0.

 $ lsblk
 NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
 sda 8:0 0 465.8G 0 disk
 ├─sda1 8:1 0 243M 0 part /boot
 ├─sda2 8:2 0 1K 0 part
 └─sda5 8:5 0 465.5G 0 part
 └─sda5_crypt (dm-0) 252:0 0 465.5G 0 crypt
 ├─mint--vg-root (dm-1) 252:1 0 457.9G 0 lvm /
 └─mint--vg-swap_1 (dm-2) 252:2 0 7.6G 0 lvm [SWAP]
 sr0 11:0 1 1024M 0 rom
 mmcblk0 179:0 0 59.5G 0 disk
 └─mmcblk0p1 179:1 0 59.5G 0 part /media/alovelace/3866-363

Unmount the device, check it is unmounted and all is ready to copy the minibian image to it.

 $ sudo umount /dev/mmcblk0p1

 $ mount | grep mmcblk0p1

Diarmuid O'Briain Free Technology Academy

Open Networks 13

It is a good idea to remove the default partition that is on the microSD first.

 $ sudo gdisk /dev/mmcblk0

 Command (? for help): d
 Using 1

 Command (? for help): w

 Final checks complete. About to write GPT data. THIS WILL OVERWRITE
 EXISTING PARTITIONS!!

 Do you want to proceed? (Y/N): Y
 OK; writing new GUID partition table (GPT) to /dev/mmcblk0.
 The operation has completed successfully.
 Install the Minibian image to the microSD drive. Be careful to use the
 device (mmcblk0) and not the partition name (mmcblk0p1).

 $ sudo -s
 # dd bs=4M if='2015-02-18-wheezy-minibian.img' | pv | dd of=/dev/mmcblk0

 250MB 0:00:38 [9.67MB/s] [<=>]
 999424+0 records in
 999424+0 records out
 511705088 bytes (512 MB) copied, 63.9125 s, 8.0 MB/s

where:

• /dev/mmcblk0 is the microSD Drive

• pv- allows for the monitoring of data through the pipe.

You can use a tool like gparted to realign the partitions and add SWAP space.

Free Technology Academy Diarmuid O'Briain

14 Open Networks

 $ sudo gdisk -l /dev/mmcblk0

 GPT fdisk (gdisk) version 0.8.8

 Partition table scan:
 MBR: MBR only
 BSD: not present
 APM: not present
 GPT: not present

 Found invalid GPT and valid MBR; converting MBR to GPT format
 in memory.

 Warning! Main partition table overlaps the first partition by 18 blocks!
 Try reducing the partition table size by 72 entries.
 (Use the 's' item on the experts' menu.)

 Warning! Secondary partition table overlaps the last partition by
 33 blocks!
 You will need to delete this partition or resize it in another utility.
 Disk /dev/mmcblk0: 124735488 sectors, 59.5 GiB
 Logical sector size: 512 bytes
 Disk identifier (GUID): 5F7BE4E9-8717-4B7C-A899-BE3ECEED20EA
 Partition table holds up to 128 entries
 First usable sector is 34, last usable sector is 124735454
 Partitions will be aligned on 16-sector boundaries
 Total free space is 576 sectors (288.0 KiB)

 Number Start (sector) End (sector) Size Code Name
 1 16 97727 47.7 MiB 0700 Microsoft basic data
 2 98304 120520703 57.4 GiB 8300 Linux filesystem
 3 120520704 124735487 2.0 GiB 8200 Linux swap

Install in the Raspberry Pi and boot. On first boot it maybe necessary to do a file system check
with the fsck utility, The Raspberry Pi will look for a password. The root password on the
image is raspberry.

 Give the root password for maintenance
 (or type Control-D to continue): raspberry

 root@raspberrypi:~# fsck

 Fix<y>? yes

Reboot the device.

 root@raspberrypi:~# init 6

 Rasbian GNU/Linux 7 raspberrypi tty1

 raspberrypi login: root
 Password: raspberry

Diarmuid O'Briain Free Technology Academy

Open Networks 15

1.1.2 Add SWAP partition

While the SWAP partition was added to the microSD card, it is not included in the SWAP
space on the Raspberry Pi. The mkswap utility sets up a Linux swap area on a device or in a
file.

 $ sudo mkswap /dev/mmcblk0p3
 Setting up swapspace version 1, size = 2107388 KiB
 no label, UUID=f94b3d6b-da3c-4392-b252-b4bf84b2c810

The swapon utility specifies that the /dev/mmcblk0p3 device is part of the system SWAP
space.

 $ sudo swapon /dev/mmcblk0p3

Confirm that the new SWAP partition has indeed been added to the available SWAP space.

 $ cat /proc/swaps
 Filename Type Size Used Priority
 /dev/mmcblk0p3 partition 2107388 0 -1

Now make the addition of this SWAP space persistent.

 $ sudo -s
 # cat << FSTAB >> /etc/fstab

 # Add lines to mount /dev/mmcblk0p3 as a SWAP partition on boot
 /dev/mmcblk0p3 none swap sw 0 0

 FSTAB

1.1.3 Update and upgrade

Upgrade and update from the repositories.

 root@raspberrypi:~# apt-get upgrade
 root@raspberrypi:~# apt-get update

1.1.4 Set-up users

Change the root password from raspberry and create a working user Ada Lovelace.

 root@raspberrypi:~# passwd
 Enter new UNIX password: newpass
 Re-enter new UNIX password: newpass

 root@raspberrypi:~# useradd -m -c "Ada Lovelace" -s /bin/bash alovelace

 root@raspberrypi:~# passwd alovelace
 Enter new UNIX password: countess
 Re-enter new UNIX password: countess

Free Technology Academy Diarmuid O'Briain

16 Open Networks

Add Ada Lovelace to the sudoers group.

 root@raspberrypi:~# apt-get install sudo

 root@raspberrypi:~# vi /etc/group

Add the user alovelace to the group sudo

 ...
 sudo:x:27:alovelace
 ...

1.1.5 Set-up locale

Update the keyboard if necessary.

 root@raspberrypi:~# apt-get install console-data console-common kdb

An ncurses menu will be displayed. In this example I selected a British keyboard, this is
obviously different depending on the locale.

• Select Keymap from full list and click OK

• Select pc / qwerty / British / Standard / Standard and click OK

1.1.6 Set-up hostname

For the rest of this section I will describe the building of a device called NetDev01 built to
operate in the following network configuration.

Set the device hostname as NetDev01.

 root@raspberrypi:~# echo NetDev01 > /etc/hostname
 root@raspberrypi:~# sed -i .bak 's/raspberrypi/NetDev01/' /etc/hosts

Diarmuid O'Briain Free Technology Academy

Open Networks 17

1.2 mactelnet
Håkon Nessjøen developed a GNU/Linux implementation of the MikroTik MAC Telnet
(mactelnet) tool. This tool allows for the connection to networking devices without the need
for a layer 3 Internet Protocol (IP) connection. Instead communication is via UDP packets
with MAC address used to identify the destination. It includes a MikroTik Neighbour
Discovery Protocol (MNDP) tool called mndp or mactelnet -l which uses the mndp protocol
for the same purpose. A macping tool for confirming connectivity is also included.

1.2.1 Install mactelnet on GNU/Linux

Install the mactelnet server and client on the device.

 $ sudo apt-get install mactelnet-server
 $ sudo apt-get install mactelnet-client

The following tools are installed.

• mndp - A tool for discovering other RouterOS or mactelnetd devices

• mactelnet - A tool for telneting via MAC addresses

• macping - A tool for pinging other RouterOS or mactelnetd devices

1.2.2 Create user

Let's add Ada Lovelace (alovelace) to the mactelnet users file.

 $ sudo vi /etc/mactelnetd.users

 # Users file for MAC-Telnetd
 #
 ##
 # WARNING: This file has passwords written in plain-text. #
 # Make sure this file is owned and only readable by root. #
 ##
 #
 # Each line consists of a username and a password seperated by :.
 # Usernames must be existing users from passwd.
 #
 # Format:
 #username:password

 alovelace:countess

Free Technology Academy Diarmuid O'Briain

18 Open Networks

1.2.3 Set default IP address

Set IP Address on first interface. For the mactelnetd server to run an interface must have an IP
address though it is not needed to connect to the device.

 $ sudo -s

 # cat <<EOM >> /etc/network/interfaces

 auto eth1
 iface eth1 inet static
 address 192.168.99.2
 netmask 255.255.255.0
 gateway 192.168.99.1

 EOM

 # exit

1.2.4 Running a server on your GNU/Linux Server

Run the server.

 $ sudo service mactelnet-server
 Usage: /etc/init.d/mactelnet-server {start|stop|status|restart|force-reload}

 $ sudo service mactelnet-server start

 $ service mactelnet-server status
 * mactelnet-server is running

1.2.5 Accessing the server

On a client computer connected directly to the NetDev01 device install the mactelnet-client
package. This computer must be configured with a static IP address but again any will do. It is
now possible to connect to the NetDev01 device as it is on the directly connected Local Area
Network (LAN).

 $ mndp

 Searching for MikroTik routers... Abort with CTRL+C.

 MAC-Address Identity (platform version hardware) uptime
 b8:27:eb:95:47:39 NetDev01 (Linux 3.18.7-v7+ armv7l) up 0 days 0 hours

Alternatively use mactelnet -l option.

 $ mactelnet -l
 Searching for MikroTik routers... Abort with CTRL+C.

 MAC-Address Identity (platform version hardware) uptime
 b8:27:eb:95:47:39 NetDev01 (Linux 3.18.7-v7+ armv7l) up 0 days 0 hours

Diarmuid O'Briain Free Technology Academy

Open Networks 19

Now macping the PC myDebian-PC.

 $ sudo macping NetDev01
 Searching for 'NetDev01'...found
 b8:27:eb:95:47:39 56 byte, ping time 0.57 ms
 b8:27:eb:95:47:39 56 byte, ping time 0.51 ms
 b8:27:eb:95:47:39 56 byte, ping time 0.52 ms

Connect to the device NetDev01 with the Ada Lovelace user. It is possible to specify the
username and password on the shell or simply respond to prompts given. The identity of the
server can be given as the name retrieved from the mndp or mactelnet -l commands.

 $ mactelnet NetDev01 -u alovelace -p countess
 Connecting to b8:27:eb:95:47:39...done
 alovelace@NetDev01:~$

 $ mactelnet b8:27:eb:95:47:39 -u alovelace -p countess
 Connecting to b8:27:eb:95:47:39...done
 alovelace@NetDev01:~$

 $ mactelnet b8:27:eb:95:47:39 -u alovelace
 Password: countess
 Connecting to b8:27:eb:95:47:39...done
 alovelace@NetDev01:~$

 $ mactelnet b8:27:eb:95:47:39
 Login: alovelace
 Password: countess
 Connecting to b8:27:eb:95:47:39...done
 alovelace@NetDev01:~$

 alovelace@NetDev01:~$ id
 uid=1001(alovelace) gid=1001(alovelace) groups=1001(alovelace),0(root)

1.2.6 mactelnet frames

The see what happened a review of the frames captured on the wire below shows a
connection.

 No. Time Source Destination Protocol Length
 1249 14.975831000 1.1.1.1 255.255.255.255 MAC-Telnet 66

 Info: 28:d2:44:19:83:95 > b8:27:eb:95:47:39 Direction: Client->Server Type: Start session

 Frame 1249: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface 0
 Linux cooked capture
 Internet Protocol Version 4, Src: 192.168.25.155, Dst: 255.255.255.255
 User Datagram Protocol, Src Port: 1984, Dst Port: 20561
 MikroTik MAC-Telnet Protocol

 No. Time Source Destination Protocol Length
 1250 14.975904000 0.0.0.0 255.255.255.255 MAC-Telnet 66

 Info: b8:27:eb:95:47:39 > 28:d2:44:19:83:95 Direction: Server->Client Type: Acknowledge

Free Technology Academy Diarmuid O'Briain

20 Open Networks

 Frame 1250: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface 0
 Linux cooked capture
 Internet Protocol Version 4, Src: 0.0.0.0, Dst: 255.255.255.255
 User Datagram Protocol, Src Port: 20561, Dst Port: 1984
 MikroTik MAC-Telnet Protocol

 No. Time Source Destination Protocol Length
 1255 14.976545000 1.1.1.1 255.255.255.255 MAC-Telnet 75

 Info: 28:d2:44:19:83:95 > b8:27:eb:95:47:39 Direction: Client->Server Type: Data

A fully expanded Acknowledge packet is displayed below.

 Frame 15: 64 bytes on wire (512 bits), 64 bytes captured (512 bits) on interface 0
 Interface id: 0
 Encapsulation type: Ethernet (1)
 Arrival Time: Mar 8, 2015 18:58:41.034002000 GMT
 Epoch Time: 1425841121.034002000 seconds
 Frame Number: 15
 Frame Length: 64 bytes (512 bits)
 Capture Length: 64 bytes (512 bits)
 Ethernet II, Src: Raspberr_95:47:39, Dst: LcfcHefe_19:83:95
 Internet Protocol Version 4, Src: 0.0.0.0, Dst: 255.255.255.255
 User Datagram Protocol, Src Port: 20561, Dst Port: 1532
 MikroTik MAC-Telnet Protocol
 Protocol Version: 1
 Type: Acknowledge (2)
 Source MAC: b8:27:eb:95:47:39
 Destination MAC: 28:d2:44:19:83:95
 Session ID: 0x24f6
 Client Type: MAC Telnet (0x0015)
 Session Data Bytes: 0

 0000 28 d2 44 19 83 95 b8 27 eb 95 47 39 08 00 45 10 (.D....'..G9..E.
 0010 00 32 00 33 40 00 40 11 3a 79 00 00 00 00 ff ff .2.3@.@.:y......
 0020 ff ff 50 51 05 fc 00 1e a7 e0 01 02 b8 27 eb 95 ..PQ.........'..
 0030 47 39 28 d2 44 19 83 95 00 15 24 f6 00 00 00 00 G9(.D.....$.....

Diarmuid O'Briain Free Technology Academy

Open Networks 21

1.3 Additional Interface
Add a USB Ethernet interface to NetDev01 and connect it to an Ethernet switch upon which
an IP address is given out via the Dynamic Host Configuration Protocol (DHCP). Using
dmesg and ip link show the new interface can quickly be determined as /dev/eth2.

 $ dmesg

 [1229.349092] usb 1-1.2: new high-speed USB device number 5 using dwc_otg
 [1229.473567] usb 1-1.2: New USB device found, idVendor=9710, idProduct=7830
 [1229.480642] usb 1-1.2: New USB device strings: Mfr=1, Product=2, SerialNumber=3
 [1229.488121] usb 1-1.2: Product: USB-MAC Controller
 [1229.493928] usb 1-1.2: Manufacturer: Moschip Semiconductor
 [1229.499595] usb 1-1.2: SerialNumber: 6e0002c5
 [1229.577159] usb 1-1.2: applying rev.C fixup
 [1229.599138] usb 1-1.2: applying rev.C fixup
 [1229.620845] MOSCHIP usb-Ethernet driver 1-1.2:1.0 eth0: register 'MOSCHIP usb-Ethernet
 driver' at usb-bcm2708_usb-1.2, MOSCHIP 7830/7832/7730 usb-NET adapter, 00:60:6e:00:66:13
 [1229.643830] usbcore: registered new interface driver MOSCHIP usb-Ethernet driver
 [1229.748355] MOSCHIP usb-Ethernet driver 1-1.2:1.0 eth2: renamed from eth0

 $ ip link show

 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode
 DEFAULT
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 2: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
 state UP mode DEFAULT qlen 1000
 link/ether b8:27:eb:95:47:39 brd ff:ff:ff:ff:ff:ff
 3: eth2: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
 DEFAULT qlen 1000
 link/ether 00:60:6e:00:66:13 brd ff:ff:ff:ff:ff:ff

1.3.1 DHCP request on new interface

Perform a DHCP request on this interface to assign an IP address to the interface.

 $ sudo dhclient eth2

 $ ip addr show dev eth2
 3: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
 state UP qlen 1000
 link/ether 00:60:6e:00:66:13 brd ff:ff:ff:ff:ff:ff
 inet 192.168.22.86/24 brd 192.168.22.255 scope global eth2
 valid_lft forever preferred_lft forever
 inet6 fe80::260:6eff:fe00:6613/64 scope link
 valid_lft forever preferred_lft forever

Free Technology Academy Diarmuid O'Briain

22 Open Networks

1.3.2 Default gateway to eth2

The default gateway is currently set to the management interface being used by mactelnet.
Change the default route to the /dev/eth2 interface.

 $ sudo ip route change default dev eth2

 $ ip route show
 default dev eth2 scope link
 192.168.22.0/24 dev eth2 proto kernel scope link src 192.168.22.86
 192.168.99.0/24 dev eth1 proto kernel scope link src 192.168.99.2

1.3.3 Test routing

Perform a test ping to a global IP address to confirm connectivity.

 $ ping -c1 8.8.8.8
 PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
 64 bytes from 8.8.8.8: icmp_req=1 ttl=56 time=26.0 ms

Diarmuid O'Briain Free Technology Academy

Open Networks 23

2. Network Simulation
It is very useful to have a mechanism to simulate the networks discussed in this document.
The Common Open Research Emulator (CORE) offers an Open Source tool ideal for the
purpose.

CORE is a tool for emulating networks on one or more machines. The emulated networks can
even be connected to live networks. CORE consists of a Graphical User Interface (GUI) for
drawing topologies of lightweight virtual machines, and Python modules for scripting
network emulation.

CORE was developed by a Network Technology research group that is part of the Boeing
Research and Technology division. The Naval Research Laboratory is supporting further
development of the project.

Access to the software is at: http://www.nrl.navy.mil/itd/ncs/products/core

2.1 Getting started
The easiest way to get started is to use the pre-built Virtual Machine (VM). This is built on
Lubuntu, a fast and lightweight variant of Ubuntu.

• Install Oracle VirtualBox or similar hypervisor.

• Download the VM from: http://downloads.pf.itd.nrl.navy.mil/core/vmware-image/

$ unzip vcore-4.7.zip

• Run Oracle VirtualBox.

◦ Select New

▪ Name: CORE Network Emulator

▪ Type: Linux

▪ Version: Ubuntu (64 bit)

◦ Select Next>

◦ Set Memory Size: 2048 MB, Select Next>

Free Technology Academy Diarmuid O'Briain

24 Open Networks

• Select the vCORE VM.

◦ Select Use an existing virtual hard drive file

◦ Browse to vcore-4.7.vmdk, Select Open

◦ Select Create>

• Configure and run VM

◦ Right click on the newly created VM

▪ Select Network

▪ Attached to: Bridged Adapter

▪ Select OK

• Start the newly created VM

◦ Select Start

2.2 Operating the CORE environment
While it is possible to use the graphical interface within the VM window it is not
recommended. Within the graphical enviornment select the LXTerminal icon to obtain a shell
and get the IP address of the VM.

$ ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state
UP qlen 1000
 link/ether 08:00:27:06:a9:03 brd ff:ff:ff:ff:ff:ff
 inet 192.168.178.31/24 brd 192.168.178.255 scope global eth1
 inet6 fe80::a00:27ff:fe06:a903/64 scope link
 valid_lft forever preferred_lft forever

Diarmuid O'Briain Free Technology Academy

Open Networks 25

Now connect to the CORE GUI by forwarding it via X11 forwarding to the workstation. Run
the core-gui.

$ ssh -X core@192.168.178.31
Password: core

$ core-gui

Build networks and test as necessary. Full documentation on the CORE Network Simulator
can be found at: http://downloads.pf.itd.nrl.navy.mil/docs/core/core-html/

Free Technology Academy Diarmuid O'Briain

26 Open Networks

This page is intentionally blank

Diarmuid O'Briain Free Technology Academy

Open Networks 27

3. Networking

3.1 Introduction to Network Administration
The UNIX and GNU/Linux operating system has always proven its versatility in aspects
related to communication and information exchange. Wide Area Networks (WAN) networks
based on serial modems, Frame Relay, Plesiochronous Digital Hierarchy (PDH) E1 and T1
circuits in 2.048 and 1.544 Megabit/second (Mb/s) blocks as well as 155 Mb/s Synchronous
Optical Networking (SONET) and Synchronous Digital Hierarchy (SDH) have been replaced
by Gigabit/second (Gb/s) speed fibre and copper Metro Ethernet Metropolitan Area Networks
(MAN) technologies. Home users are receiving broadband with a mix of Passive Optical
Network (PON) technologies, various flavours of Digital Subscriber Line (DSL), Data Over
Cable Service Interface Specification (DOCSIS), wireless technologies from Institute of
Electrical and Electronics Engineers (IEEE) 802.16 WiMAX, European Telecommunications
Standards Institute (ETSI) Long Term Evolution (LTE) and IEEE 802.11 based Wireless
technologies offering speeds from 3 Megabit/second (Mb/s) to 200 Mb/s. Home users and
companies have Local Area Networks (LAN) within their premises to interconnect their
computing devices.

All of these technologies offer a Data Link framing at layer 2 of the Open Standards
Interconnect (OSI) 7 layer communications model from the International Standards
Organisation (ISO). The handling of the upper layers is mapped to the Department of Defence
(DoD) 4 Layer Model, particularly layer 3, Internet layer (OSI Network layer) and layer 4,
Host to Host layer (OSI Transport layer) are carried out by the Internet Protocol Suite (IPS)
commonly called the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol
suite. While TCP/IP is mapped to the DOD 4 layer model it is common that layers 3 and 4 are
referred to by their OSI names, Network and Transport layers.

Free Technology Academy Diarmuid O'Briain

28 Open Networks

3.2 Introduction to TCP/IP (TCP/IP suite)

TCP/IP is a set of basic protocols that meet the different needs in computer-to-computer
communication, such as Transmission Control Protocol (TCP), User Datagram Protocol
(UDP), Internet Protocol (IP), Internet Control Message Protocol (ICMP), Address Resolution
Protocol (ARP), Dynamic Host Configuration Protocol (DHCP), Domain Name Service
(DNS) and in Internet Protocol version 6 (IPv6), ICMPv6, DHCPv6,

TCP/IP is most frequently used by most current users. To remotely connect to other computers
Secure Shell (SSH) offers a popular solution, to use remote files with Network File System
(NFS) or to transfer them with File Transfer Protocol (FTP) or Secure FTP (SFTP). To access
webpages the universal HyperText Transfer Protocol (HTTP) is the standard markup protocol.

Here is an example login to a remote server ftacademy.org by user alovelace.

 $ ssh alovelace@ftacademy.org

 alovelace@ftacademy.org's password: password
 Linux fta.obriain.com 3.2.0-4-amd64 #1 SMP Debian 3.2.54-2 x86_64

 The programs included with the Debian GNU/Linux system are free software;
 the exact distribution terms for each program are described in the
 individual files in /usr/share/doc/*/copyright.

 Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
 permitted by applicable law.
 Last login: Wed Mar 26 16:21:21 2014
 alovelace@ftacademy:~$

Diarmuid O'Briain Free Technology Academy

Open Networks 29

3.2.1 Services on TCP/IP

The most important traditional TCP/IP services are:

• File transfer: FTP and SFTP allow a user to obtain files or send files from one

computer to another. The user must have an account in the remote computer and
identify themselves through their login name and password or the user must connect to
computers containing an information repository (software, documentation etc.) under
an anonymous account to read those computers on their computer.

• Remote connection (login): SSH or the older insecure TErminaL NETwork protocol

(telnet) allows a user to remotely connect to a computer. The local computer is used as
a terminal to the remote computer and everything is executed over it, whilst the local
computer remains invisible from the perspective of the user that started the session.

• Email: The e-mail service makes it possible to send messages to users of other

computers.

The progress in the technology and the increasingly lower cost of computers has meant that
services have specialised and are now configured on computers working in a client-server
model. A server is a system that performs specific services for the rest of the network or
connected clients. A client is another computer that uses this service. All of these services are
generally offered within TCP/IP:

• File systems in NFS: Allow a system to access the files through a remote system in a

manner that is more integrated than FTP. The storage devices are exported to the
system that wishes to access the files and this system can access them as if they were
local devices. This protocol permits in the server side to establish the rules and ways
of accessing the files, which makes the place where the information physically resides
independent from the place where the information is accessed.

• Remote printing: Permits users to access printers connected to other computers.

• Remote execution: Permits a user to execute a program on another computer. There are

various ways of executing a program in this way: either through a command (rsh, ssh,
rexec) or through systems with Remote Procedure Call (RPC), which allows a
program on a local computer to execute a function in a program on another computer.

• Name servers: The Network Information Service (NIS) (Yellow Pages (YP)) is the

original UNIX client server directory service protocol for distribution of configuration
data like usernames and hostnames. It was more or less replaced by Lightweight
Directory Access Protocol (LDAP) within organisations and for large scale directory
services the DNS keeps a direct relationship between the hostname and the logical
identification name of this machine (IP address).

Free Technology Academy Diarmuid O'Briain

30 Open Networks

• Terminal Servers: Connect terminals to a server that itself offers a telnet or SSH

daemon. Different terminals are accessed via the telnet/SSH daemon with different
port numbers matching the different terminals. These types of set-up are basically
useful for reducing costs and improving the connections to the central computer (in
some cases).

• Graphical terminal servers (network-oriented window systems): these permit a

computer to visualise graphic information on a display that is connected to another
computer. The most common of these systems is X Window (X.Org).

3.2.2 What is TCP/IP?

TCP/IP is in fact two communication protocols between hosts (computers) that are
independent to each other. IP defines the protocol at the Internet/Network layer to identify the
networks and establish the pathways between different computers. TCP defines the
communication rules so that a host computer can talk to another computer (Host to
Host/Transport layer). TCP is a connection-oriented protocol and the communication is
considered as a data stream. The receiving host verifies receipt of data in blocks to the
sending host before it sends another block, in this way the data sent over the link is verified as
received.

Another Host to Host/Transport layer protocol is the UDP, which treats the data as a message
(datagram) and sends packets. It is considered a connectionless protocol as the sending host
receives no confirmation of receipt of the data that is sent (much like a standard letter in the
mail system). The advantage of this is less overload on the network than a TCP connection,
but it is obviously less reliable (the packets may not arrive or arrive duplicated). It is
commonly used with protocols that are sensitive to packet delay like Voice over IP (VoIP) and
video streaming.

To summarise, TCP/IP is a set of protocols including IP, TCP, UDP that provide a set of low-
level functions used by most of the applications. Some of the protocols that use the above
mentioned services were designed by Berkeley, Sun or other organisations. They are not
included (officially) as part of the IPS. However, they are implemented using TCP/IP and they
are therefore considered as a formal part of IPS. A description of the protocols are available in
the Internet Engineering Task Force (IETF) Request For Comments (RFC) 1011 and 6093.
There is currently a new version of the IP protocol known as IPv6, also called IP Next
Generation (IPng) which replaces IP version 4 (IPv4). It is defined in RFC2460 and is updated
in a series of additional RFCs. This protocol significantly improves on the previous version in
elements such as having a greater number of nodes, traffic control, security or improvements
in the routing.

Diarmuid O'Briain Free Technology Academy

Open Networks 31

3.3 Physical network devices (hardware)
From the physical point of view (layer 1 of the OSI model), the most commonly used
hardware for LAN is that known as Ethernet (FastEthernet (FE) or GigaEthernet (GbE)). Its
advantages consist of a lower cost, acceptable speeds (100 Mb/s, 1 Gb/s or 10 Gb/s) and its
user-friendly installation.

Presentation is either via copper twisted pair, fibre or wireless.

3.3.1 Copper

100Base-TX (uses 2 bi-directional pairs in Category 5e (CAT5e) or above), 1000Base-T (uses
4 bi-directional pairs in CAT-5e or above) and 1000Base-TX (uses 2 bi-directional pairs in
CAT-6, CAT-7 only). The standard copper pinout is given in the diagram above. All of these
copper technologies are limited to a distance of 100 metres.

Free Technology Academy Diarmuid O'Briain

32 Open Networks

3.3.2 Fibre Optic

Alternatively Ethernet can be delivered via optical fibre. An optical fibre is a small narrow
tube plastic or glass which guides light along its length by total internal reflection. The
particular wavelengths used, 850, 1300 and 1550 nano metres (nm), correspond to
wavelengths where optical light sources, lasers or Light Emitting Diodes (LED) are easily
manufactured. There are main types of fibre;

• Multi-Mode Fibre (MMF)

• 850 and 1300 nm

• Based on cheap to manufacture LED or Vertical Cavity Surface Emitting Laser

(VCSEL) transmitters
• Fibre core of 50 μm and a cladding diameter of 125 µm

• Range limits are up to 2 km for 100BASE-FX, up to 550 m for 1000BASE-SX

(850 nm) and , up to 550 m for 1000BASE-LX (1300 nm)
• Single-Mode Fibre (SMF)

• based on laser transmitters

• Fibre core of 8 μm and a cladding diameter of 125 µm

• Range limits are up to 5 km for 1000BASE-LX (1300 nm), up to 10 km for

1000BASE-LX10 (1300 nm), up to 10 km for 1000BASE-BX10 (1300 nm
upstream and 1550 nm downstream in a single strand), up to 40 km for
1000BASE-EX (1300 nm) and up to 70 km for 1000BASE-ZX (1550 nm)

Diarmuid O'Briain Free Technology Academy

Open Networks 33

3.3.3 Wireless

The other type of Ethernet LAN is Wireless. These are IEEE 802.11 based Wireless Fidelity
(WiFi) family of specifications for wireless LAN (WLAN) technology. WLANs are organised
with Access Points (AP) radio transmitters that allow hosts (computers, mobile devices, ...) to
connect to a specific Service Set IDentifier (SSID) which defines the wireless network.
Security is an essential element of wireless networks and WiFi Protected Access version 2
(WPA2) (also called Robust Security Network (RSN)) is an implementation of the IEEE 802.i
standard used today. Older security protocols like Wireless Encryption Protocol (WEP) and
WiFi Protected Access(WPA) are considered less secure.

Standard Description

802.11 Initial WLAN standard providing 1 or 2 Mbps transmission in the 2.4 GHz band
using either Frequency Hopping Spread Spectrum (FHSS) or Direct Sequence
Spread Spectrum (DSSS).

802.11a This is an extension to IEEE 802.11 that applies to WLANs and provides
typically 25 Mbps to a maximum of 54 Mbps in the 5GHz band. 802.11a uses
an Orthogonal Frequency-Division Multiplexing (OFDM) encoding scheme
rather than FHSS or DSSS. Max range is 30 M.

802.11b An extension to 802.11 that applies to WLANS and provides 11 Mbps
transmission (with a fallback to 5.5, 2 and 1 Mbps) in the 2.4 GHz band. IEEE
802.11b uses only DSSS. IEEE 802.11b was a 1999 ratification to the original
IEEE 802.11 standard, allowing wireless functionality comparable to Ethernet.
Max range is 30 M.

802.11g A further evolution to WLANs that provides typically 24 Mbps to a maximum
of 54 Mbps in the 2.4 GHz band. It also uses OFDM. Max range is 30 M.

802.11n A move towards the 5 GHz band instead of 2.4 GHz for home WiFi. A speed of
200 Mbps typical to a maximum of 540 Mbps out to 50 M in either the 2.4 or 5
GHz bands. It uses Multiple In, Multiple Out (MiMo) antennas.

802.11ac The 1 Gb/s standard with a single link throughput of at least 500 Mb/s. It has a
160 MHz Radio Frequency bandwidth, up to 8 spacial streams for MiMo and
256 QAM modulation.

Free Technology Academy Diarmuid O'Briain

34 Open Networks

Determine the wireless interface from the kernel ring buffer. Also use the iw dev to get a
listing of all wireless hardware devices on the system.

 $ dmesg |grep Wireless
 [20.615523] eth1: Broadcom BCM4359 802.11 Hybrid Wireless Controller
 6.30.223.141 (r415941)

 $ iw dev
 phy#0
 Interface eth1
 ifindex 3
 type managed

Now using the wireless iw utility with the interface eth1 just discovered get information on
the wireless interface.

 $ iw dev eth1 info
 Interface eth1
 ifindex 3
 type managed
 wiphy 0

3.4 GNU/Linux interface
In GNU/Linux, Ethernet interfaces are labelled like ethx (where, "x" indicates an order
number beginning with 0), the interface to serial lines (modems) is called up with pppx, Point
to Point Protocol (PPP). These names are used by the commands to configure them and assign
them the identification that will, subsequently permit them to communicate with other devices
in the network. This may mean that the appropriate modules for the appropriate device
Network Interface Card (NIC) will need to be included in the kernel, or as modules. If this
proves necessary then the kernel will require compiling, after choosing, the appropriate NIC,
with, for example, make menuconfig, indicating it as internal or as a module (in the latter case,
the appropriate module must also be compiled). In reality it is typical for the GNU/Linux
installation to incorporate the appropriate generic module for the hardware.

Diarmuid O'Briain Free Technology Academy

Open Networks 35

Listing the available interfaces:

 $ ifconfig -a

 eth0 Link encap:Ethernet HWaddr 28:d2:44:19:83:95
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

 eth1 Link encap:Ethernet HWaddr 1c:3e:84:ed:99:0b
 inet addr:192.168.43.222 Bcast:192.168.43.255 Mask:255.255.255.0
 inet6 addr: fe80::1e3e:84ff:feed:990b/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:1068090 errors:0 dropped:0 overruns:0 frame:1016162
 TX packets:908026 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:1014889719 (1.0 GB) TX bytes:135467503 (135.4 MB)
 Interrupt:17

 lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:92579 errors:0 dropped:0 overruns:0 frame:0
 TX packets:92579 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:8690656 (8.6 MB) TX bytes:8690656 (8.6 MB)

This command shows all of the default interfaces/parameters for each one, it is a depreciated
command however and the new ip link show gives the same output but in a more untidy
manner.

 $ ip link show

 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode
 DEFAULT
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 2: eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast
 state DOWN mode DEFAULT qlen 1000
 link/ether 28:d2:44:19:83:95 brd ff:ff:ff:ff:ff:ff
 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
 state UP mode DORMANT qlen 1000
 link/ether 1c:3e:84:ed:99:0b brd ff:ff:ff:ff:ff:ff

The network devices can be seen in the /dev directory, where there is a special file, (which
may be a block file or a character file, according to the transfer) that represents each hardware
device.

Free Technology Academy Diarmuid O'Briain

36 Open Networks

3.5 TCP/IP Concepts
Communication involves a series of concepts:

• Internet/intranet: The term intranet refers to the application of Internet technology (the

network of networks) within an organisation, essentially to distribute an organisation's
internal information and to have it available within the organisation. For example, the
services offered by GNU/Linux as Internet and Intranet services include email, WWW,
news, ...

• Node: the (host) node refers to a machine that is connected to the network (in a wider

sense, a node may be a computer, a printer, a CD (rack) etc.); in other words, an active
and differentiable element in the network that requires or provides some kind of
service and/or shares information.

• Ethernet Network Address (Ethernet address or MAC address): This is an IEEE

Extended Unique Identifier (EUI). It can be either an EUI-48, a 48-bit number (i.e.
00:88:40:73:AB:FF (octal) 0000 0000 1000 1000 0100 0000 0111 0011 1010 1011
1111 1111 (binary)) or an EUI-64, a 64-bit number (i.e. 00:88:40:FF:FE:73:AB:FF
(octal) 0000 0000 1000 1000 0100 0000 1111 1110 0111 0011 1010 1011 1111 1111
(binary)). The EUI is burnt on the physical hardware of the the Ethernet driver (NIC)
and that is recorded by the manufacturer as it must be is globally unique. (this number
must be the only one globally, each NIC manufacturer has a pre-allocated range).

 $ cat /etc/hostname

 myHostname

• Host name: each node must also have a unique network name. These may simply be

names or they may use a scheme based on a hierarchical domain naming scheme. The
names of the nodes must be unique, which is easy in small networks, more complex in
large networks and impossible on the Internet unless some form of control is
implemented. The names must have a maximum of 32 characters within the a-z, A-Z
and 0-9 ranges and they may not contain spaces or # beginning with an alphabetic
character.

Diarmuid O'Briain Free Technology Academy

Open Networks 37

 $ cat /etc/hosts

 127.0.0.1 localhost
 127.0.1.1 myHostname

 # The following lines are desirable for IPv6 capable hosts
 ::1 ip6-localhost ip6-loopback
 fe00::0 ip6-localnet
 ff00::0 ip6-mcastprefix
 ff02::1 ip6-allnodes
 ff02::2 ip6-allrouters

• Internet Address (IP Address)

• IPv4: IPv4 addresses consists of four numbers within the range of 0-255

separated by dots (for example, 192.168.0.1) and it is used universally to
identify the computers on a network or on the Internet. The names are
translated into IP addresses by a DNS server, that transforms the node names
(legible to humans) into IP addresses (this service is performed by an
application called named).

• IPv6: IPv6 addresses consists of eight groups of four hexadecimal digits. (for

example, 2a02:2158:435a:0000:83:314:ea21:b33f) and it is also used
universally to identify the computers on a network or on the Internet. The
names are translated into IP addresses by a DNS server using AAAA (Quad 'A')
records, that transforms the node names in IP addresses (this service is
performed by an application called named).

 $ less /etc/services

 tcpmux 1/tcp # TCP port service multiplexer
 echo 7/tcp
 echo 7/udp
 discard 9/tcp sink null
 discard 9/udp sink null
 systat 11/tcp users
 daytime 13/tcp
 daytime 13/udp

  ~~~~                  ~~~/~~~         ~~~
  
  vboxd         20012/udp
  binkp         24554/tcp                    # binkp fidonet protocol
  asp           27374/tcp                    # Address Search Protocol
  asp           27374/udp
  csync2        30865/tcp                    # cluster synchronization tool
  dircproxy     57000/tcp                    # Detachable IRC Proxy
  tfido         60177/tcp                    # fidonet EMSI over telnet
  fido          60179/tcp                    # fidonet EMSI over TCP
  ...
  

Free Technology Academy Diarmuid O'Briain



38 Open Networks

• Port:  is  a  numerical  identifier  that  uniquely  identify  applications  and  processes

running on the computer. For example: well known ports, FTP 21, SSH 22, telnet 23,
Simple Mail Transfer Protocol (SMTP) 25, Post Office Protocol version 3 (POP3) 110,
Interim Mail  Access Protocol  (IMAP) 143,  Simple Network Management  Protocol
(SNMP) 161/162, Remote Access Dialin User Service (RADIUS), 1812/1813 are just
a few of the more popular ones. 

  $ ip -4 route list
  
  default via 192.168.22.1 dev eth1  proto static 
  192.168.22.0/24 dev eth1  proto kernel  scope link  src 192.168.22.159  metric 9

• Router node (gateway): it is a node that performs the routing (data transfer) function. A

router, depending on its characteristics, may transfer information between two similar
or different network protocols and may also be selective. 

  $ cat /etc/resolv.conf
  
  nameserver 8.8.8.8

  

• DNS: Provides databases that perform the translation between the name and Internet

address and that are structured in the form of a tree.  In order to do this, domains
separated by points are defined, of which the highest (from right to left) describes a
category,  institution or country (COM stands for Commercial,  EDU for Education,
GOV  for  Governmental,  MIL  for  Military  (government),  ORG,  non-profit
Organisation, XX which could be any two letters to indicate the country. The second
level  represents  the  organisation  and the  third  and remaining sections  indicate  the
departments,  sections  or  divisions  within  an  organisation  (for  example,
www.ftacademy.org or john@freeknowledge.eu). The first two names (from right to
left),  ftacademy.org  in  the  first  case,  freeknowledge.eu  (in  the  second)  must  be
assigned (approved) by the Internet Corporation for Assigned Names and Numbers
(ICANN) and the rest may be configured/assigned by the organisation. 

• DHCP, Bootstrap Protocol (bootp): DHCP and bootp are protocols that permit a client

node to  obtain information on the  network (such as  the  node's  IP address).  Many
organisations with many machines use this mechanism to facilitate the administration
of large networks or networks in which there are roaming users. On IPv6 this function
is  carried  out  by  either  an  internal  IPv6  StateLess  Address  Auto  Configuration
(SLAAC) or a DHCPv6 Server. 

  $ ip -4 neigh list
  
  192.168.43.1 dev eth1 lladdr 5c:f8:a1:b3:79:c2 REACHABLE

Diarmuid O'Briain Free Technology Academy



Open Networks 39

  

• ARP, Reverse ARP (RARP):  in some networks (like Ethernet),  the IP addresses are

dynamically discovered through the use of two other members of the Internet protocol
suite: ARP and RARP. ARP uses broadcast messages to determine the Ethernet address
(MAC specification  for  layer  3  of  the  OSI  model),  corresponding  to  a  particular
network-layer address (IP). RARP uses broadcast messages (messages that reach all of
the  nodes)  to  determine  the  network-layer  address  associated  with  a  particular
hardware address. RARP is especially important to diskless nodes, for which network-
layer addresses are usually unknown at boot time. 

  $ ip -6 neigh list
  
  2501:f2b30:2a0a::1 lladdr 5c:f8:a1:b3:79:c2 router REACHABLE
  

• Neighbour Discovery Protocol (NDP): This is the IPv6 equivalent to the ARP/RARP

process in IPv4. 
• Socket  Library:  in  UNIX,  all  TCP/IP implementation  is  part  of  the  kernel  of  the

operating system (either within the same or as a module that loads at boot time, as is
the  case  with  the  device  drivers  in  GNU/Linux).  A  programmer  can  use  sockets
through an Application Programming Interface (API). These API implement a source-
code  interface  to  the  system.  For  TCP/IP,  the  most  common API  is  the  Berkeley
Socket  Library (Windows uses an equivalent  library that  is  called  Winsocks).  This
library makes it possible to create a communication end-point (socket), associate it to a
remote node and port (bind) and offer the communication service (through connect,
listen, accept, send, sendto, recv, recvfrom, for example). The library also provides a
more  general  communication  mode  (AF  INET  family)  and  more  optimised
communications for cases in which the process are communicating within the same
machine  (AF  UNIX  family).  In  GNU/Linux,  the  socket  library  is  part  of  the  C
standard  library,  Libc,  (Libc6  in  current  versions),  and  it  supports  AF_INET,
AF_UNIX,  AF_IPX  (for  Novell  protocols),  AF_X25  (for  the  X.25  protocol),
AF_ATMPVC-AF_ATMSVC (for  the  ATM  protocol)  and  AF_AX25,F_NETROM,
AF_ROSE (for amateur radio protocol). 

Free Technology Academy Diarmuid O'Briain



40 Open Networks

This page is intentionally blank

Diarmuid O'Briain Free Technology Academy



Open Networks 41

4. Switching

4.1 Bridging and Switching
A bridge is  a  device used to  connect  two or  more Local  Area Networks (LAN) that  use
identical  LAN (Medium Access  Control  (MAC)  Layer)  protocols.  The  bridge  acts  as  an
address filter, picking up frames from one LAN segment (collision domain) that are intended
for a destination on another LAN segment, and passing those frames on. The bridge does not
modify the contents of the frames and does not add anything to the frame. The bridge operates
at layer 2 of the OSI model. 

The original concept of a bridge was a device that would interface similar LAN segments and
would filter and forward transmissions (pass those which were for address not on the source
segment, and not pass those whose destination address is on the source segment). So bridges
maintain tables of addresses associated with each port on the bridge. The IEEE 802.1 standard
defines bridges, often called "Ethernet bridges" or transparent bridges, and some vendors call
them Ethernet switches. 

In  the simplest  terms,  a  bridge  forwards (sends)  frames between LAN segments  that  are
attached to its ports using information it finds in the OSI Model Layer 2, the Data Link Layer
(actually the IEEE 802.3 MAC layer addressing), of a frame. It ignores the other layers of the
OSI Model. In other words, it looks at the destination address field, compares the address to
its address tables for all its ports. If it finds the address associated with a port, it sends the
frame out on that port. If it does not find an address, it sends the frame out on all ports. 

In a multi-bridge IEEE LAN environment, the bridges usually communicate with each other
using the IEEE 802.1d  Spanning Tree Algorithm (STA) protocol or other protocol. Bridges
have a problem when an address is unknown the frame is forwarded to all ports off the bridge.
This could cause address table problems and frame propagation in multi-LAN environments
without the spanning tree algorithm capability. 

In pure bridges, there are 2 types of transparent (with or without Spanning Tree) bridging and
Source Routing bridging. Bridges are most effective when there are few links in a network.
Larger  networks  usually  use  Routers  where  links  are  numerous.  Transparent  bridges  are
normally  connectionless switching  devices,  which  means  they  themselves  do  not  help
maintain connections in the network. Transparent bridges just send frames or frames out a
port, they do not route them to another device. 

Free Technology Academy Diarmuid O'Briain



42 Open Networks

4.1.1 Why use Bridges

• Limit number of stations (contention) transmitting on specific segments. 

• Limit Size of LANs. 

• Limit volume of traffic (bandwidth). 

• Reduces traffic across segments of a single LAN. 

• Connect multiple local LANs into a single network at a local level. 

4.1.2 Switches

A switch  is  a  device  designed  to  segment  LANs  with  one  idea  in  mind,  increase  the
bandwidth. This differs from a bridge or router whose purpose is to limit the amount of traffic
flowing between LANs (a LAN will be sometimes referred to as a collision domain). 

The Layer 2 (L2) Switch interconnects LAN segments. Traffic between the LAN segments
will be switched at near wire speed. 

A bridge normally will have 2 or 3 ports, where a switch will have 4, 6, or more ports for
attaching separate LANs or collision domains. 10/100/1000 Mb/s switches have two or more
1000 Mb/s and 4 or more 10/100 Mb/s ports. Consequently, collision domains can have more
segmentation than with a bridge. 

Why Switching

• Switches operate at Layer 2 of the OSI Model. 

• Switching is and advance in bridging technology. 

• Switches  forward  frames  based  on  the  MAC  layer  address  (the  actual  Network

Interface Card (NIC) address). 
• Switches forward frames with very low delay time (wire speed). 

• Switches, in most cases, use the IEEE 802.1d Spanning Tree Protocol (STP) or IEEE

802.1w Rapid Spanning Tree Protocol (RSTP) allowing for redundant switches in the
network. 

• Switches will forward broadcast traffic to all LANs attached to them. 

When  is switching used

Switching is used when segmentation/connection of several LAN segments is required with
increased bandwidth. If security among the LANs is not a significant issue then a switch can
be used rather than a router if the following services are not required; 

• Support redundant paths. 

• Have intelligent frame forwarding. 

• Connect to a WAN. 

Diarmuid O'Briain Free Technology Academy



Open Networks 43

4.1.3 Transparent Bridging

L2 Switches and Transparent Bridges use transparent bridging to create their address lookup
tables. Transparent bridging allows a switch to learn everything it needs to know about the
location of nodes on the network without the network administrator having to statically add
entries. Transparent bridging consists of five parts or steps: 

• Learning 

• Flooding 

• Filtering 

• Forwarding 

• Ageing 

The switch is added to the network, and the various segments are plugged into the switch's
ports. A host with the MAC 0000.8c01.aaaa (aaaa) on the first segment sends data to a host
0000.8c01.bbbb (bbbb) on another segment 2. 

The switch gets the first frame of data from aaaa. It reads the MAC address and saves it to the
lookup table for Segment 1. The switch now knows where to find aaaa any time a frame is
addressed to it. This process is called learning. 

Since the switch does not know where 0000.8c01.bbbb (bbbb) is, it sends the frame to all of
the segments except the one that it arrived on (Segment 1). When a switch sends a frame out
to all segments to find a specific node, it is called flooding. 

Free Technology Academy Diarmuid O'Briain



44 Open Networks

The host bbbb gets the frame and sends a frame back to aaaa in acknowledgement. The frame
from bbbb arrives at the switch. Now the switch can add the MAC address of 0000.8c01.bbbb
to the lookup table for Segment 2. Since the switch already knows the address of  aaaa, it
sends the frame directly to it. Because aaaa is on a different segment than bbbb, the switch
must connect the two segments to send the frame. This is known as forwarding. 

The next frame from aaaa to bbbb arrives at the switch. The switch now has the address of
bbbb  in its tables, so it  forwards the frame directly to bbbb.  0000.8c01.cccc (cccc) sends
information to the switch for aaaa. The switch looks at the MAC address for cccc and adds it
to the lookup table for Segment 1. The switch already has the address for aaaa and determines
that both nodes are on the same segment, so it does not need to connect Segment 1 to another
segment for the data to travel from  cccc to  aaaa. Therefore, the switch will ignore frames
travelling between nodes on the same segment. This is filtering. 

Learning and flooding continue as the switch adds nodes to the lookup tables. Most switches
have plenty of memory in a switch for maintaining the lookup tables; but to optimise the use
of this  memory, they still  remove older information so that the switch doesn't  waste time
searching  through  stale  addresses.  To  do  this,  switches  use  a  technique  called  ageing.
Basically, when an entry is added to the lookup table for a node, it is given a time-stamp. Each
time a frame is  received from a node,  the time-stamp is  updated.  The switch has a user-
configurable timer that erases the entry after a certain amount of time with no activity from
that  node.  This  frees  up  valuable  memory  resources  for  other  entries.  As  can  be  seen,
transparent bridging is a great and essentially maintenance-free way to add and manage all the
information a switch needs. 

In the example, two nodes share segment 1, while the switch creates independent segments
for  bbbb and  dddd.  In  an  ideal  LAN-switched network,  every  node would  have  its  own
segment. This would eliminate the possibility of collisions and also the need for filtering. 

Address Resolution

To allow forwarding and filtering of frames at wire speed, LAN switches should be able to
decode MAC addresses very quickly. Since Central Processing Unit (CPU) based lookups are
expensive,  hardware  solutions  may  be  used.  Switches  maintain  address  tables  just  like
transparent bridges. They learn the addresses of their neighbours, and when a frame is to be
forwarded, they first look up the address table and broadcast only if no entry corresponding to
that destination is found. Stations that have not transmitted recently are aged out. This way a
small address table can be maintained and the switch can relearn if a station starts transmitting
again. 

Diarmuid O'Briain Free Technology Academy



Open Networks 45

Broadcast Storm

In the example shown in the diagram, even if  one of the switches fails,  the network will
continue to function. The loop provides redundancy, effectively eliminating a single point of
failure. However it introduces a new problem. With all of the switches now connected in a
loop, a frame from a node could quite possibly come to a switch from two different segments.
For example, imagine that  0000.8c01.bbbb (bbbb) is connected to Switch A, and needs to
communicate with 0000.8c01.aaaa (aaaa) on Segment B. Switch A does not know who aaaa
is, so it floods the frame. 

The frame travels via Segment A or Segment C to the other two switches (B and C). Switch B
will add bbbb to the lookup table it maintains for Segment A, while Switch C will add it to the
lookup table for Segment C. If neither switch has learned the address for aaaa yet, they will
flood Segment B looking for aaaa. 

Each  switch  will  take  the  frame  sent  by  the  other  switch  and  flood  it  back  out  again
immediately, since they still don't know who aaaa is. Switch A will receive the frame from
each segment and flood it back out on the other segment. This causes a broadcast storm as the
frames are broadcast, received and rebroadcast by each switch, resulting in potentially severe
network congestion. 

4.2 Spanning Tree Protocol
To prevent broadcast storms and other unwanted side effects of looping, Digital Equipment
Corporation (DEC) created the Spanning Tree Protocol (STP), which has been standardised as
the IEEE 802.1d specification by the IEEE. Essentially,  a spanning tree uses STA, which
senses that the switch has more than one way to communicate with a node, determines which
way is best and blocks out the other path(s). It also keeps track of the other path(s), just in
case the primary path is unavailable. 

Free Technology Academy Diarmuid O'Briain



46 Open Networks

Each switch is assigned a group of IDs, one for the switch itself and one for each port on the
switch. The switch's identifier, called the Bridge ID (BID), is 8 bytes long and contains a
bridge priority (2 bytes) along with one of the switch's MAC addresses (6 bytes). Each port
ID is 16 bits long with two parts: a 6-bit priority setting and a 10-bit port number. 

A path cost value is given to each port. The cost is typically based on a guideline established
as  part  of  IEEE  802.1d  and  further  enhanced  with  IEEE  802.1w  Rapid  STP  (RSTP).
According to the original specification, cost is 1,000 Mb/s (1 gigabit per second) divided by
the bandwidth of the segment connected to the port. Therefore, a 10 Mb/s connection would
have a cost of (1,000/10) 100. To compensate for the speed of networks increasing beyond the
Gb/s range, the standard cost has been modified over time. The new values are: 

Data rate STP Cost - 802.1d-1998 RSTP Cost - 802.1w-2004

4 Mb/s 250 5000000

10 Mb/s 100 2000000

16 Mb/s 62 1250000

100 Mb/s 19 200000

1 Gb/s 4 20000

2 Gb/s 3 10000

10 Gb/s 2 2000

Diarmuid O'Briain Free Technology Academy



Open Networks 47

It should also be noted that the path cost can be an arbitrary value assigned by a network
administrator in most switches, instead of one of the standard cost values. 

Each switch begins a discovery process to choose which network paths it should use for each
segment.  This  information  is  shared  between all  the  switches  by way of  special  network
frames called Bridge Protocol Data Units (BPDU). The BPDU consists of: 

• Root BID 

• This is the BID of the current root bridge. 

• Path cost to root bridge 

• This determines how far away the root bridge is. For example, if the data has to

travel over three 100 Mb/s segments to reach the root bridge, then the cost is
(19 + 19 + 0) 38. The segment attached to the root bridge will normally have a
path cost of zero. 

• Sender BID 

• This is the BID of the switch that sends the BPDU. 

• Port ID 

• This is the actual port on the switch that the BPDU was sent from. 

A root bridge is chosen based on the results  of the BPDU process between the switches.
Initially, every switch considers itself the root bridge. When a switch first powers up on the
network, it sends out a BPDU with its own BID as the root BID. When the other switches
receive the BPDU, they compare the BID to the one they already have stored as the root BID.
If the new root BID has a lower value, they replace the saved one. But if the saved root BID is
lower, a BPDU is sent to the new switch with this BID as the root BID. When the new switch
receives the BPDU, it realises that it is not the root bridge and replaces the root BID in its
table with the one it just received. In this way the switch that has the lowest BID is elected by
the other switches as the root bridge. 

Based on the location of the root bridge, the other switches determine which of their ports has
the lowest path cost to the root bridge. These ports are called root ports, and each switch
(other than the current root bridge) must have one. 

The switches determine who will have designated ports. A designated port is the connection
used to send and receive frames on a specific segment. By having only one designated port
per segment, all looping issues are resolved. 

Designated ports are selected based on the lowest path cost to the root bridge for a segment.
Since the root bridge will have a path cost of 0, any ports on it that are connected to segments
will become designated ports. For the other switches, the path cost is compared for a given
segment. If one port is determined to have a lower path cost, it becomes the designated port
for that segment. If two or more ports have the same path cost, then the switch with the lowest
BID is chosen. 

Free Technology Academy Diarmuid O'Briain



48 Open Networks

Once the designated port for a network segment has been chosen, any other ports that connect
to that segment become non-designated ports. They block network traffic from taking that
path so it can only access that segment through the designated port. 

Each switch has a table of BPDUs that it continually updates. The network is now configured
as a single spanning tree,  with the root bridge as the trunk and all  the other  switches as
branches. Each switch communicates with the root bridge through the root ports, and with
each segment through the designated ports, thereby maintaining a loop-free network. In the
event that the root bridge begins to fail  or have network problems, STP allows the other
switches to immediately reconfigure the network with another switch acting as Root Bridge.
This process gives a company the ability to have a complex network that is fault-tolerant and
yet fairly easy to maintain. 

4.2.1 Configuration of a Bridge interface on GNU/Linux

GNU/Linux through the  bridge-utils offers the functionality  to create an internal Ethernet
switch and put selected interfaces into it. Control of the bridge is via the brctl command. This
command gives the configuration options expected of a typical Ethernet switch. It supports
functionality like Spanning Tree Protocol (STP). 

Install bridge-utils

  $ sudo apt-get install bridge-utils
  
  $ sudo brctl --help
  Usage: brctl [commands]
  commands:
        addbr           <bridge>                    add bridge
        delbr           <bridge>                    delete bridge
        addif           <bridge> <device>           add interface to bridge
        delif           <bridge> <device>           delete interface from bridge
        hairpin         <bridge> <port> {on|off}    turn hairpin on/off
        setageing       <bridge> <time>             set ageing time
        setbridgeprio   <bridge> <prio>             set bridge priority
        setfd           <bridge> <time>             set bridge forward delay
        sethello        <bridge> <time>             set hello time
        setmaxage       <bridge> <time>             set max message age
        setpathcost     <bridge> <port> <cost>      set path cost
        setportprio     <bridge> <port> <prio>      set port priority
        show            [ <bridge> ]                show a list of bridges
        showmacs        <bridge>                    show a list of mac addrs
        showstp         <bridge>                    show bridge stp info
        stp             <bridge> {on|off}           turn stp on/off
  

Diarmuid O'Briain Free Technology Academy



Open Networks 49

4.2.2 Create a bridge and add interfaces

To use the bridge utilities,  a bridge must be created and then interfaces added to it.  It is
important to note that once interfaces are added to the bridge, addressing at the Internet Layer
(Open Systems Interconnection (OSI) Network Layer) is applied to the bridge interface and
not the physical interface (eth0, eth1, ..). In the example below the interfaces eth0 and eth1 are
now within the bridge br0. IP addressing at the next stage is applied to br0 (as shown in the
right side of the diagram above). 

  $ sudo brctl addbr br0
  $ sudo brctl addif br0 eth0 eth1 
  

Enable the bridge interface. 

  $ sudo ip link set dev br0 up
  

Review bridge

Now that the bridge is created review it. 

  $ sudo brctl show
  bridge name   bridge id               STP enabled     interfaces
  br0           8000.2a7c0a401a31       no              eth0
                                                        eth1
  
  
  $ sudo brctl showmacs br0
  port no       mac addr                is local?       ageing timer
    1   00:04:23:b1:8f:e2       no                 0.02
    1   00:14:22:09:57:0a       no                23.24
    1   00:60:e0:50:a0:29       no                 9.50
    1   2a:7c:0a:40:1a:31       yes                0.00
    3   32:e5:4e:7d:ad:de       no                43.32
    4   36:96:9e:e5:38:fc       yes                0.00
    4   3a:7f:77:2a:1e:46       no                69.38
    2   5e:cd:68:17:2e:d1       no                37.73
    1   b6:7a:b1:d5:03:8c       no                31.97
    3   c6:33:b1:f0:f1:a4       yes                0.00
  

4.3 Virtual LANs (VLANs)
A virtual LAN, commonly known as a VLAN, is a logically segmented network mapped over
physical hardware. The IEEE 802.1q standard is the predominant protocol. 

Early VLANs where often configured to reduce the size of the collision domain in a large
single Ethernet segment to improve performance. When Ethernet switches made this a non-
issue (because they have no collision domain), attention turned to reducing the size of the
broadcast domain at the MAC layer. Another purpose of a virtual network is to restrict access
to  network  resources  without  regard  to  physical  topology  of  the  network,  although  the
strength of this method is debatable. 

Free Technology Academy Diarmuid O'Briain



50 Open Networks

VLANs operate at layer 2 of the OSI model. Although often a VLAN is configured to map
directly to an IP network, or subnet, which gives the appearance it is involved in layer 3. 

Switch to switch links and switch to router links are called trunks. A router serves as the
backbone for traffic going across different VLANs. 

4.3.1 Removing the Physical Boundaries

Conceptually,  VLANs  provide  greater  segmentation  and  organisational  flexibility.  VLAN
technology allows network managers to group switch ports and users connected to them into
logically defined communities of interest. These groupings can be co-workers within the same
department,  a  cross-functional  product  team,  or  diverse  users  sharing  the  same  network
application  or  software  (such  as  LibreOffice  users).  Grouping  these  ports  and  users  into
communities of interest, referred to as VLAN organisations, can be accomplished within a
single  switch,  or  more  powerfully,  between connected  switches  within  the  enterprise.  By
grouping ports and users together across multiple switches, VLANs can span single building
infrastructures,  interconnected  buildings,  or  even  Wide  Area  Networks  (WAN).  VLANs
completely  remove  the  physical  constraints  of  workgroup  communications  across  the
enterprise. 

VLANs provide the ability for any organisation to be physically dispersed throughout the
company while maintaining its group identity. For example,  engineering personnel can be

Diarmuid O'Briain Free Technology Academy



Open Networks 51

located  on  the  manufacturing  floor,  in  the  research  and  development  centre,  in  the
Professional Services demonstration centre, and in the corporate offices, while at the same
time all members reside on the same virtual network, sharing traffic only with each other. The
graphic above illustrates a typical VLAN architecture that places these employees closer to
their  assigned  areas  of  management  and  the  people  with  whom  they  interact,  while
maintaining communication  integrity  within their  respective organisation.  Today's  VLANs
better match the way that companies are organised, and allow network managers to more
closely align the network to the way that employees work and communicate. 

4.3.2 IEEE 802.1P/Q

The  IEEE 802.1Q specification  is  the  standard  method  for  inserting  VLAN membership
information into Ethernet frames. A tag field containing VLAN information can be inserted
into an Ethernet frame. If a port has an IEEE 802.1Q compliant device attached (such as
another  switch),  these  tagged  frames  can  carry  VLAN membership  information  between
switches, thus letting a VLAN span multiple switches. 

Note that VLAN functionality is shared in the IEEE 802.1 two bytes 3 priority bits. These 3
bits define 8 classes, the highest priority is 7 for say network-critical traffic such as routing,
values 5 and 6 for say delay-sensitive applications such as video and VoIP. The 0 value is used
as a best-effort default, invoked automatically when no other value has been set. 

The priority function of IEEE 802.1 is known as IEEE 802.1P and the VLAN function as
IEEE 802.1Q while combined they are referred to as IEEE 802.1P/Q. 

Free Technology Academy Diarmuid O'Briain



52 Open Networks

IEEE 802.1Q

The diagram above shows a frame traversing the VLAN. Step 1 the host with MAC: bbb puts
a frame on the wire for MAC: aaa. The Switch SW_B determines the frame belongs to VLAN
10, either by the protocol within the frame or in this example the port it is received on. In Step
2 the SW_B switch then encapsulates the frame with an IEEE 802.1Q tag and a Frame Check
Sequence (FCS), this tag is then used to identify the VLAN the frame is from on all IEEE
802.1Q enabled switches. The tagged frame is then passed on the trunk to the SW_A switch.
In Step 3 the SW_A determines the frame is for VLAN 10, removes the tag and puts the frame
out the ports associated with VLAN 10. Step 4 The workstation with the MAC: aaa receives
an untagged frame. 

Diarmuid O'Briain Free Technology Academy



Open Networks 53

Now dissecting further what happens within the switch. Each VLAN has a bridge configured
for  it.  The  interface  considered  to  be  the  trunk between  the  switches  has  sub-interfaces
configured, one for each VLAN. These sub-interfaces perform the tagging and untagging. The
sub-interfaces  are  added to  their  respective  bridges.  Each  other  port  considered  to  be  an
access port is added to the bridge associated with the VLAN for that port. In the example
therefore eth1 is added to the bridge br_vlan10 and eth2 to br_vlan20. 

A frame arrives as eth1 and is passed to the bridge br_vlan10 and as a result is forwarded to
the sub-interface eth0.10 where an IEEE 802.1Q tag is added to the frame and it is forwarded
to the physical interface eth0. The frame leaving eth0 is therefore tagged. 

Here is an example of a frame captured on the wire on a trunk between two switches using
IEEE 802.1Q. Note the Ethernet type field has a value of 0x8100 indicating that the next field
is IEEE 802.1Q VLAN. This field contains the value 000000001010 (10) which is the VLAN
tag and it follows with a type field of 0x0800 indicating that the next field is the IP header. 

  Frame: 102 bytes on wire (816 bits)
  Ethernet II, Src: d4:ca:6d:61:dd:89, Dst: 00:12:3f:dc:ab:47
      Destination: 00:12:3f:dc:ab:47
      Source: d4:ca:6d:61:dd:89
      Type: 802.1Q Virtual LAN (0x8100)
  802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 10
      000. .... .... .... = Priority: Best Effort (default) (0)
      ...0 .... .... .... = CFI: Canonical (0)
      .... 0000 0000 1010 = ID: 10
      Type: IP (0x0800)
  Internet Protocol Version 4, Src: 10.10.10.40, Dst: 10.10.10.30
  Internet Control Message Protocol
  

IEEE 802.1ad

One of the difficulties presented by IEEE 802.1Q is the fact that tags cannot be  stacked.
Imagine a service provider wants to use VLANs to separate services to different customers.
As the provider used VLAN tags for that purpose it prevents the customers using VLANs
themselves as IEEE 802.1Q does not support VLANs within VLANs. IEEE 802.1ad is an
amendment to  the  IEEE 802.1Q VLAN standard.  It  provides  for  the stacking of  VLANs
within VLANs which is called names such as provider stacking, stacked VLANs, Q-in-Q or
simply QinQ. IEEE 802.ad allows for multiple VLAN headers to be inserted into a single
frame an essential capability for implementing Metro Ethernet. QinQ allows multiple VLAN
tags in an Ethernet frame; together these tags constitute a tag stack. 

Free Technology Academy Diarmuid O'Briain



54 Open Networks

This first example demonstrates the use of IEEE 802.1ad instead of IEEE 802.1Q where there
is no stacking of VLANs. Here the Ethernet type field contains 0x88a8 such that the next field
is treated as IEEE 802.1ad. Like the earlier example for IEEE 802.1Q this field contains a
VLAN ID of 000000001010 (10) and a type field of 0x0800 to indicate that the next field is
the IP header. 

  Frame: 102 bytes on wire (816 bits)
  Ethernet II, Src: d4:ca:6d:61:dd:89, Dst: 00:12:3f:dc:ab:47
      Destination: 00:12:3f:dc:ab:47
      Source: d4:ca:6d:61:dd:89
      Type: 802.1ad Provider Bridge (Q-in-Q) (0x88a8)
  IEEE 802.1ad, ID: 10
      000. .... .... .... = Priority: 0
      ...0 .... .... .... = DEI: 0
      .... 0000 0000 1010 = ID: 10
      Type: IP (0x0800)
  Internet Protocol Version 4, Src: 10.10.10.40, Dst: 10.10.10.30
  Internet Control Message Protocol
  

Diarmuid O'Briain Free Technology Academy



Open Networks 55

4.4 Provider tagging

Considering the graphic the traffic in the trunks will be treated by ISP_1 and ISP_2 as access
ports despite they containing VLAN tags already. In fact ISP_1 and ISP_2 ignore these tags as
they are customer tags (C-tags). 

Before forwarding to the other ISP switch each switch adds a provider tag (S-tag) of  1001.
Thus the C-tag is stacked inside the S-tag from the provider. This can be seen by considering
the frame capture from the wire between ISP_1 and ISP_2 below. In this packet a customer
IEEE  802.1Q  VLAN  is  outer  labelled  with  an  ISP  IEEE  802.1ad  (Q-in-Q)  S-tag  of
001111101001 (1001). The Ethernet type field indicates 0x88a8 the next header containing an
IEEE 802.1ad tag.  This headers  type field indicates that the next  header  is  0x8100 IEEE
802.1Q. This headers type field in turn contains a type field of  0x0800 indicating the next
header is the IP header. So in this example a customer IEEE 802.1Q tag is stacked by an IEEE
802.1ad S-tag. 

Free Technology Academy Diarmuid O'Briain



56 Open Networks

  Frame: 106 bytes on wire (848 bits)
  Ethernet II, Src: d4:ca:6d:61:dd:89, Dst: 00:12:3f:dc:ab:47
      Destination: 00:12:3f:dc:ab:47
      Source: d4:ca:6d:61:dd:89
      Type: 802.1ad Provider Bridge (Q-in-Q) (0x88a8)
  IEEE 802.1ad, ID: 1001
      000. .... .... .... = Priority: 0
      ...0 .... .... .... = DEI: 0
      .... 0011 1110 1001 = ID: 1001
      Type: 802.1Q Virtual LAN (0x8100)
  802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 10
      000. .... .... .... = Priority: Best Effort (default) (0)
      ...0 .... .... .... = CFI: Canonical (0)
      .... 0000 0000 1010 = ID: 10
      Type: IP (0x0800)
  Internet Protocol Version 4, Src: 10.10.10.40, Dst: 10.10.10.30
  Internet Control Message Protocol

  

Now consider the frame below where the customer tag is also IEEE 802.1ad. The Ethernet
type field is  0x88a8 indicating the next header is IEEE 802.1ad Q-in-Q. In this header two
tags  can  be  seen,  a  provider  S-tag  of  001111101001  (1001) with  a  customer  C-tag  of
000000001010 (10). This headers type field is  0x0800 indicating the next header is the IP
header. 

  Frame: 106 bytes on wire (848 bits)
  Ethernet II, Src: d4:ca:6d:61:dd:89, Dst: 00:12:3f:dc:ab:47
      Destination: 00:12:3f:dc:ab:47
      Source: d4:ca:6d:61:dd:89
      Type: 802.1ad Provider Bridge (Q-in-Q) (0x88a8)
  IEEE 802.1ad, S-VID: 1001, C-VID: 10
      000. .... .... .... = Priority: 0
      ...0 .... .... .... = DEI: 0
      .... 0011 1110 1001 = ID: 1001
      000. .... .... .... = Priority: 0
      ...0 .... .... .... = DEI: 0
      .... 0000 0000 1010 = ID: 10
      Type: IP (0x0800)
  Internet Protocol Version 4, Src: 10.10.10.40, Dst: 10.10.10.30
  Internet Control Message Protocol
  

This packet shows a customer IEEE 802.1ad (Q-in-Q) label as an inner C-tag 000000010100
(20) which is also outer labelled with an ISP IEEE 802.1ad (Q-in-Q) S-tag  001111101001
(1001). 

 

Diarmuid O'Briain Free Technology Academy



Open Networks 57

 Frame: 106 bytes on wire (848 bits)
  Ethernet II, Src: d4:ca:6d:61:dd:89, Dst: 00:12:3f:dc:ab:47
      Destination: 00:12:3f:dc:ab:47
      Source: d4:ca:6d:61:dd:89
      Type: 802.1ad Provider Bridge (Q-in-Q) (0x88a8)
  IEEE 802.1ad, S-VID: 1001, C-VID: 20
      000. .... .... .... = Priority: 0
      ...0 .... .... .... = DEI: 0
      .... 0011 1110 1001 = ID: 1001
      000. .... .... .... = Priority: 0
      ...0 .... .... .... = DEI: 0
      .... 0000 0001 0100 = ID: 20
      Type: IP (0x0800)
  Internet Protocol Version 4, Src: 10.10.10.40, Dst: 10.10.10.30
  Internet Control Message Protocol
  

4.5 VLANs on GNU/Linux

iproute2 supports IEEE 802.1Q VLAN and IEEE 802.1ad VLAN Stacking. IEEE 802.1Q or
IEEE 802.1ad traffic received on the eth0 interface will have the VLAN tag removed and the
frame passed to the VLAN interface. Traffic passing out the sub-interface will have the IEEE
802.1Q or IEEE 802.1ad tag added. Create the sub-interfaces with the following commands.
These create sub-interfaces for VLAN ID 10 and VLAN ID 20on the eth0 interface and gives
them labels of eth0.10 and eth0.20. 

Confirm that the 8021q kernel module is loaded and if not then load it. 

  $ lsmod |grep 8021q
  $ sudo modprobe 8021q
  $ lsmod |grep 8021q
  8021q         18824  0
  garp          13025  1 8021q
  

Free Technology Academy Diarmuid O'Briain



58 Open Networks

Add sub-interfaces for each VLAN expected on the physical eth0 interface. 

  $ sudo ip link add link eth0 name eth0.10 type vlan id 10
  $ sudo ip link add link eth0 name eth0.20 type vlan id 20
  

Add IP addresses to the sub-interfaces. 

  $ sudo ip addr add 10.10.10.10/24 dev eth0.10
  $ sudo ip addr add 20.20.20.20/24 dev eth0.20
  

Bring up the interface and its new sub-interfaces. 

  $ sudo ip link set dev eth0 up
  $ sudo ip link set dev eth0.10 up
  $ sudo ip link set dev eth0.20 up
  

Making VLAN changes persistent on Debian GNU/Linux. 

Add the following lines to the /etc/network/interfaces file. 

  ## VLAN 10 on eth0 ##
  
  auto eth0.10
  iface eth0.10 inet static
    address 10.10.10.10
    netmask 255.255.255.0
    vlan-raw-device eth0
  
  ## VLAN 10 on eth0 ##
  
  auto eth0.20
  iface eth0.20 inet static
    address 20.20.20.20
    netmask 255.255.255.0
    vlan-raw-device eth0
  

Review by monitoring packets on the trunk interface between switches. 

  Frame: 102 bytes on wire (816 bits)
  Ethernet II, Src: 00:12:3f:dc:ab:47 (GNU/Linux PC), Dst: d4:ca:6d:61:dd:89
      Destination: d4:ca:6d:61:dd:89
      Source: 00:12:3f:dc:ab:47 (GNU/Linux PC)
      Type: 802.1Q Virtual LAN (0x8100)
  802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 10
      000. .... .... .... = Priority: Best Effort (default) (0)
      ...0 .... .... .... = CFI: Canonical (0)
      .... 0000 0000 1010 = ID: 10
      Type: IP (0x0800)
  Internet Protocol Version 4, Src: 10.10.10.10, Dst: 10.10.10.30
  Internet Control Message Protocol
  

Diarmuid O'Briain Free Technology Academy



Open Networks 59

4.5.1 IEEE 802.1ad support on GNU/Linux

Support for IEEE 802.1ad was incorporated in the GNU/Linux kernel from Kernel version
3.10. Check the kernel version of your system and if less that 3.10, download the latest stable
kernel,  compile  and use it.  Also check the version of  iproute* installed,  it  needs  to  be a
version 3.10 or higher. 

  $ uname -r
  3.14.0-4-686-pae
  
  $ dpkg -l iproute*
  
  Desired=Unknown/Install/Remove/Purge/Hold
  | Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/Trig-pend
  |/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
  ||/ Name               Version              Architecture      Description
  +++-===================-====================-=================-
==================================== 
  rc  iproute       20120521-3+b3     i386   networking and traffic control tools
  un  iproute-doc   <none>                    (no description available)
  ii  iproute2      3.12.0-2~bpo70+1  i386   networking and traffic control tools
  un  iproute2-doc  <none>                    (no description available)
  

Configure interfaces as shown already with the addition of  proto 802.1ad with creating the
sub-interfaces. 

  $ sudo ip link add link eth0 name eth0.10 type vlan proto 802.1ad id 10
  $ sudo ip link add link eth0 name eth0.20 type vlan proto 802.1ad id 20
  $ sudo ip addr add 10.10.10.10/24 dev eth0.10
  $ sudo ip addr add 20.20.20.20/24 dev eth0.20
  $ sudo ip link set dev eth0 up
  $ sudo ip link set dev eth0.10 up
  $ sudo ip link set dev eth0.20 up
  

Monitor the trunk link and notice that the GNU/Linux workstation is now terminating directly
in the IEEE 802.1ad C-tag interfaces on the eth0 sub-interfaces. 

  Frame: 102 bytes on wire (816 bits)
  Ethernet II, Src: 00:12:3f:dc:ab:47, Dst: d4:ca:6d:61:dd:89
      Destination: d4:ca:6d:61:dd:89
      Source: 00:12:3f:dc:ab:47 
      Type: 802.1ad Provider Bridge (Q-in-Q) (0x88a8)
  IEEE 802.1ad, ID: 10
      000. .... .... .... = Priority: 0
      ...0 .... .... .... = DEI: 0
      .... 0000 0000 1010 = ID: 10
      Type: IP (0x0800)
  Internet Protocol Version 4, Src: 10.10.10.10, Dst: 10.10.10.30
  Internet Control Message Protocol
  

Free Technology Academy Diarmuid O'Briain



60 Open Networks

4.5.2 IEEE 802.1ad support on GNU/Linux as a switch

In this case GNU/Linux workstation will operate as a bridge with a VLAN interface. 

Create  the  VLAN subinterfaces  to  deal  with  the  incoming trunk interface  containing  the
VLANs on physical interface eth0. 

  $ sudo ip link add link eth0 name eth0.10 type vlan proto 802.1ad id 10
  $ sudo ip link add link eth0 name eth0.20 type vlan proto 802.1ad id 20
  $ sudo ip link set dev eth0 up
  $ sudo ip link set dev eth0.10 up
  $ sudo ip link set dev eth0.20 up
  

Bring up the interfaces that connect to the LANs. 

  $ sudo ip link set dev eth1 up
  $ sudo ip link set dev eth2 up
  $ sudo ip link set dev eth3 up
  $ sudo ip link set dev eth4 up
  

Create bridges to link the VLANs to their appropriate interfaces. 

  $ sudo brctl addbr br_vlan_10
  $ sudo brctl addbr br_vlan_20
  

Assign interfaces to the various bridges. 

  $ sudo brctl addif br_vlan_10 eth0.10 eth1 eth2
  $ sudo brctl addif br_vlan_20 eth0.20 eth3 eth4
  

Bring up the bridges. 

  $ sudo ip link set dev br_vlan_10 up
  $ sudo ip link set dev br_vlan_20 up
  

Diarmuid O'Briain Free Technology Academy



Open Networks 61

Review the packets on the wire. 

  Frame: 74 bytes on wire (592 bits) 
  Ethernet II, Src: d4:ca:6d:61:dd:89, Dst: 00:0c:42:8b:73:e4
      Destination: 00:0c:42:8b:73:e4
      Source: d4:ca:6d:61:dd:89
      Type: 802.1Q Virtual LAN (0x8100)
  802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 10
      000. .... .... .... = Priority: Best Effort (default) (0)
      ...0 .... .... .... = CFI: Canonical (0)
      .... 0000 0000 1010 = ID: 10
      Type: IP (0x0800)
  Internet Protocol Version 4, Src: 10.10.10.30, Dst: 10.10.10.40
  Internet Control Message Protocol
  

4.6 GNU/Linux as a Service Provider bridge

Create a sub-interface on eth0 to handle the VLAN S-tag 1001 and bring the physical and

sub-interface up. 

  $ sudo ip link add link eth0 name eth0.1001 type vlan proto 802.1ad id 1001
  
  $ sudo ip link set dev eth0 up
  $ sudo ip link set dev eth0.1001 up
  

Bring up the eth1 interface which will be connected to the trunk from SW_A. 

  $ sudo ip link set dev eth1 up
  

Create a bridge br_vlan_1001 and put the eth0.1001 sub-interface and eth1 into it. Then bring
the bridge up. 

  $ sudo brctl addbr br_vlan_1001
  $ sudo brctl addif br_vlan_1001 eth0.1001 eth1
  $ sudo ip link set dev br_vlan_1001 up
  

Now monitor the traffic on the wire between the provider switches. Note the double tag with
an S-tag of 1001 and a C-tag of 10. 

Free Technology Academy Diarmuid O'Briain



62 Open Networks

  Frame: 78 bytes on wire (624 bits) 
  Ethernet II, Src: d4:ca:6d:61:dd:89, Dst: 00:0c:42:8b:73:e4
      Destination: 00:0c:42:8b:73:e4
      Source: d4:ca:6d:61:dd:89
      Type: 802.1Q Virtual LAN (0x8100)
  802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 1001
      000. .... .... .... = Priority: Best Effort (default) (0)
      ...0 .... .... .... = CFI: Canonical (0)
      .... 0011 1110 1001 = ID: 1001
      Type: 802.1ad Provider Bridge (Q-in-Q) (0x88a8)
  IEEE 802.1ad, ID: 10
      000. .... .... .... = Priority: 0
      ...0 .... .... .... = DEI: 0
      .... 0000 0000 1010 = ID: 10
      Type: IP (0x0800)
  Internet Protocol Version 4, Src: 10.10.10.30, Dst: 10.10.10.40
  Internet Control Message Protocol
  

Diarmuid O'Briain Free Technology Academy



Open Networks 63

5. Internet Protocol
IP version 4 (IPv4 or IP) was defined initially in 1980 and finalised in RFC 791 in 1981. It has
been the mainstay of the Internet ever since though the pressure on its limited address space
of 4.3 billion addresses (232) is now telling which is forcing change to IPv6 with its 3.4x1038

addresses (2128). 

The IPv4 address defines the host at the Network/Internet layer and it has two section or parts.
The  left  part  represents  network  identification  and  the  right  part  represents  the  node
identification. In consideration of the point mentioned above (four numbers between 0-255, or
32 bits or four bytes), each byte represents either the network or the node. 

There are some restrictions: 0 (for example, 0.0.0.0) in the network space is reserved default
routing and 127 (for example, 127.0.0.1) is reserved for the local loopback or local host. 0 in
the node part refers to this network (for example,192.168.0.0) and 255 is reserved for sending
packets to all devices, this is known as broadcast (for example, 198.162.255.255). There may
be different types of networks or addresses in the different assignations: 

• Class  A (network.host.host.host):  1.0.0.1  to 126.254.254.254 (126  networks,  16

million nodes) define the large networks. The binary standard is: 0 + 7 network bits +
24 node bits. 

• Class  B (network.network.host.host): 128.1.0.1  to 191.255.254.254  (16K networks,

65K  nodes);  (usually,  the  first  node  byte  is  used  to  identify  subnets  within  an
institution). The binary standard is 10 + 14 network bits + 16 node bits. 

• Class C (net.net.net.host):  192.1.1.1 to  223.255.255.254 (2 million of networks, 254

nodes). The binary standard is 110 + 21 network bits + 8 node bits. 
• Classes  D  and  E (network.network.network.host):  224.1.1.1 to  255.255.255.254

reserved for multicast (from one node to a set of nodes that form part of the group) and
experimental purposes. 

Some address ranges have been reserved so that they do not correspond to public networks,
and  are  considered  to  be  private  networks.  These  are  nterconnected  computers  without
external connection; messages between them will not be sent through Internet, but through an
intranet. These address ranges are class A 10.0.0.0 to  10.255.255.255, class B 172.16.0.0 to
172.31.0.0 and class C 192.168.0.0 to 192.168.255.0. 

Free Technology Academy Diarmuid O'Briain



64 Open Networks

The broadcast address is special, because each node in a network listens to all the messages
received with the broadcast destination address (as well as its own address of course). This
address  makes  it  possible  to  send  datagrams (generally  routing  information  and warning
messages) to a network and all nodes on the network will be able to read them. For example,
when ARP tries  to  find  the  Ethernet  address  corresponding to  an  IP,  it  uses  a  broadcast
message, which is sent to all the machines on the network at the same time. Each node in the
network reads this message and compares the IP that is being searched and sends back a
message to the sender node if they match. 

Two concepts that are related to the point described above are subnets and routing between
these  subnets.  Subnets  subdivide  the  node  part  into  smaller  networks  within  the  same
network, so as to, for example, improve the traffic. A subnet is in charge of sending traffic to
certain IP address ranges, extending to the same concept of Class A, B and C networks, but
only applying this rerouting in the IP node part. The number of bits interpreted as a subnet
identifier is provided by a netmask, which is a 32-bit number (as is an IP). In order to obtain
the subnet identifier, a logical AND operation is performed between the mask and the IP,
which will provide the subnet IP. For example, an institution with a B class network, with the
network 172.17.0.0, would therefore have a netmask with number 255.255.0.0 i.e. 172.17.0.0,
255.255.0.0 or written another way 172.17.0.0/16. Internally, this network is formed by small
networks (one per floor in the building, for example). In this way, the range of addresses is
reassigned in 20 subnets (floors in the example), 172.17.10.0 to 172.17.20.0. The point that
connects all these floors, called the backbone, has its own address, for example 172.17.1.0. 

These subnets share the same network IP 172.17.0.0, whereas the third is used to identify each
of the subnets within it (which is why it will use the netmask 255.255.255.0 or using netmask
length format /24 (8 x 1 + 8 x 1 + 8 x 1 = 24 x 1). Subnets are 172.17.1.0/24, 172.17.2.0/24,
172.17.3.0/24,  ...172.17.254.0/24.  The subnet  172.17.255.0/24 is  a  reserved subnet  by the
RFC however most routing implementations will allow it to be routed also. 

The second concept, routing, represents the mode in which the messages are sent through the
subnets. For example, there are three departments with Ethernet subnets: 

1. Sales (subnet 172.17.2.0), 
2. Clients (subnet 172.17.4.0), 
3. Human Resources (HR), (subnet 172.17.6.0) 
4. Backbone with GbE (subnet 172.17.1.0). 

Diarmuid O'Briain Free Technology Academy



Open Networks 65

In order to route the packets between the computers on the three networks, three gateways or
routers are required that will each have two network interfaces to switch between Ethernet
and GbE plus a gateway to connect to the Internet. These would be: 

1. SalesGW IPs: 172.17.2.1 and 172.17.1.2, 
2. ClientsGW IPs: 172.17.4.1 and 172.17.1.3 
3. HRGW IPs: 172.17.6.1 and 172.17.1.4, in other words, one IP on the subnet side and

another on the backbone side. 
4. InternetGW IP:  172.17.1.1  and  the  Internet  side  is  determined  by  the  companies

Internet Service Provider (ISP). 

When messages are sent between devices in the Sales area, it is not necessary to leave the
gateway, as the TCP/IP will find the destination device directly. The problem arises when the
Sales device wishes to send a packet to a device on the HR subnet. The message must pass
through the two respective routers. When Sales  identifies that HR is on another network, it
sends the packet through the SalesGW router, which in turn sends it to HRGW, which, in turn,
sends it to the respective HR device. The advantage of having subnets is obvious, given that
the traffic between all the Sales devices, for example, will not affect the Clients or HR devices
(although  this  is  more  complex  and  expensive  in  terms  of  designing  and  building  the
network). 

Free Technology Academy Diarmuid O'Briain



66 Open Networks

TCP/IP routers use a table to route the packets between the different networks. A special route
exists in the table to the network 0.0.0.0 which is a route of last resort. All the IP addresses on
the Internet match with this route, as none of the 32 bits are necessary; they are sent through
the default gateway router to the indicated network (assuming it can route to the required
network). In the SalesGW router, for example, the table would be: 

Address Mask Gateway Interface

172.17.1.0 255.255.255.0 /24 - eth1

172.17.4.0 255.255.255.0 /24 172.17.1.2 eth1

172.17.6.0 255.255.255.0 /24 172.17.1.3 eth1

0.0.0.0 0.0.0.0 172.17.2.1 eth1

172.17.2.0 255.255.255.0 /24 - eth0

The '-' means that the machine is directly connected and does not need routing. The procedure
for  identifying  whether  routing  is  required  or  not  consists  of  performing  a  very  simple
operation with the two logic ANDs (subnet AND mask and origin AND mask) and comparing
the two results. 

If they match, there is no routing required, if they are not a match then the packet is sent to the
respective gateway router for onward forwarding. Each device must have its default gateway
router pre-configured so it knows where to send such packets. 

For example, a message from 172.17.2.4 to 172.17.2.6 would mean: 

• 172.17.2.4 AND 255.255.255.0 = 172.17.2.0 

• 172.17.2.6 AND 255.255.255.0 = 172.17.2.0 

As the results are the same, there would be no routing required, simply a local ARP request to
find  the  MAC address  of  the  destination  device.  On  the  other  hand,  for  a  packet  from
172.17.2.4  to  172.17.6.6  routing  will  occur  via  the  gateway  router  172.17.2.1  with  an
interface  change  (eth0  to  eth1)  to  172.17.1.1  and  from  here  to  172.17.1.2  with  another
interface change (eth1 to eth0) and then the packet will be forwarded to 172.17.6.6. Routes
are matched in the routing table with the shortest mask first and the 0.0.0.0/0 default route is
only used as a route of last resort. 

In order to build the routing tables, the route command can be used to specify routes in the
routes table, these are called static routes. However, for more complex networks such manual
programming  is  unrealistic  and  dynamic  building  of  the  routing  tables  is  necessary.  For
dynamic routing an Internal Gateway Protocol (IGP) like the Open Shortest Path First (OSPF)
protocol or, between independent systems, an External Gateway Protocol (EGP) like Border
Gateway Protocol (BGP) is used. 

Diarmuid O'Briain Free Technology Academy



Open Networks 67

The  quagga package is  the GNU/Linux routing daemon and it  supports  Border  Gateway
Protocol version 4 (BGP4), BGP4 plus (BGP4+), OSPF version 2 (OSPFv2), OSPF version 3
(OSPFv3),  Intermediate  System to Intermediate  System (IS-IS),  Routing Internet  Protocol
(RIP), RIP version 2 (RIPv2), and RIP Next Generation (RIPng). 

To install a host on an existing network, it is necessary to have the following information,
obtained from the network provider or the administrator: 

• node IP address

• network IP address 

• broadcast address 

• netmask address / netmask length 

• gateway router address 

• DNS server address 

If a network is being established that will never have an Internet connection, any IP addresses
scheme can be used, but it is advisable to maintain an appropriate order corresponding to the
size  of  the  network  that  will  be  needed.  This  avoids  administrative  problems  within  the
network. This is how a network and nodes are defined for a private network (consideration
must be taken, as, if the device is connected to the network, it can inconvenience another user
to  whom this  address  has  been assigned already):  node address  192.168.110.23,  netmask
255.255.255.0  (/24),  net  part  192.168.110.,  node  part  .23,  net  address  192.168.110.0,
broadcast address 192.168.110.255. 

5.1 GNU/Linux IP networking (iproute2)
GNU/Linux depended on the net-tools package for network for many years, you may indeed
be familiar  with  some of  them and even use  them still  today.  Tools  like  arp,  hostname,
ifconfig, netstat and route are well understood and used tools. However they were seen to be a
loose collection of tools without  common structure and the  iproute2 package of tools  for
controlling TCP and UDP IP networking and a new functionality of network traffic control for
both IPv4 and IPv6 networks was released in 1999 (Note::  network traffic control did not
exist in  net-tools previously.  iproute2 has additional functionality and a common command
framework much like the command line of a router. These tools are all under the ip command
in the GNU/Linux shell. As a result of the change many distributions continue to have the net-
tools co-existing alongside iproute2, for compatibility, supporting older scripts. 

Free Technology Academy Diarmuid O'Briain



68 Open Networks

Here is a comparative list of the net-tools alongside their replacement iproute2 tool. 

Purpose net-tools iproute2

Address and link configuration ifconfig ip addr, ip link

Routing tables route ip route

Neighbours arp ip neigh

Virtual LAN (VLAN) vconfig ip link

Tunnels iptunnel ip tunnel

Multicast ipmaddr ip maddr

Network Traffic Control ip rule

Statistics netstat ss

5.1.1 iproute2 ip command

The ip command offers a simple map with its --help option switch. For the rest of this section
I  will  refer  to  the network diagram below, the commands will  show the configuration of
interfaces using the ip command from iproute2. 

  $ ip --help
  Usage: ip [ OPTIONS ] OBJECT { COMMAND | help }
         ip [ -force ] -batch filename
  where  OBJECT := { link | addr | addrlabel | route | rule | neigh | ntable |
                     tunnel | tuntap | maddr | mroute | mrule | monitor | xfrm |
                     netns | l2tp | tcp_metrics | token }
         OPTIONS := { -V[ersion] | -s[tatistics] | -d[etails] | -r[esolve] |
                      -f[amily] { inet | inet6 | ipx | dnet | bridge | link } |
                      -4 | -6 | -I | -D | -B | -0 |
                      -l[oops] { maximum-addr-flush-attempts } |
                      -o[neline] | -t[imestamp] | -b[atch] [filename] |
                      -rc[vbuf] [size]}
  

Diarmuid O'Briain Free Technology Academy



Open Networks 69

5.1.2 Network Manager (network-manager)

GNU/Linux  distributions  come  today  with  a  Network  Manager  (network-manager).  This
package is designed to remove the complexity of networking for users. network-manager will
try and determine the correct network interface to use at any given circumstance and makes it
very easy to establish WiFi connections with the Gnome applet (nm-applet). See the example
in the diagram. 

While this is a very useful feature for a laptop user it can be annoying when working with
servers or network testing as unexpected and sometimes undesirable results can occur. The
current status of network-manager can be achieved with the nmcli command. 

  $ nmcli nm
  RUNNING     STATE       WIFI-HARDWARE  WIFI      WWAN-HARDWARE  WWAN      
  running     connected   enabled        enabled   enabled        disabled

Disabling  (and  enabling)  network  manager  is  done  with  the  start/stop  network-manager
commands. Here is an example stopping the manager and then restarting it. 

  $ sudo service network-manager stop 
  network-manager stop/waiting
  
  $ sudo service network-manager start
  network-manager start/running, process 5656
  

Free Technology Academy Diarmuid O'Briain



70 Open Networks

For a server or a device that will act as a router it is better to permanently disable the network-
manager, create a file network-manager.override in /etc/init containing the word manual and
upon next reboot the network-manager will not be started. 

  $ sudo echo "manual" | tee /etc/init/network-manager.override
  manual

Confirm the network-manager is off. 

  $ nmcli nm
  RUNNING         STATE       WIFI-HARDWARE   WIFI       WWAN-HARDWARE   WWAN      
  not running     unknown     unknown         unknown    unknown         unknown

5.1.3 Check there is no configuration in /etc/network/interfaces

To use the ip commands of iproute it is important to insure that there are no manual addresses
configured in /etc/network/interfaces file. Remove any entries except those for the loopback
interface lo. 

  $ cat /etc/network/interfaces
  # interfaces(5) file used by ifup(8) and ifdown(8)
  auto lo
  iface lo inet loopback
  

The configurations below are based on the following IPv4 network diagram. 

Diarmuid O'Briain Free Technology Academy



Open Networks 71

5.2 Network interfaces
The iproute2 equivalent to ifconfig is the ip link list command. Note the state of the interface
eth0 is DOWN as network-manager is disabled. 

  $ sudo ip link list
  1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT 
      link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
  2: eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc mq state DOWN mode DEFAULT qlen 1000
      link/ether 00:12:3f:dc:ab:47 brd ff:ff:ff:ff:ff:ff
  3: eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc pfifo_fast state DOWN mode DEFAULT qlen 1000
      link/ether 00:13:ce:01:66:92 brd ff:ff:ff:ff:ff:ff
  

5.2.1 Bring up the eth0 interface

Change the state of the eth0 interface from DOWN to UP. 

  $ sudo  ip link set dev eth0 up
  
  $ sudo  ip link list
  1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT 
      link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
  2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT qlen 1000
      link/ether 00:12:3f:dc:ab:47 brd ff:ff:ff:ff:ff:ff
  3: eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc pfifo_fast state DOWN mode DEFAULT qlen 1000
      link/ether 00:13:ce:01:66:92 brd ff:ff:ff:ff:ff:ff
  

5.2.2 Add IP Address to the eth0 interface

Add an IPv4 address to the eth0 interface. The -4 option switch is optional for IPv4 as IPv4 is
assumed if -6 is not specified. 

  $ sudo ip -4 addr add 78.143.141.20/24 dev eth0
  

5.2.3 Confirm IP Address is configured
  $ sudo ip -4 addr list
  1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN 
      inet 127.0.0.1/8 scope host lo
         valid_lft forever preferred_lft forever
  2: eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc mq state DOWN qlen 1000
      inet 78.143.141.20/24 scope global eth0
         valid_lft forever preferred_lft forever
  

5.2.4 Add an IPv4 Default gateway

Add an IPv4 gateway router to the routes table for all routes not otherwise specified. 

  $ sudo ip route add default via 78.143.141.1
  

or 

  $ sudo ip route add default dev eth0
  

Free Technology Academy Diarmuid O'Briain



72 Open Networks

5.2.5 Add a static route

While  the  network  diagram  does  not  require  a  static  route,  I  include  one  here  for
completeness. 

  $ sudo ip route add 78.143.152.0/24 via 78.143.141.1
  

or 

  $ sudo ip route add 78.143.152.0/24 dev eth0
  

5.2.6 Confirm that the route has taken
  $ sudo ip route list
  default via 10.10.10.1 dev eth0 
  10.10.10.0/24 dev eth0  proto kernel  scope link  src 10.10.10.10 
  192.168.1.0/24 via 10.10.10.1 dev eth0 
  

5.3 Monitoring
iproute2 comes with a very neat  set  of  monitoring tools.  Here is  an example monitoring
neighbours,  in  IPv4  and  net-tools  parlance  this  is  equivalent  to  the  arp command  to
manipulate the system ARP cache. 

  $ ip -4 monitor neigh
  78.143.141.1 dev eth0 lladdr 00:0c:42:d1:3c:38 STALE
  

5.4 Internet Protocol v6
IPv6 also called IPng is the replacement for IPv4. It has 3.4 x 1038 addresses (2128) more than
7.9 x 1028 times as many as IPv4. This updated version of IP was invented by Steve Deering
and Craig Mudge at Xerox PARC, it was then adopted by the Internet Engineering Task Force
in 1994 as IPng. 

The adoption of IPv6 has been slowed by the introduction of Network Address Translation
(NAT), which partially alleviates address exhaustion. Japan and Korea implemented IPv6 in
the 1990's. The European Union formed an IPv6 Task Force as a steering committee in 2001
and member states all had their own IPv6 Task Forces by 2004. The US has specified that the
network backbones of all federal agencies must have deployed IPv6 by 2008. In Ireland the
Irish National IPv6 Centre is situated at the Telecommunications Systems & Software Group
(TSSG) at Waterford Institute of Technology. 

Diarmuid O'Briain Free Technology Academy



Open Networks 73

In October 2007 Vint Cerf the founder of the Internet issued a warning to Internet Service
Providers (ISP) urgently need to roll out IPv6 because the IPv4 pool is finite and has all but
run out  in  2012 (The European IP Research  (RIPE) body started allocating  its  last  /8 in
September 2012).  Each Local Internet Registry (LIR) can receive one final /22 allocation
(1,024  IPv4  addresses)  upon  application  for  IPv4  resources.  No  new  IPv4  Provider
Independent (PI) space will be assigned.

It is expected that IPv4 will be supported alongside IPv6 for the foreseeable future with hosts
running dual-stack software. 

5.4.1 Features of IPv6

IPv6 supports many new features over IPv4, these features were developed considering the
problems that were showing in IPv4. 

• Much larger address space - StateLess Address Auto-configuration (SLAAC) 

• IPv6 hosts can be configured automatically when connected to a routed IPv6

network. When first connected to a network, a host sends a link-local multicast
request for its configuration parameters; if configured suitably, routers respond
to such a request with a router advertisement packet that contains network-
layer configuration parameters. 

• Multicast 

• Multicast (both on the local link and across routers) is part of the base protocol

suite in IPv6. This is different to IPv4, where multicast is optional. 
• IPv6  does  not  have  a  link-local  broadcast  facility;  the  same  effect  can  be

achieved by multicasting to the all-hosts group with a hop count of one. 
• Jumbograms 

• In IPv4, packets are limited to 64KB of payload. When used between capable

communication partners, IPv6 has support for packets over this limit, referred
to  as  jumbograms.  Use  of  jumbograms  improves  performance  over  high
throughput networks. 

• Faster routing 

• By using a simpler and more systematic header structure, IPv6 improves the

performance of routing. Recent advances in router technology, however, may
have made this improvement irrevalent. 

• Network-layer security 

• IPsec, the protocol for IP network-layer encryption and authentication, is an

integral part of the base protocol suite in IPv6. It is, however, not yet deployed
widely except for securing BGP traffic between IPv6 routers. 

Free Technology Academy Diarmuid O'Briain



74 Open Networks

• Mobility 

• IPv6 was designed to support mobility. IPv6 Neighbour Discovery (ND) and

SLAAC allow hosts to operate in any locations without any special support.
This makes it more scalable and the performance is better because less traffic
passes through the home link and less redirection and less rerouting. It also
means no single point of failure. 

5.4.2 IPv6 Address Architecture

IPv6 addresses are normally written as eight groups of four hexadecimal digits. For example,
2a02:2158:435a:0000:83:314:ea21:b33f is a valid IPv6 address. 

If a four-digit group is 0000, the zeros may be omitted. 

2a02:2158:435a:0000:83:314:ea21:b33f --> 2a02:2158:435a::83:314:ea21:b33f 

Following this rule, any group of consecutive 0000 groups may be reduced to two colons, as
long as there is only one double colon used in an address. Thus, the addresses below are all
valid and equivalent: 

  2a02:2158:0000:0000:0000:0000:00a1:b33f   
  2a02:2158:0000:0000:0000::00a1:b33f   
  2a02:2158:0:0:0:0:0a1:b33f   
  2a02:2158:0::0:0a1:b33f   
  2a02:2158::0a1:b33f   
  

Having more than one double-colon abbreviation in an address is invalid as it would make the
notation ambiguous. 

Leading zeros in a group can be omitted. Thus 2a02:0201:0000:0000:0000:0000:00a1:b33f
may be shortened to 2a02:201::a1:b33f. 

A sequence of 4 bytes at the end of an IPv6 address can also be written in decimal, using dots
as separators.  This notation is  often used with compatibility  addresses (see below).  Thus,
::ffff:1.2.3.4 is the same address as ::ffff:102:304. 

Additional  information  can  be found in  IPv6 Addressing Architecture  RFC's  4291,  5952,
6052, 7136, 7346 and 7371.  

IPv6 Network Notation

IPv6 networks are written using Classless Inter-Domain Routing (CIDR) notation. 

An IPv6 network is a contiguous group of IPv6 addresses the size of which must be a power
of two; the initial bits of addresses which are identical for all hosts in the network are called
the network's prefix. 

Diarmuid O'Briain Free Technology Academy



Open Networks 75

A network is denoted by the first address in the network and the size in bits of the prefix,
separated with a slash. For example, 2a02:2158:435a:0000::/64 stands for the network with 

• First address: 2a02:2158:435a:0000:: 

• Last address: 2a02:2158:435a:0000:ffff:ffff:ffff:ffff 

Because a single host can be seen as a network with a 128-bit prefix, a host address may be
shown with /128 mask. 

IPv6 Prefix Terminology

IPv6 does  not  have  a  classful concept  like  IPv4 but  within  Global  unicast  IPv6 address
assignments have a number of prefixes, with different prefix lengths. Here is a table outlining
four of the key terms. 

Prefix Term Assigned by Example prefix

Registry Prefix Assigned to Regional Registry (RR) 2a02::/12

ISP Prefix Assigned to Internet Service Provider (ISP) 2a02:2158::/32

Site Prefix Assigned to Large Organisation 2a02:2158:1111::/48

Site Prefix Assigned to Smaller Organisation 2a02:2158:1111:100::/56

Subnet Prefix Internal subnet within Organisation 2a02:2158:1111:110::/64

A host address Organisation/Residential home user 2a02:2158:1111:110::10/128

The following table give an indication of IPv6 Relative Network Sizes. 

Mask Size Description

128 1 IPv6 Address A network interface

64 1 IPv6 subnet 18,446,744,073,709,551,616 IPv6 addresses

56 256 LAN segments Popular prefix size for smaller subscriber site

48 65,536 LAN segments Popular prefix size for larger subscriber site

32 65,536 /48 subscriber sites Minimum IPv6 allocation by RR

24 16,777,216 subscriber sites 256 times larger than the min IPv6 allocation

Free Technology Academy Diarmuid O'Briain



76 Open Networks

Special Prefix's

There are a number of specific addresses within IPv6 with special meaning: 

Prefix Meaning

::/0 The default unicast route address (similar to 0.0.0.0/0 in IPv4)

::/128 The address with all zeroes is an unspecified address, and is only to be used
in software

::1/128 The loopback address is a localhost address. (like 127.0.0.1 in IPv4)

::ffff:0:0/96 This prefix is used for IPv4 mapped addresses. Transparent use of Transport
Layer protocols over IPv4 through IPv6 API

64:ff9b::/96 Well known prefix for 6to4 address translation.

0400::/7 Internetwork  Packet  Exchange  (IPX)  from  the  IPX/SPX  protocol  stack
routed via IPv6

fc00::/7 Unique  Local  IPv6  Unicast  Addresses  are  only  routable  within  a  set  of
cooperating sites. They were defined in RFC 4193 as a replacement for site-
local addresses (see below). The addresses include a 40-bit pseudo-random
number  that  minimises  the  risk  of  conflicts  if  sites  merge  or  packets
somehow leak out

fe80::/10 Link-local prefix specifies that the address only is valid in the local physical
link. (like the Auto-configuration address 169.254.x.x in IPv4)

ff00::/8 The multicast prefix for multicast addresses

ff01::0/12 Pre-defined Multicast addresses

ff01::1/12 All host addresses (interface-local)

ff02::1/12 All host addresses (link-local)

ff01::2/12 All routers (interface-local)

ff02::2/12 All routers (link-local)

ff05::2/12 All routers (site-local)

Diarmuid O'Briain Free Technology Academy



Open Networks 77

Depreciated Prefix's

The  following  prefixes  were  originally  defined  as  part  of  IPv6  but  have  since  been
depreciated or obsoleted. I have added them here for information in case you come across
such addresses. 

Prefix Meaning

::/96 The  zero  prefix  was  used  for  IPv4-compatible  addresses.  Depreciated  in
February 2006.

fec0::/10 Site-local  prefix  specifies  that  the  address  is  only  valid  inside  the  local
organisation.  Its  use  has  been  deprecated  in  September  2004  by  IPv6
Deprecating  Site  Local  Addresses  RFC  and  future  systems  must  not
implement any support for this special type of address any more.

0200::/7 Network Service Access Point (NSAP) addresses from ISO/IEC 8348 routed
via IPv6. Deprecated in December 2004.

5.4.3 IPv6 Address Scope

IPv6 address have a  scope to specify where the address is valid. Within unicast addressing,
link-local addresses and the loopback address have link-local scope, which means they are to
be used in the directly attached network (link) only. All other addresses, including unique
local addresses, have global (or universal) scope, which means they are globally routable, and
can be used to connect to addresses with global scope anywhere, or addresses with link-local
scope on the directly attached network. The scope of an anycast address is defined identically
to that of a unicast address. 

For  multicasting,  the four least-significant  bits  of  the second address  octet  of  a  multicast
address  (ff0X::)  identify  the  address  scope,  the  span over  which  the  multicast  address  is
propagated. 

ff0X::/8 Meaning

0x1 Interface local

0x2 Link local

0x4 Admin local

0x5 Site local (Now Depreciated)

0x8 Organisation local

0xE Global

0x0 Reserved

0xF Reserved

Free Technology Academy Diarmuid O'Briain



78 Open Networks

Examples: 

• ff05::1 - All nodes on the local site 

• ff02::2 - All routers on the link local 

• ff02::5 - All OSPF routers on the link local 

• ff02::a - All EIGRP routers on the link local 

• ff05::101 - All Network Time Protocol (NTP) Servers on the local site 

• ff02::1:3 - All DHCPv6 servers on the link local 

5.4.4 IPv6 Addressing Model

Like IPv4 the  IPv6 Address  is  constructed  of  two parts  the  Prefix  + host  Identifier  (ID)
(Sometimes the Interface ID). The idea is to separate who u are from where u are connected
to. The Prefix is dependant on the routing topology and the Interface ID identifies a node.
IPv6 removes the Broadcast address and instead uses special Multicast addresses  all hosts
ff0X::1 or all routers ff0X::2 where X is replaced by the scope number. IPv6 also introduces a
new anycast address. An anycast address is an IPv6 address that is assigned to one or more
network interfaces, with the property that a packet sent to an anycast address is routed to the
nearest interface having that address, according to the routing protocols measure of distance. 

• Unicast: from one host to another. 

• Multicast: from one to all belonging to a group. 

• Anycast: from one to the nearest belonging to a group. 

5.4.5 Loopback Address

Similar to IPv4, IPv6 has a special address reserved for loopback. 

• ::1 

Diarmuid O'Briain Free Technology Academy



Open Networks 79

5.4.6 IPv6 Packet Structure

The IPv6 packet header has many changes compared to the IPv4 header while maintaining
necessary elements. The IPv6 header contains. 

Header Description

Version Describes the version as 6

Traffic Class One byte field

Flow Label 20 bit flow label for label tagging

Payload Length Two byte integer giving the length of the packet less the header

Next Header Single byte selector using the same values as the IPv4 Protocol field

Hop Limit Single byte decremented at each router, packet discarded if zero

Source Address 128 bit address of originator

Destination Address 128 bit address of ultimate recipient

Here is an example IPv6 packet which has ICMPv6 embedded within it. 

  Ethernet II, Src: 00:16:17:ba:0e:74, Dst: 00:12:3f:dc:ab:47
      Destination: 00:12:3f:dc:ab:47
      Source: 00:16:17:ba:0e:74
      Type: IPv6 (0x86dd)
  Internet Protocol Version 6
      0110 .... = Version: 6
      .... 0000 0000 .... .... .... .... .... = Traffic class: 0x00000000
      .... .... .... 0000 0000 0000 0000 0000 = Flowlabel: 0x00000000
      Payload length: 40
      Next header: ICMPv6 (0x3a)
      Hop limit: 128
      Source: 2a02:aaaa:10 
      Destination: 2a02:aaaa:20 
  Internet Control Message Protocol v6
      Type: 128 (Echo request)
      Code: 0
      Checksum: 0x94bb [correct]
      ID: 0x0001
      Sequence: 0x000b
      Data (32 bytes)
  

Free Technology Academy Diarmuid O'Briain



80 Open Networks

IPv6 Option headers

Unlike IPv4 the IPv6 options are handled outside the IPv6 header. This is achieved by the
addition  of  extensions  headers  which  are  only  processed  as  necessary.  For  example  only
routers process the Hop by Hop options header. With this method it is easier to define new
extensions and options as the protocol evolves. Here is a list of some optional headers that are
used with IPv6 today. 

• Hop by Hop options header 

• Destination options header 

• Routing header 

• Fragment header 

• Authentication header (AH) 

• Encapsulation security payload (ESP) header 

5.4.7 Applications for IPv6

DHCP for IPv6 (DHCPv6)

DHCP for IPv6 (DHCPv6). Although IPv6's StateLess Address Auto Configuration (SLAAC)
removes the primary motivation for DHCP in IPv4, DHCPv6 can still be used to statefully
assign addresses if the network administrator desires more control over addressing. It can also
be used to distribute information which is not otherwise discoverable; the most important case
of this is the DNS server. 

A major difference with DHCPv4 Servers is that hosts send broadcasts to find DHCP Servers
whereas with DHCPv6 Servers IPv6 hosts send IPv6 multicast. The reserved address for hosts
to send packets to an unknown DHCPv6 Server is FF02::1:2. 

DNS Extensions to Support IP Version 6 (DNSv6)

DNS is  similar  for  IPv4 and IPv6 (DNSv6).  The main  difference  is  that  the  A record  is
replaced by the AAAA record which maps a hostname to a 128-bit IPv6 address for forward
lookups.  Reverse lookups take place under ip6.arpa,  where address space is  delegated on
nibble boundaries. This scheme is a straightforward adaptation of the familiar A record and in-
addr.arpa schemes for IPv4. 

Diarmuid O'Briain Free Technology Academy



Open Networks 81

ICMPv6 for IPv6

ICMP version 6 (ICMPv6) is a new version of ICMP and is  an integral part  of the IPv6
architecture  that  must  be  completely  supported  by  all  IPv6  implementations  and  nodes.
ICMPv6 combines functions previously subdivided among different protocols, such as ICMP,
IGMP (Internet  Group  Membership  Protocol  version  3),  and  ARP (Address  Resolution
Protocol) and it introduces some simplifications by eliminating obsolete types of messages no
longer in use. 

ICMPv6  is  a  multi-purpose  protocol  and  it  is  used  for  reporting  errors  encountered  in
processing  packets,  performing  diagnostics,  performing  ND  and  reporting  IPv6  multicast
memberships. For this reason, ICMPv6 messages are subdivided into two classes: 

Error messages

The first type of ICMPv6 message is the error message. ICMPv6 is used by IPv6 nodes to
report errors encountered. 

Type Message

1 Destination Unreachable

2 Packet Too Big

3 Time Exceeded

4 Parameter Problem
Information messages

The second type of ICMP message is the informational message type which is subdivided into
three groups: diagnostic, management of multicast groups, and ND messages. 

Type Message

128 Echo Request

129 Echo Reply

130 Group Membership Query

131 Group Membership Report

132 Group Membership Reduction

133 Router Solicitation

134 Router Advertisement

135 Neighbour Solicitation

136 Neighbour Advertisement

137 Redirect

138 Router Renumbering

Free Technology Academy Diarmuid O'Briain



82 Open Networks

5.4.8 IPv6 EUI-64 host

IPv6 uses 64 bits for the network and subnets while it reserves the last 64 bits to identify the
host. The last 64 bits can be specified specifically as shown or IPv6 can  create the host by
using its MAC address from the interface. Such MAC addresses are properly termed EUI-48
as they have 48 bits. However the range of unique EUI-48 addresses are running out and it is
decided to migrate such addresses to EUI-64 in the future. IPv6 was therefore developed with
this  in  mind.  To  deal  with  the  difference  between  EUI-48  and  EUI-64  a  conversion
mechanism exists where the EUI-48 address is split and FF:FE is embedded to convert it to
EUI-64. Here is an example of the conversion process of an EUI-48 to EUI-64. 

00:12:3f:dc:ab:47  0012:3fdc-:-fffe-:-ab47  0012:3fdc:fffe:ab47 

5.4.9 IPv6 link-local

When an IPv6 host boots it has no IPv6 address so using its MAC address it forms an EUI-64
address and prepends it with the special network identifier FF80::. This is called the link-local
address and it has only local scope. 

IPv6 prefix added to EUI-64 to form link-local scope IPv6 address. 

fe80::212:3fff:fedc:ab47/64 

IPv6 prefix added to EUI-64 to form global scope IPv6 address. 

2a02:aaaa::212:3fff:fedc:ab47/64 

5.4.10 IPv6 Stateless Address Auto-configuration (SLAAC)

SLAAC is an IPv6 process that removes the requirement for the manual configuration of
hosts, minimal configuration of routers, and no additional servers. The stateless mechanism
enables  a  host  to  generate  its  own global  address.  It  is  based  on ICMPv6.  The  stateless
mechanism uses  local  information  as  well  as  non-local  information  that  is  advertised  by
routers to generate the addresses. 

Routers advertise prefixes that identify the subnet or subnets that are associated with a link.
Hosts generate an interface identifier that uniquely identifies an interface on a subnet. An
address  is  formed by combining the prefix and the interface identifier.  In  the absence of
routers, a host can generate only link-local addresses. However, link-local addresses are only
sufficient for allowing communication among nodes that are attached to the same link. 

Diarmuid O'Briain Free Technology Academy



Open Networks 83

SLAAC Process

Forming a link-local address

Here are the typical steps performed by an interface during SLAAC. Auto-configuration is
performed only on multicast-capable links. SLAAC begins when a multicast-capable interface
is enabled, for example, during system startup. Nodes, both hosts and routers, begin the Auto-
configuration process by generating a link-local address for the interface. A link-local address
is formed by appending the interface's identifier to the well-known link-local prefix fe80:: as
described above. 

Duplicate Address Detection (DAD)

The next step is called DAD where the host once its link-local address is created will send an
ICMPv6 Neighbour Solicitation (135) informational message to the newly created link-local
address to see if an  ICMPv6 Neighbour Advertisement (136) informational message will be
received. If one is received then it determines that the address is a duplicate and the SLAAC
process stops. If none is received SLAAC proceeds to the next step. 

Free Technology Academy Diarmuid O'Briain



84 Open Networks

Obtaining a Global scope prefix

After  confirming  that  the  link-local address  is  unique  the  host  sends  a  ICMPv6  Router
Solicitation  (133) informational  message  to  the  well-known  all-routers  multicast  group
ff02::2. If an ICMPv6 Router Advertisement (134) informational message is received from a
router the host creates a new IPv6 address with global scope by taking the advertised prefix
and pre-pending it  to  the  EUI-64 address  created  on bootup.  Router  Advertisement  (134)
informational  messages  contain  two  flags  that  indicate  what  type  of  stateful  Auto-
configuration should be performed. A Managed address configuration flag (M-Flag) indicates
whether hosts should use stateful auto-configuration to obtain global scope IPv6 addresses.
The other stateful configuration flag (O-Flag) if set (1) indicates that hosts should use stateful
auto-configuration  to  obtain  additional  information,  excluding  addresses,  from a  stateless
DHCPv6 Server. 

  Internet Protocol Version 6
      0110 .... = Version: 6
      Payload length: 64
      Next header: ICMPv6 (0x3a)
      Hop limit: 255
      Source: fe80::223:5eff:fe0e:6816 
      Destination: ff02::1 (all-hosts link-local)
  Internet Control Message Protocol v6
      Type: 134 (Router advertisement)
      Code: 0
      Checksum: 0x9246 [correct]
      Cur hop limit: 64
      Flags: 0x40
          0... .... = Not managed  (M-Flag)
          .1.. .... = Other Configuration (O-Flag)
          ..0. .... = Not Home Agent
          ...0 0... = Router preference: Medium   
      Router lifetime: 1800
      Reachable time: 5000
      Retrans timer: 0
      ICMPv6 Option (Source link-layer address)
          Type: Source link-layer address (1)
          Length: 8
          Link-layer address: 00:23:5e:0e:68:16
      ICMPv6 Option (MTU)
          Type: MTU (5)
          Length: 8
          MTU: 1500
      ICMPv6 Option (Prefix information)
          Type: Prefix information (3)
          Length: 32
          Prefix length: 64
          Flags: 0xc0
              1... .... = Onlink
              .1.. .... = Auto
              ..0. .... = Not router address
              ...0 .... = Not site prefix
          Valid lifetime: 86400
          Preferred lifetime: 86400
          Prefix: 2a02:aaaa:2::
  

Diarmuid O'Briain Free Technology Academy



Open Networks 85

5.4.11 IPv6 transition mechanisms

Until IPv6 completely replaces IPv4, a number of transition mechanisms are needed to enable
IPv6-only hosts to reach IPv4 services and to allow isolated IPv6 hosts and networks to reach
the IPv6 Internet over the IPv4 infrastructure. As the IPv6 Internet grows larger, the need also
arises for carrying IPv4 traffic over the IPv6 infrastructure. 

Dual Stack

IPv6 is a form of extension of IPv4 and therefore it is relatively easy to write a network stack
that supports both IPv4 and IPv6 while sharing most of the code. Dual Stack is implemented
by the various OS today. Some early experimental implementations used independent IPv4
and IPv6 stacks. There are no known implementations that implement IPv6 only. Actually
when used in IPv4 communications, hybrid stacks tend to use an IPv6 API and represent IPv4
addresses in a special address format, the IPv4-mapped IPv6 address. 

Proxying and translation

When an IPv6 only host needs to access an IPv4 only host, translation is necessary. The one
form of translation that  actually  works is  the use of a dual  stack application-layer proxy.
Techniques for application agnostic translation at the lower layers have also been proposed,
but  they  have  been  found  to  be  too  unreliable  in  practice  due  to  the  wide  range  of
functionality required by common application-layer protocols, and are commonly considered
to be obsolete. 

Stateless IP/ICMP Translation Algorithm (SIIT)

SIIT translates between the packet header formats in IPv6 and IPv4. SIIT can be used to allow
IPv6 hosts, that are not Dual Stack, to communicate with IPv4-only hosts. 

Network Address Translation/Protocol Translation (NAT-PT)

NAT-PT is a protocol translator between IPv6 and IPv4 that allows direct communication
between hosts speaking different network protocols. However RFC 4966 outline reasons to
Move the Network Address Translator - Protocol Translator (NAT-PT) to historic status. 

Free Technology Academy Diarmuid O'Briain



86 Open Networks

Tunnelling

In order to reach the IPv6 Internet, an isolated host or network must be able to use the existing
IPv4  infrastructure  to  carry  IPv6  packets.  This  is  achieved  using  a  technique  known  as
tunnelling which consists of the encapsulation of IPv6 packets within IPv4, in effect using
IPv4 as a link layer for IPv6. 

IPv6 packets can be directly encapsulated within IPv4 packets using protocol number 41.
They can also be encapsulated within UDP packets e.g. in order to cross a router or NAT
device that blocks protocol 41 traffic. Another options is to use generic encapsulation schemes
like Generic Routing Encapsulation (GRE). 

Manual tunnelling

Manual  tunnelling  is  done  by  manually  configuring  the  end  points  of  the  tunnel.  This
tunnelling method can be used for sites with few nodes or for a limited number of remote
connections.  As  is  the  case  with  static  routing,  scalability  and management  overhead are
major issues limiting the use of manual tunnelling. 

Automatic tunnelling

Automatic  tunnelling  refers  to  a  technique  where  the  tunnel  endpoints  are  automatically
determined by the routing infrastructure. 

Connection of IPv6 Domains via IPv4 Clouds (6over4)

The recommended technique for automatic tunnelling is 6to4 tunnelling, which uses protocol
41 encapsulation.  Tunnel  endpoints  are  determined  by  using  a  well-known IPv4  anycast
address on the remote side, and embedding IPv4 address information within IPv6 addresses
on the local side. 6to4 is widely deployed today. 

Teredo: Tunnelling IPv6 over UDP through NATs

Teredo is an automatic tunnelling technique that uses UDP encapsulation and is capable of
crossing multiple NAT devices. Teredo gives IPv6 connectivity to IPv6 capable hosts which
are on the IPv4 Internet but have have no direct native connection to an IPv6 network. Teredo
is  not  widely  deployed  today.  Miredo is  the  GNU/Linux  and  BSD  UNIX  open-source
implementation of Teredo. 

Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)

ISATAP is an IPv6 transition mechanism designed to transmit IPv6 packets between nodes
with dual-stack (IPv6/IPv4) over IPv4 networks. ISATAP views the IPv4 network as a link
layer for IPv6 and supports an automatic tunnelling abstraction similar to a Non-Broadcast
Multiple Access (NBMA) model. 

Diarmuid O'Briain Free Technology Academy



Open Networks 87

5.4.12 IPv6 Interior Gateway Routing

RIPng

Like  its  IPv4  variant  RIPng is  a  Distance  vector  algorithm.  It  has  a  number  of
implementations:  GateD,  MRTd,  Kame,  route6d,  Quagga  as  well  as  vendor  equipment
solutions from companies like Cisco, Juniper, HP, Huawei, MikroTik etc.... 

OSPFv3

OSPFv3 is a Link State algorithm like the IPv4 version. It is the recommended IGP of IETF.
The  main  differences  from  OSPFv2  are  the  removal  of  security  as  IPv6  has  its  own
implementation embedded and the format of addresses are for IPv6. Implementations: GateD,
MRTd, Kame, route6d, Quagga and vendor hardware solutions from companies like Cisco,
Juniper, HP, Huawei, MikroTik etc.... 

5.4.13 IPv6 Exterior Gateway Routing

BGP4+

BGP4+ is the standard Inter domain routing protocol for IPv6. It is used between ISPs and
carriers and its extensions to BGP4 are defined in RFC 2858. RFC 2545 defines how to use
IPv6 extensions. It is used in 6BONE and the following are implementations today: GateD,
MTRd, Kame, BGPd, Quagga and vendor hardware solutions from companies like Cisco,
Juniper, HP, Huawei, MikroTik etc.... 

5.4.14 IPv6 Configuration

The configurations below are based on the following IPv6 network diagram. 

Free Technology Academy Diarmuid O'Briain



88 Open Networks

Like IPv6 the ip link list command will show the interface status, the -6 option switch makes
it IPv6 specific. 

  $ sudo ip -6 link list
  
  1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT 
      link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
  2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT qlen 1000
      link/ether 00:12:3f:dc:ab:47 brd ff:ff:ff:ff:ff:ff
  

Review the IPv6 addresses with the -6 option switch. 

  $ sudo ip -6 addr list
  
  1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 
      inet6 ::1/128 scope host 
         valid_lft forever preferred_lft forever
  2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000
      inet6 2a02:aaaa::1021:3ae0:b092:be7e/64 scope global temporary dynamic 
         valid_lft 602791sec preferred_lft 83791sec
      inet6 2a02:aaaa::212:3fff:fedc:ab47/64 scope global dynamic 
         valid_lft 2591911sec preferred_lft 604711sec
      inet6 fe80::212:3fff:fedc:ab47/64 scope link 
         valid_lft forever preferred_lft forever

Add a new IPv6 address

To add an IPv6 address to an interface follow the same format as the IPv4 equivalent with the
-6 switch. 

  $ sudo ip -6 addr add 2a02:aaaa::20/64 dev eth0
  

Testing the link to the remote router

Instead of  ping to test connectivity to an IPv6 address, a new utility called  ping6 must be
used. 

  $ ping6 2a02:aaaa::1
  PING 2a02:aaaa::1(2a02:aaaa::1) 56 data bytes
  64 bytes from 2a02:aaaa::1: icmp_seq=1 ttl=64 time=0.592 ms
  64 bytes from 2a02:aaaa::1: icmp_seq=2 ttl=64 time=0.266 ms
  

Instead of ARP as used by IPv4, IPv6 uses the ICMPv6 ND messages. To review the IPv6
neighbours cached use the ip -6 neigh list command. 

  $ sudo ip -6 neigh list dev eth0
  2a02:aaaa::1 lladdr 00:0c:42:d1:3c:38 router REACHABLE
  fe80::20c:42ff:fed1:3c38 lladdr 00:0c:42:d1:3c:38 router REACHABLE
  

Diarmuid O'Briain Free Technology Academy



Open Networks 89

To print the list of IPv6 routes known by the host connected to the router R1. 

  $ ip -6 route list
  2a02:2::/64 dev eth1  proto kernel  metric 256  expires 2591731sec
  2a02:aaaa::/64 dev eth0  proto kernel  metric 256  expires 2591689sec
  fe80::/64 dev eth0  proto kernel  metric 256 
  fe80::/64 dev eth1  proto kernel  metric 256 
  default via fe80::20c:42ff:fed1:3c38 dev eth0  proto ra  metric 1024  expires 1489sec
  default via fe80::20c:42ff:fe8b:73e8 dev eth1  proto ra  metric 1024  expires 1531sec
  default via fe80::20c:42ff:fe8b:769a dev eth1  proto ra  metric 1024  expires 1395sec
  

IPv6 Monitor

  $ ip -6 monitor address 
  3: eth1    inet6 2a02:2::213:ceff:fe01:6692/64 scope global dynamic 
         valid_lft 2592000sec preferred_lft 604800sec
  3: eth1    inet6 2a02:2::c1ad:a142:f05a:5539/64 scope global temporary dynamic 
         valid_lft 600483sec preferred_lft 81483sec
  2: eth0    inet6 2a02:aaaa::212:3fff:fedc:ab47/64 scope global dynamic 
         valid_lft 2592000sec preferred_lft 604800sec
  2: eth0    inet6 2a02:aaaa::1021:3ae0:b092:be7e/64 scope global temporary dynamic 
         valid_lft 599887sec preferred_lft 80887sec
  3: eth1    inet6 2a02:2::213:ceff:fe01:6692/64 scope global dynamic 
         valid_lft 2592000sec preferred_lft 604800sec
  3: eth1    inet6 2a02:2::c1ad:a142:f05a:5539/64 scope global temporary dynamic 
         valid_lft 600364sec preferred_lft 81364sec
  3: eth1    inet6 2a02:2::213:ceff:fe01:6692/64 scope global dynamic 
         valid_lft 2592000sec preferred_lft 604800sec
  

Free Technology Academy Diarmuid O'Briain



90 Open Networks

This page is intentionally blank

Diarmuid O'Briain Free Technology Academy



Open Networks 91

6. Routing

6.1 Introduction to Routing
Routing refers to selection of paths in a computer network along which to send data. Routing
directs  forwarding,  the  passing of  logically  addressed packets  from their  source  network,
toward  their  ultimate  destination  through  intermediary  nodes;  typically  hardware  devices
called routers. The routing process usually directs forwarding on the basis of routing tables
which maintain a record of the best routes to various network destinations. Thus constructing
routing tables, which are held in the routers' memory, becomes very important for efficient
routing. 

Routing differs from bridging in its assumption that address-structures imply the proximity of
similar addresses within the network, thus allowing a single routing-table entry to represent
the route to a group of addresses. Therefore, routing outperforms bridging in large networks,
and it has become the dominant form of path-discovery on the Internet. 

Small  networks  may  involve  manually  configured  routing  tables,  while  larger  networks
involve complex topologies and may change constantly, making the manual construction of
routing tables very problematic. A good example is the Public Switched Telephone Network
(PSTN) which uses pre-computed routing tables, with fallback routes if the most direct route
becomes blocked. Dynamic routing attempts to solve this problem by constructing routing
tables  automatically,  based  on information  carried  by  routing  protocols,  and allowing the
network to act nearly autonomously in avoiding network failures and blockages. Dynamic
routing  dominates  the  Internet.  However,  the  configuration  of  the  routing  protocols  often
requires a skilled touch, one should not suppose that networking technology has developed to
the point of the complete automation of routing. 

Traditional IP routing stays relatively simple because it uses next-hop routing where the router
only needs to consider where it sends the packet, and does not need to consider the subsequent
path of the packet on the remaining hops. However, more complex routing strategies can be,
and  are,  often  used  in  systems  such  as  Multi-Protocol  Label  Switching  (MPLS),
Asynchronous  Transfer  Mode  (ATM)  or  Frame  Relay,  which  are  sometimes  used  as
underlying technologies to support IP networks. 

Free Technology Academy Diarmuid O'Briain



92 Open Networks

6.1.1 Standard Routing Model

A router must be connected to at least two networks, or it will have nothing to route. A special
variety of router is the one-armed router used to route packets in a VLAN environment. In the
case of a one-armed router the multiple attachments to different networks are all over the
same physical link. 

A router creates and/or maintains a table, called a "routing table" that stores the best routes to
certain network destinations and the "routing metrics" associated with those routes. 

Knowing where to send packets requires knowledge of the structure of the network. In small
networks, routing can be very simple, and is often configured by hand called Static Routing.
In large networks the topology of the network is complex, and constantly changing, making
the problem of constructing the routing tables very complex. 

As the best  routes  can only  be recalculated very  slowly  relative to  the rate  of  arrival  of
packets, routers keep a routing table that maintains a record of only the best possible routes to
certain network destinations and the routing metrics associated with those routes. 

In the above diagram the host 158.101.145.2 pings 158.101.112.2. The IP Stack in the host
determines that this address is not on its own network by doing a bitwise AND on the address
with its own subnet mask. It then looks up its Default Gateway, or in other words the router
connected to the LAN which can route to the rest of the internetwork. It sends out an Address
Resolution  Protocol  (ARP)  request  to  158.101.145.1 for  the  MAC address  of  the  routers
interface on its own network. The router responds in kind and the host forwards the packet in
a frame to the router. 

Diarmuid O'Briain Free Technology Academy



Open Networks 93

The router strips off the frame and does a routing table lookup for the destination IP address in
the packet header. In this case it does not have an interface in the destination network. It
determines  from  its  routing  table  that  router2  has  declared  it  can  reach  the  destination
network. It places the packet in a frame and forwards it to the peer router2. 

Router2 receives the frame and removes the packet from it. It determines that it is connected
on its other interface to the destination network so it does an ARP request on that LAN for the
MAC address  of  the host  158.101.112.2.  The host responds to  the request  with its  MAC
address  and  router2  encapsulates  the  packet  in  a  new  frame  which  it  forwards  to  the
destination host. 

6.1.2 Routing Tables

Routers maintain Routing Tables to determine if it can reach a requested route. Routing tables
can take many forms, but here is a simple model that can explain most Internet routing. Each
entry in a routing table has at least two fields - IP Address Prefix and Next Hop. The Next
Hop is the IP address of another host or router that is directly reachable via an Ethernet, serial
link, or some other physical connection. The IP Address Prefix specifies a set of destinations
for  which  the  routing  entry  is  valid  for.  In  order  to  be  in  this  set,  the  beginning  of  the
destination  IP address  must  match  the  IP Address  Prefix,  which  can  have  from 0  to  32
significant  bits.  For  example,  a  IP Address  Prefix  of  128.8.0.0/16  would  match  any  IP
Destination Address of the form 128.8.X.X. Bridged and switched networks are regarded as
single connections. 

If no routing table entries match a packet's Destination Address, the packet is discarded as
undeliverable (possibly with an ICMP notification to the sender). If multiple routing tables
entries match, the longest match is preferred. The longest match is the entry with the most 1
bits in its Routing Mask. 

6.2 Open Shortest Path First (OSPF)
Traditional  IP networks  in  the  past  used  the  RIP or  the  Cisco  Interior  Gateway Routing
Protocols (IGRP). These are Distance Vector based or hop by hop based on a distance metric
of hop counts. Each router regularly passes its routing table to its neighbouring routers. Cisco
developed an Enhanced version of IGRP (EIGRP) to take account of more parameters and to
reduce the traffic between routers to only that the neighbours did not have already. It also
incorporated  Classless  Inter-Domain  Routing  (CIDR)  and  Message  Digest  5  (MD5)
functionality. However in 1991 a DRAFT Internet Engineering Task Force (IETF) Standard
RFC1247 - OSPF Version 2 let to a series of RFCs that eventually produced a new Interior
Gateway Protocol (IGP) RFC2328 - Open Shortest Path First Version 2. standard in 1998.
This new IGP is not based on Distance Vector but is a Link State protocol that has been the
mainstay of interior networks ever since. In 2008 RFC5340 - OSPF for IPv6 incorporated
support for IPv6. It is generally known as OSPFv3. 

Free Technology Academy Diarmuid O'Briain



94 Open Networks

6.2.1 OSPF Overview

OSPF is an IGP most suited for use in large networks. OSPF uses a link-state algorithm to
exchange routing information between routers in an Autonomous System (AS). An AS is a
collection  of  routers  and  networks  administratively  configured  to  belong  to  a  single
organisation.  OSPF enables the routers to quickly synchronise their  topological databases,
topology information for the AS only floods in response to topological change. 

6.2.2 Benefits of Using OSPF versus Distance Vector protocols

Compared to other distance vector protocols like RIP and IGRP, OSPF: 

• Chooses the least costly path as the best path 

• Can calculate equal cost multiple paths to a destination 

• Distributes external information independently 

• Propagates routing information quickly and stably 

• Handles Variable Length Subnet Masks (VLSM) 

• Supports multicasting 

• Responds quickly to topological changes by utilising reliable flooding to minimise

routing traffic 
• Is loop free 

• Supports large metrics, external route tags and authentication of protocol exchanges 

6.2.3 OSPF Concepts

Overview

To better  understand the OSPF implementation,  it  is  important  to  define some terms and
concepts. 

Link State Databases

Each OSPF router originates one or more Link State Advertisements (LSA) to describe its
local part of the routing domain. The advertised link state describes the router’s local interface
and adjacent neighbours.  Collectively,  the total  LSAs in the routing domain generated by
OSPF  routers  form what  is  referred  to  as  the  Link  State  Database  (LSDB).  The  LSDB
describes the routing topology - the collection of routers and networks in the routing domain
and how they are interconnected. LSDBs are exchanged between neighbouring routers soon
after the routers discover each other. 

Diarmuid O'Briain Free Technology Academy



Open Networks 95

Reliable Flooding

The LSDB synchronises via reliable flooding to ensure each router has an identical LSDB.
When a router’s link state changes, a technique called reliable flooding occurs wherein an
OSPF router floods its  updated LSA out of all of its  interfaces. The neighbouring routers
receive the updated LSA, update their own LSDB, and replicate this action out of all of their
interfaces (except the interface where the LSA originated). 

Shortest Path First Algorithm

Using  the  LSDB  as  input,  each  OSPF  router  runs  Dijkstra’s  Shortest  Path  First  (SPF)
algorithm to compute the shortest path from the calculating router to all destinations. The
shortest  path  destinations  discovered  by  the  SPF  algorithm are  then  updated  into  the  IP
routing table. 

Adjacency

Adjacency  is  a  relationship  an  OSPF  establishes  with  other  routers  attached  to  its  local
interface. Full adjacency is achieved once these two events take place: 

• Hello packets are exchanged, allowing neighbouring routers to discover each other. 

• LSDBs are synchronised between neighbouring routers. 

Network Types

• Point-to-Point networks 

• This type of network connects a single pair of routers. Point-to-Point interfaces

include PPP, Serial Line Internet Protocol (SLIP), ATM, and Frame Relay. 
• Broadcast networks 

• This type of network allows more than two routers to share a common network,

and  is  able  to  address  a  single  message  to  all  attached  devices.  Broadcast
interfaces include 10, 100 and 1000 Mbps Ethernet. 

Designated Router

A single router, called the Designated Router (DR), is used on Broadcast networks such as
Ethernet and ATM. Once the DR establishes adjacency with other routers in an area, it  is
responsible for generating the network link state advertisements for the broadcast network and
distributing this information to other parts of the routing domain. Conversely, the DR also
receives routing information from other parts of the routing domain and distributes it to other
routers on its network. 

By default, the first OSPF router configured on an IP subnet is the DR. When a second router
is added, it becomes the Backup Designated Router (BDR). Additional routers added to the
subnet defer to the existing DR and BDR. The only time this designation changes is when the

Free Technology Academy Diarmuid O'Briain



96 Open Networks

existing DR or BDR fails, in which case other routers on the subnet will  participate in a
designated router election. 

Authentication

All  OSPF  protocol  exchanges  are  authenticated.  OSPF  authentication  ensures  routers
exchange information only with trusted neighbours. 

• Simple password 

• Configures  a  password  included  in  all  OSPF messages  on  an  interface-by-

interface basis. 
• When  a  router  receives  a  message  on  an  interface  configured  for  simple

password authentication, it checks the incoming OSPF message to ensure the
proper password is included in the message. If the password is not included, the
message is dropped. 

• The simple password is clear text, case sensitive, and is not encrypted. 

• Cryptographic 

• This  authentication  method,  also  referred  to  as  MD5 authentication  uses  a

shared  secret  key  that  is  configured  in  all  routers  attached  to  a  common
network or subnet. 

• Each key is identified by the combination of an interface and Key ID. A default

key  ID  of  0  is  automatically  set  when  an  interface  is  configured  for
cryptographic authentication. 

• An interface can have multiple active keys. 

• Each key has four time constants associated with it, governing the use of the

key during specific time periods. 

6.2.4 SPF Algorithm

The SFP routing algorithm is the basis for OSPF operations. When an SPF router is powered
up, it initialises its routing-protocol data structures and then waits for indications from lower-
layer protocols that its interfaces are functional. 

Diarmuid O'Briain Free Technology Academy



Open Networks 97

Hello Protocol

After a router is assured that its interfaces are functioning, it uses the OSPF Hello protocol to
acquire neighbours by multicasting to  224.0.0.5, which is to all routers with interfaces to a
common network. The router sends  hello  packets to its neighbours and receives their  hello
packets. In addition to helping acquire neighbours, hello packets also act as keep-alives to let
routers know that other routers are still functional. 

DR/BDR Election

On multi-access networks (networks supporting more than two routers), the hello protocol is
used to process the election of a DR and a BDR. 

The DR/BDR election process is as follows: 

• All routers create list of eligible routers: 

• Priority greater than 0. 

• OSPF State of 2 way. 

• DR or BDR IP Address in same network as interface. 

Free Technology Academy Diarmuid O'Briain



98 Open Networks

• The BDR is chosen first which is the router with the highest priority. 

• The DR is chosen from the remaining routers again the one with the highest priority. 

• If there were not enough routers to have a BDR and a DR then the BDR becomes the

DR. 
• If the priorities are equal the Router ID is used as a tie-breaker. 

Adjacencies

Among other things, the DR is responsible for generating LSA for the entire multi-access
network.  Designated  routers  allow  a  reduction  in  network  traffic  and  in  the  size  of  the
topological database. 

When the link-state databases of two neighbouring routers are synchronised, the routers are
said to be adjacent. 

On multi-access networks,  the designated router determines which routers should become
adjacent.  Topological  databases  are  synchronised  between  pairs  of  adjacent  routers.
Adjacencies control the distribution of routing-protocol packets, which are sent and received
only on adjacencies. 

Diarmuid O'Briain Free Technology Academy



Open Networks 99

Router Link State Advertisements (Type 1)

Each router periodically sends an LSA to provide information on a router's adjacencies or to
inform others when a router's state changes. By comparing established adjacencies to link
states,  failed  routers  can  be  detected  quickly,  and  the  network's  topology  can  be  altered
appropriately. From the topological database generated from LSAs, each router calculates a
Shortest Path Tree (SPT), with itself as root. The shortest-path tree, in turn, yields a routing
table. 

Once the routing table has been established from the shortest path tree only hello packets are
exchanged as a form of heart beat. Every OSPF speaker sends small hello packets out each of
its interfaces every ten seconds. Hello packets are not forwarded or recorded in the OSPF
database,  but  if  none  are  received  from  a  particular  neighbour  for  forty  seconds,  that
neighbour is marked down. LSAs are then generated marking links through a down router as
down. The hello timer values can be configured, though they must be consistent across all
routers on a network segment. 

Free Technology Academy Diarmuid O'Briain



100 Open Networks

Network Link State Advertisements (Type 2)

To  reduce  the  effect  of  flooding  DRs  send  information  about  the  state  of  routers  it  is
designated  for  to  other  DRs within  the  same area.  These  Network LSAs are  sent  to  the
multicast address 224.0.0.6. 

Other Link State Advertisements

OSPF has other LSA types associated with Area Border Routers (ABR) and Autonomous
System Border Routers (ASBR) which are outside the scope of the course. 

• Summary Link Advertisements (Type 3 and 4). 

• External Link Advertisements (Type 5). 

• Not So Stubby Area (NSSA) External Link Advertisements (Type 7). 

OSPF Timers

Link state advertisements also age. The originating router re-advertises an LSA after it has
remained unchanged for thirty minutes. If an LSA ages to more than an hour, it is flushed
from the databases. These timer values are called architectural constants by RFC 2328 and
5340. 

Diarmuid O'Briain Free Technology Academy



Open Networks 101

OSPFs various timers interact as follows: 

• If a link goes down for twenty seconds, then comes back up, OSPF doesn't notice. 

• If a link flaps constantly, but at least one of every four Hello packets make it across,

OSPF doesn't notice. 
• If a link goes down for anywhere from a minute to half an hour, OSPF floods an LSA

when it goes down, and another LSA when it comes back up. 
• If a link stays down for more than half an hour, LSAs originated by remote routers

(that have become unreachable) begin to age out. When the link comes back up, all
these LSAs will be re-flooded. 

• If a link is down for more than an hour, any LSAs originated by remote routers will

have aged out and been flushed. When the link comes back up, it will be as if it were
brand new. 

OSPF Shortest Path Tree

Now that each router has an identical LSDB each router uses Dijkstra's SPF algorithm to
calculate  the  SPT.  During  the  computation  of  the  SPT,  the shortest  path  to  each node is
discovered. The routing table is populated from the topology tree. 

Free Technology Academy Diarmuid O'Briain



102 Open Networks

6.3 Quagga Introduction
Quagga Routing Software Suite is a GNU General Public License (GPL) licensed advanced
routing software package that provides a suite of TCP/IP based routing protocols. 

• RIP

• RIPng 

• OSPFv2

• OSPFv3

• Babel 

• BGP4

The Quagga architecture consists of a core routing daemon,  zebra and a number of routing
protocol daemons.  zebra itself is the kernel interface, handles static routes and is the zserv
FTP server for the transferring of zebra files. Each routing protocol has its own daemon, with
for example opdfd daemon handling OSPFv2 operations and ospf6d the OPSFv3 operations. 

Having mastered the application of IP Networking on a GNU/Linux OS in the role of a single
host on a network we will now look at the use of Quagga to allow the GNU/Linux host with
multiple network interfaces to act as a router in a single area OSPF network for both IPv4 and
IPv6. 

Diarmuid O'Briain Free Technology Academy



Open Networks 103

6.4 Install Quagga
Quagga is  the  GNU/Linux  BGP/OSPF/RIP  routing  daemon  and  quagga-doc is  the
documentation files for quagga which are generally stored in /usr/share/doc/quagga. 

  $ sudo apt-get install quagga quagga-doc
  

Enable the zebra, ospfd and ospf6d daemons. 

  $ sudo vi /etc/quagga/daemons
  zebra=yes
  bgpd=no
  ospfd=yes
  ospf6d=yes
  ripd=no
  ripngd=no
  isisd=no
  

Copy the example files for the daemons to the /etc/quagga directory. 

  $ sudo cp /usr/share/doc/quagga/examples/zebra.conf.sample /etc/quagga/zebra.conf
  $ sudo cp /usr/share/doc/quagga/examples/ospfd.conf.sample /etc/quagga/ospfd.conf
  $ sudo cp /usr/share/doc/quagga/examples/ospf6d.conf.sample /etc/quagga/ospf6d.conf
  $ sudo cp /usr/share/doc/quagga/examples/vtysh.conf.sample /etc/quagga/vtysh.conf
  

Set the following users, groups and file permissions on the files in /etc/quagga. 

  $ sudo chown quagga:quagga /etc/quagga/zebra.conf
  $ sudo chown quagga:quagga /etc/quagga/ospfd.conf
  $ sudo chown quagga:quagga /etc/quagga/ospf6d.conf
  $ sudo chown quagga:quaggavty /etc/quagga/vtysh.conf
  
  $ sudo chmod 640 /etc/quagga/zebra.conf
  $ sudo chmod 640 /etc/quagga/ospfd.conf
  $ sudo chmod 640 /etc/quagga/ospf6d.conf
  $ sudo chmod 660 /etc/quagga/vtysh.conf

6.5 Configure the Quagga configuration files

6.5.1 debian.conf

The debian.conf file has the list of devices that can telnet to the various daemons, by default
this is limited to the localhost but additional IP addresses can be added as shown for zebra,
ospfd and ospf6d. 

Free Technology Academy Diarmuid O'Briain



104 Open Networks

  $ cat /etc/quagga/debian.conf 
  
  vtysh_enable=yes
  zebra_options="  --daemon -A 127.0.0.1 78.143.141.20"
  bgpd_options="   --daemon -A 127.0.0.1"
  ospfd_options="  --daemon -A 127.0.0.1 78.143.141.20"
  ospf6d_options=" --daemon -A ::1 2a02:aaaa::20"
  ripd_options="   --daemon -A 127.0.0.1"
  ripngd_options=" --daemon -A ::1"
  isisd_options="  --daemon -A 127.0.0.1"
  babeld_options=" --daemon -A 127.0.0.1"
  #
  watchquagga_enable=yes
  watchquagga_options=(--daemon)
  

6.5.2 vtysh.conf - the VTY terminal conf file

Edit the /etc/quagga/vtysh.conf file. Note that the service integrated-vtysh-config is disabled
which is the recommended setting. Also set the hostname. 

  $ sudo vi /etc/quagga/vtysh.conf
  
  !
  ! Configuration file for vtysh.
  !
  !service integrated-vtysh-config
  hostname R3
  username root nopassword
  !
  

6.6 zebra.conf - the routing daemon conf file
Edit the zebra.conf file. 

  $ sudo vi /etc/quagga/zebra.conf
  
  ! -*- zebra -*-
  !
  ! zebra configuration file
  !
  hostname R3
  password obquagga
  enable password quaggapass
  !
  !
  !log file /var/log/quagga/zebra.log
  log stdout
  

Diarmuid O'Briain Free Technology Academy



Open Networks 105

6.6.1 The OSPFv2 (IPv4) daemon conf file

Edit the ospfd.conf file. 

  $ sudo vi /etc/quagga/ospfd.conf
  
  ! -*- ospf -*-
  !
  ! OSPFd configuration file
  !
  hostname R3
  password obquagga
  enable password quaggapass
  !
  !
  !log file /var/log/quagga/ospfd.log
  log stdout
  

6.6.2 The OSPFv3 (IPv6) daemon conf file

Edit the ospf6d.conf file. 

  $ sudo vi /etc/quagga/ospf6d.conf
  
  ! -*- ospf6 -*-
  !
  ! OSPF6d configuration file
  !
  hostname R3
  password obquagga
  enable password quaggapass
  !
  !
  !log file /var/log/quagga/ospf6d.log
  log stdout
  

6.7 Restart the Quagga service
After changing the configuration files, restart the quagga service to reread the configuration
files. 

  $ sudo service quagga restart
  
  Stopping Quagga monitor daemon: watchquagga.
  Stopping Quagga daemons (prio:0): (ospfd) (ospf6d) (zebra) (bgpd) (ripd) 
  (ripngd) (isisd) (babeld).
  Removing all routes made by zebra.
  Loading capability module if not yet done.
  Starting Quagga daemons (prio:10): zebra ospfd ospf6d.
  Starting Quagga monitor daemon: watchquagga.
  

Free Technology Academy Diarmuid O'Briain



106 Open Networks

6.8 Accessing the Quagga router for configuration
The quagga router can be accessed using telnet to the port for the relevant daemon, routing is
managed in  the  zebra daemon,  OSPFv2 in the  ospfd daemon and OSPFv3 in  the  ospf6d
daemon. The same applies if you want to use RIP, RIPng or BGP4. 

6.8.1 Access TCP Ports

Daemon TCP port Access daemon

zebra 2601 telnet 127.0.0.1 2601

ripd 2602 telnet 127.0.0.1 2602

ripng 2603 telnet ::1 2603

ospfd 2604 telnet 127.0.0.1 2604

bgpd 2605 telnet 127.0.0.1 2605

ospf6d 2606 telnet ::1 2606

6.8.2 Accessing the zebra daemon
  $ sudo vtysh
  
  Hello, this is Quagga (version 0.99.22.1).
  Copyright 1996-2005 Kunihiro Ishiguro, et al.
  
  R3# 
  

or via telnet 

 
 $ telnet 127.0.0.1 2601
  
  Trying 127.0.0.1...
  Connected to 127.0.0.1.
  Escape character is '^]'.
  
  Hello, this is Quagga (version 0.99.22.1).
  Copyright 1996-2005 Kunihiro Ishiguro, et al.
  
  
  User Access Verification
  
  Password: obquagga
  R3> en
  Password: quaggapass
  R3# 
  

Diarmuid O'Briain Free Technology Academy



Open Networks 107

6.9 Configuring zebra daemon - the routing daemon
If you are used of the Cisco iOS syntax then Quagga is quite similar and should not present a
problem. Here IPv4 and IPv6 addresses are added to the interfaces and ND messages are not
suppressed. 

  R3# conf t
  R3(config)# interface eth0
  R3(config-if)# description "To R4"
  R3(config-if)# ip address 89.184.35.9/30 label to-R4
  R3(config-if)# ipv6 address 2a02:3::31/64
  R3(config-if)# no ipv6 nd suppress-ra
  R3(config-if)# no shut
  
  R3(config-if)# interface eth1
  R3(config-if)# description "To R2"
  R3(config-if)# ip address 89.184.35.6/30 label to-R2
  R3(config-if)# ipv6 address 2a02:2::22/64
  R3(config-if)# no ipv6 nd suppress-ra
  R3(config-if)# no shut
  R3(config-if)# <CTRL> - Z
  

Save the configuration and review. 

  R3# copy run start
  Configuration saved to /etc/quagga/zebra.conf
  
  R3# show run
  
  hostname R3
  log stdout
  hostname ospfd
  hostname ospf6d@plant
  !
  service advanced-vty
  !
  debug ospf6 lsa unknown
  debug ospf6 neighbor state
  !
  password obquagga
  enable password quaggapass
  password zebra
  !
  interface eth0
   description "To R4"
   ip address 89.184.35.9/30 label to-R4
   ipv6 address 2a02:3::31/64
   no ipv6 nd suppress-ra
  !
  interface eth1
   description "To R2"
   ip address 89.184.35.6/30 label to-R2
   ipv6 address 2a02:2::22/64
   no ipv6 nd suppress-ra
  !

Free Technology Academy Diarmuid O'Briain



108 Open Networks

  interface lo
  !
  interface fxp0
   ipv6 ospf6 priority 0
  !
  interface lo0
  !
  router ospf6
   router-id 255.1.1.1
   redistribute static route-map static-ospf6
   interface fxp0 area 0.0.0.0
  !
  access-list access4 permit 127.0.0.1/32
  !
  ipv6 access-list access6 permit 3ffe:501::/32
  ipv6 access-list access6 permit 2001:200::/48
  ipv6 access-list access6 permit ::1/128
  !
  ipv6 prefix-list test-prefix seq 1000 deny any
  !
  route-map static-ospf6 permit 10
   match ipv6 address prefix-list test-prefix
   set metric 2000
   set metric-type type-2
  !
  line vty
   access-class access4
   exec-timeout 0 0
   ipv6 access-class access6
  !
  

Reviewing the routes on the GNU/Linux host as configured by Quagga. 

  $ sudo ip addr list
  
  1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN 
      link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
      inet 127.0.0.1/8 scope host lo
         valid_lft forever preferred_lft forever
      inet6 ::1/128 scope host 
         valid_lft forever preferred_lft forever
  2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP qlen 1000
      link/ether 00:12:3f:dc:ab:47 brd ff:ff:ff:ff:ff:ff
      inet 89.184.35.9/30 brd 89.184.35.11 scope global to-R4
         valid_lft forever preferred_lft forever
      inet6 2a02:3::31/64 scope global 
         valid_lft forever preferred_lft forever
      inet6 2a02:3::212:3fff:fedc:ab47/64 scope global dynamic 
         valid_lft 2591768sec preferred_lft 604568sec
      inet6 fe80::212:3fff:fedc:ab47/64 scope link 
         valid_lft forever preferred_lft forever
  3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
      link/ether 00:60:6e:00:66:13 brd ff:ff:ff:ff:ff:ff
      inet 89.184.35.6/30 brd 89.184.35.7 scope global to-R2
         valid_lft forever preferred_lft forever
      inet6 2a02:2::15db:54cc:1f83:4a46/64 scope global temporary dynamic 
         valid_lft 604789sec preferred_lft 85789sec
      inet6 2a02:2::260:6eff:fe00:6613/64 scope global dynamic 
         valid_lft 2591989sec preferred_lft 604789sec
      inet6 2a02:2::22/64 scope global 
         valid_lft forever preferred_lft forever
      inet6 fe80::260:6eff:fe00:6613/64 scope link 
         valid_lft forever preferred_lft forever
  

Diarmuid O'Briain Free Technology Academy



Open Networks 109

6.10 Configuring the OSPFv2 daemon
Telnet to the OSPFv2 Daemon. 

  $ telnet 127.0.0.1 2604
  
  Trying 127.0.0.1...
  Connected to 127.0.0.1.
  Escape character is '^]'.
  
  Hello, this is Quagga (version 0.99.22.1).
  Copyright 1996-2005 Kunihiro Ishiguro, et al.
  
  
  User Access Verification
  
  Password: 
  R3> en
  Password: 
  R3# 
  

Configure OSPFv2, add a unique Router ID, i.e.  0.0.0.3 for  R3. Add the networks that this
router  will  advertise.  In  this  case  89.184.35.0/24 summarises  for  all  the  89.184.35.x/30
networks. 

  R3# conf t
  R3(config)# router ospf 
  R3(config-router)# router-id 0.0.0.3
  R3(config-router)# network 89.184.35.0/24 area 0
  R3(config-if)# <CTRL> - Z
  

See what OSPFv2 neighbours R3 discovered on its interfaces. 

  R3# show ip ospf neighbor 
  
  Neighbor ID Pri State       Dead Time Address         Interface            RXmtL RqstL DBsmL
  0.0.0.4     1 Full/DR       38.866s 89.184.35.10    eth0:89.184.35.9         0     0     0
  0.0.0.2     1 Full/DR       31.353s 89.184.35.5     eth1:89.184.35.6         0     0     0
  

Review the routes learned by the OSPFv2 daemon.

  R3# show ip ospf route
  
  ========= OSPF network routing table =========
  N    78.143.141.0/24       [30] area: 0.0.0.0
                             via 89.184.35.5, eth1
  N    78.143.152.0/24       [20] area: 0.0.0.0
                             via 89.184.35.10, eth0
  N    89.184.35.0/30        [20] area: 0.0.0.0
                             via 89.184.35.5, eth1
  N    89.184.35.4/30        [10] area: 0.0.0.0
                             directly attached to eth1
  N    89.184.35.8/30        [10] area: 0.0.0.0
                             directly attached to eth0

Free Technology Academy Diarmuid O'Briain



110 Open Networks

Save all configuration on the OSPFv2 daemon. 

  R3# copy run start
  Configuration saved to /etc/quagga/ospfd.conf
  R3# 
  

Returning to zebra on TCP port 2601 review the IP routes table. 

  O>* 78.143.141.0/24 [110/30] via 89.184.35.5, eth1, 00:00:02
  O>* 78.143.152.0/24 [110/20] via 89.184.35.10, eth0, 00:04:24
  O>* 89.184.35.0/30 [110/20] via 89.184.35.5, eth1, 00:04:22
  O   89.184.35.4/30 [110/10] is directly connected, eth1, 00:04:29
  C>* 89.184.35.4/30 is directly connected, eth1
  O   89.184.35.8/30 [110/10] is directly connected, eth0, 00:04:29
  C>* 89.184.35.8/30 is directly connected, eth0
  C>* 127.0.0.0/8 is directly connected, lo
  

or review the routes in GNU/Linux directly. One disadvantage of this however is that the
information on the protocols the routes were learnt from, or the administrative distances are
not displayed. 

  $ ip -4 route list
  
  78.143.141.0/24 via 89.184.35.5 dev eth1  proto zebra  metric 30 
  78.143.152.0/24 via 89.184.35.10 dev eth0  proto zebra  metric 20 
  89.184.35.0/30 via 89.184.35.5 dev eth1  proto zebra  metric 20 
  89.184.35.4/30 dev eth1  proto kernel  scope link  src 89.184.35.6 
  89.184.35.8/30 dev eth0  proto kernel  scope link  src 89.184.35.9  

6.11 Configure the OSPFv3 (for IPv6) daemon
Telnet to the OSPF Daemon. 

  $ telnet ::1 2606
  
  Trying ::1...
  Connected to ::1.
  Escape character is '^]'.
  
  Hello, this is Quagga (version 0.99.22.1).
  Copyright 1996-2005 Kunihiro Ishiguro, et al.
  
  
  User Access Verification
  
  Password: 
  R3> en
  Password: 
  R3# 
  

Diarmuid O'Briain Free Technology Academy



Open Networks 111

Configure OSPFv3 daemon is a similar way to the IPv4 version. In IPv6 case however instead
of defining networks to be routed, interfaces in networks to be advertised are added to the
IPSFv3 router configuration. 

  R3# conf t
  R3(config)# router ospf6
  R3(config-ospf6)# router-id 0.0.0.3
  R3(config-ospf6)# interface eth0 area 0.0.0.0
  R3(config-ospf6)# interface eth1 area 0.0.0.0
  

Review OSPFv3 neighbours and routes. 

  R3# show ipv6 ospf6 neighbor 
  
  Neighbor ID   Pri    DeadTime  State/IfState      Duration I/F[State]
  0.0.0.4       1      00:00:40   Full/DR           00:02:50 eth0[BDR]
  0.0.0.2       1      00:00:32   Full/DR           00:02:47 eth1[BDR]
  
  R3# show ipv6 ospf6 route 
  
  *N IA 2a02:1::/64           fe80::20c:42ff:fe8b:73e4    eth1 00:03:43
  *N IA 2a02:2::/64           ::                          eth1 00:03:53
   N IA 2a02:2::/64           fe80::20c:42ff:fe8b:73e4    eth1 00:03:43
  *N IA 2a02:3::/64           ::                          eth0 00:03:55
  *N IA 2a02:aaaa::/64        fe80::20c:42ff:fe8b:73e4    eth1 00:03:43
  *N IA 2a02:bbbb::/64        fe80::d6ca:6dff:fe61:dd89   eth0 00:03:45
  

Save the OSPFv3 daemon configuration. 

  R3# copy run start
  Configuration saved to /etc/quagga/ospf6d.conf
  R3#
  

Returning to zebra on TCP port 2601 review the IPv6 routes table. 

  R3# show ipv6 route 
  Codes: K - kernel route, C - connected, S - static, R - RIPng,
         O - OSPFv6, I - IS-IS, B - BGP, A - Babel,
         > - selected route, * - FIB route
  
  K>* ::/0 via fe80::20c:42ff:fe8b:73e4, eth1
  C>* ::1/128 is directly connected, lo
  O>* 2a02:1::/64 [110/11] via fe80::20c:42ff:fe8b:73e4, eth1, 00:07:36
  O   2a02:2::/64 [110/1] is directly connected, eth1, 00:07:46
  C>* 2a02:2::/64 is directly connected, eth1
  O   2a02:3::/64 [110/1] is directly connected, eth0, 00:07:48
  C>* 2a02:3::/64 is directly connected, eth0
  O>* 2a02:aaaa::/64 [110/21] via fe80::20c:42ff:fe8b:73e4, eth1, 00:07:36
  O>* 2a02:bbbb::/64 [110/11] via fe80::d6ca:6dff:fe61:dd89, eth0, 00:07:38
  C * fe80::/64 is directly connected, eth1
  C>* fe80::/64 is directly connected, eth0
  

Free Technology Academy Diarmuid O'Briain



112 Open Networks

or review the routes in GNU/Linux directly. This has a similar disadvantage to that described
for IPv4 above. 

  $ ip -6 route list
  2a02:1::/64 via fe80::20c:42ff:fe8b:73e4 dev eth1  proto zebra  metric 11 
  2a02:2::/64 dev eth1  proto kernel  metric 256 
  2a02:3::/64 dev eth0  proto kernel  metric 256  expires 2591777sec
  2a02:aaaa::/64 via fe80::20c:42ff:fe8b:73e4 dev eth1  proto zebra  metric 21 
  2a02:bbbb::/64 via fe80::d6ca:6dff:fe61:dd89 dev eth0  proto zebra  metric 11 
  fe80::/64 dev eth0  proto kernel  metric 256 
  fe80::/64 dev eth1  proto kernel  metric 256 
  default via fe80::d6ca:6dff:fe61:dd89 dev eth0  proto static  metric 1 
  default via fe80::d6ca:6dff:fe61:dd89 dev eth0  proto ra  metric 1024  expires 1577sec
  default via fe80::20c:42ff:fe8b:73e4 dev eth1  proto ra  metric 1024  expires 1770sec 

6.12 Quagga Summary
Quagga is a family of Internet Routing daemons that turn a GNU/Linux host into a full router.
In this instance you have seen the use of OSPF in a single backbone (0.0.0.0) area to perform
routing however this is only a sample of what can be achieved with Quagga. For example
intra-area OSPF routing, IS-IS, BGP etc.. 

Diarmuid O'Briain Free Technology Academy



Open Networks 113

7. Wireless LANs

7.1 Introduction to WiFi
IEEE 802.11  is  a  set  of  standards  for  Wireless  Local  Area  Network  (WLAN)  computer
communication, developed by the IEEE LAN/MAN Standards Committee (IEEE 802) in the
5 GHz and 2.4 GHz public spectrum bands. 

The IEEE 802.11 family includes over-the-air modulation techniques that use the same basic
protocol.  The  most  popular  are  those  defined  by  the  IEEE  802.11b  and  IEEE  802.11g
protocols, and are amendments to the original standard. IEEE 802.11a was the first wireless
networking standard, but IEEE 802.11b was the first widely accepted one, followed by g, n
and  ac.  Security  was  originally  purposefully  weak  due  to  export  requirements  of  some
governments,  and  was  later  enhanced  via  the  IEEE  802.11i  amendment  after  US
governmental  and  legislative  changes.  IEEE  802.11n  added  Multiple  In,  Multiple  Out
(MIMO) antenna technology with multiple spacial streams to increase speeds to 200 Mb/s
with a maximum throughput of 500 Mb/s. IEEE 802.11ac, the 1 Gb/s standard with a single
link throughput of at least 500 Mb/s. It uses up to 160 MHz Radio Frequency bandwidth, up
to 8 spacial streams for MIMO and 256 QAM modulation. Other standards in the family (c–f,
h, j) are service amendments and extensions or corrections to previous specifications. 

The segment of the radio frequency spectrum used varies between countries. In the US, IEEE
802.11a and  g devices may be operated without a license, as explained in Part 15 of the
Federal Communications Commission (FCC) Rules  and Regulations.  Frequencies used by
channels  one  through  six  (IEEE  802.11b)  fall  within  the  2.4  GHz  amateur  radio  band.
Licensed amateur radio operators may operate IEEE 802.11b/g devices under Part 97 of the
FCC Rules and Regulations, allowing increased power output but not commercial content or
encryption. 

• IEEE  802.11  –  This  is  the  initial  WLAN  standard  and  provides  1  or  2  Mbps

transmission in the 2.4 GHz band using either Frequency Hopping Spread Spectrum
(FHSS) or Direct Sequence Spread Spectrum (DSSS). 

• IEEE 802.11a – This is an extension to 802.11 that provides typically 25 Mbps to a

maximum of 54 Mbps in the 5GHz band. 802.11a uses an OFDM encoding scheme
rather than FHSS or DSSS. Max range is 30 M. 

• IEEE  802.11b  (also  referred  to  as  802.11  High  Rate  or  WiFi)  –  This  is  also  an

extension to 802.11 that provides 11 Mbps transmission (with a fallback to 5.5, 2 and 1
Mbps) in the 2.4 GHz band. 802.11b uses only DSSS. 802.11b was a 1999 ratification
to  the  original  802.11  standard,  allowing  wireless  functionality  comparable  to
Ethernet. Max range is 30 M. 

Free Technology Academy Diarmuid O'Briain



114 Open Networks

• IEEE 802.11g -- Provides typically 24 Mbps to a maximum of 54 Mbps in the 2.4 GHz

band. It also uses OFDM. Max range is 30 M. 
• IEEE 802.11n – Anew standard to give typically 200 Mbps up to a maximum of 540

Mbps out to 50 M in either the 2.4 or 5 GHz bands. This standard introduced MIMO
antennas to WLAN. 

• IEEE 802.11ac  – A further  improvement  to  the IEEE 802.11n standard to  include

wider channels (80 or 160 MHz versus 20 or 40 MHz) in the 5 GHz band, up to eight
spatial streams, 256 Quadrature Amplitude Modulation (QAM) and Multi-user MIMO
(MU-MIMO). 

7.1.1 Spectrum

2.4 GHz

The IEEE 802.11b standard defines a total of 14 frequency channels in the 2.4 GHz WiFi
signal range. In the Europe the first 13 channels are available for use, while in the United
States, only the WiFi channels 1 - 11 can be chosen. In Japan, all 14 channels are licensed for
IEEE 802.11b. 

Many wireless products ship with a default WiFi channel of 6. If encountering interference
from other devices within the home, consider changing the channel up or down to avoid it.
Note that all WiFi devices on the network must use the same channel. 

Some WiFi channel numbers overlap with each other. Channel 1 uses the lowest frequency
band and each subsequent channel  increases the frequency slightly.  Therefore,  the further
apart two channel numbers are, the less the degree of overlap and likelihood of interference. If
encountering  interference  with  a  neighbour’s  WLAN,  change  to  a  distant  channel.  Both
channels 1 and 11 do not overlap with the default channel 6; use one of these three channels
for best results. 

Diarmuid O'Briain Free Technology Academy



Open Networks 115

2.4 Ghz Channels (GHz)

Channel Frequency (GHz) Notes

1 2.412

2 2.417

3 2.422

4 2.427

5 2.432

6 2.437

7 2.442

8 2.447

9 2.452

10 2.457

11 2.462

12 2.467 No North America

13 2.472 No North America

14 2.484 Japan only

5 GHz

IEEE  802.11a  defines  the  physical  air  interface  for  up  to  200  channels  in  the  5  GHz
unlicensed spectrum with  a  channel  size  of  20  MHz.  Channel  centre  frequency  for  each
channel can be calculated by the formula 5000 + 5 × Nch (MHz) where Nch = 0 - 200. 

It is based on an OFDM implementation using up to 64-QAM (256 QAM introduced with
IEEE 802.1ac). These channels have been incorporated into the higher speed IEEE 802.11n
and IEEE 802.11ac standards. 

Free Technology Academy Diarmuid O'Briain



116 Open Networks

5 Ghz Channels (GHz) 

Channel Frequency (GHz)

36 5.18

40 5.2

44 5.22

48 5.24

52 5.26

56 5.28

60 5.3

64 5.32

100 5.5

104 5.52

108 5.54

112 5.56

116 5.58

120 5.6

124 5.62

128 5.64

132 5.66

136 5.68

140 5.7

In  some  countries  the  spectrum  is  extended  for  the  provision  of  Fixed  Wireless  Access
Networks/Metropolitan Area Networks (FWA/MAN) in the 5.8 GHz (5.725 – 5.875 GHz)
band up to a maximum radiated power of 2 Watt Effective Isotropic Radiated Power (EIRP)
on a licence exempt basis. This gives an additional 7 20 MHz channels, 5.745, 5.765, 5.785,
5.805, 5.825, 5.845, 5.865 GHz. 

Diarmuid O'Briain Free Technology Academy



Open Networks 117

MIMO Antenna’s

MIMO is the use of multiple  antennas at  both at  the transmitter  and receiver  to improve
communication performance. It is one of several forms of Smart Antenna (SA), and the state
of  the  art  of  SA  technology.  MIMO  technology  has  attracted  attention  in  wireless
communications, since it offers significant increases in data throughput and link range without
additional bandwidth or transmit power. It achieves this by higher spectral efficiency (more
bits per second per Hertz of bandwidth) and link reliability or diversity (reduced fading). 

7.1.2 IEEE 802.11 WLAN Summary

IEEE
Designation

Modulation Max Speed Operating
Frequency

Non-
overlapping

channels

Antenna Range (Indoor/
Outdoor)

802.11b DSSS 11 Mbps 2.4 GHz 3 ~38 M / ~140 M

802.11a OFDM 54 Mbps 5 GHz 12 ~35 M / ~120 M

802.11g OFDM 54 Mbps 2.4 GHz 3 ~35 M / ~140 M

802.11n OFDM 248 Mbps 2.4 (5) GHz 3 (12) MIMO ~50 M / ~200 M

802.11ac OFDM 867 Mbps 5 GHz 3 MU-MIMO ~50 M / ~200 M

7.1.3 IEEE 802.11 MAC (Media Access Control)

The following section describes the common Media Access Control layer used by the IEEE
802.11 family of standards. The IEEE 802.11 family uses a MAC layer known as CSMA/CA
(Carrier  Sense  Multiple  Access/Collision  Avoidance)  NOTE:  Classic  Ethernet  uses
CSMA/CD  -  Collision  Detection.  CSMA/CA is,  like  all  Ethernet  protocols,  peer-to-peer
(there is no requirement for a master station). 

In CSMA/CA a Wireless node that wants to transmit performs the following sequence: 

1. Listen on the desired channel. 
2. If channel is idle (no active transmitters) it sends a packet. 
3. If channel is busy (an active transmitter) node waits until transmission stops then a

further CONTENTION period. (The Contention period is a random period after every
transmit on every node and statistically allows every node equal access to the media.
To  allow  TX  to  RX  turn  around  the  contention  time  is  slotted  50  micro  sec  for
Frequency Hopping (FH) and 20 micro sec for Direct Sequence (DS) systems). 

4. If the channel is still idle at the end of the CONTENTION period the node transmits
its  packet  otherwise  it  repeats  the  process  defined  in  3  above  until  it  gets  a  free
channel. 

Free Technology Academy Diarmuid O'Briain



118 Open Networks

ACKing

At the end of every packet the receiver, if it has successfully received the packet, will return
an ACK packet (if not received or received with errors the receiver will NOT respond i.e.
there is no NACK). The transmit window allows for the ACK i.e. CONTENTION period
starts after the ACK should have been sent. 

MAC level retransmission

If  no  ACK  is  received  the  sender  will  retry  the  transmit  (using  the  normal  CSMA/CA
procedures) until either successful or the operation is abandoned with exhausted retries. 

Fragmentation

Bit error rates on wireless systems (10-5, 10-6) are substantially higher than wire-line systems
(10-12).  Large  blocks  may approach the  number  of  bits  where  the  probability  of  an  error
occurring is so high that every block could fail including the re-transmission. To reduce the
possibility  of  this  happening  large  blocks  may  be  fragmented  by  the  transmitter  and
reassembled by the receiver node e.g. a 1500 byte block (12,000 bits) may be fragmented into
5 blocks of 300 bytes (2,400 bits).  While there is some overhead in doing this - both the
probability of an error occurring is reduced and, in the event of an error, the re-transmission
time is also reduced. 

7.1.4 WiFi Elements

IEEE 802.11 networks are organised in two ways: 

• In  infrastructure  mode  one  station  acts  as  a  master  with  all  the  other  stations

associating to it; the network is known as a Basic Service Set (BSS) and the master
station is termed an AP. In a BSS all communication passes through the AP; even
when one station wants to communicate with another wireless station messages must
go through the AP. 

• In the second form of network there is no master and stations communicate directly.

This  form of  network  is  termed  an  Independent  Basic  Service  Set  (IBSS)  and  is
commonly known as an ad-hoc network. 

Wireless Access Point (AP)

The AP is the hub of a wireless network. Wireless clients connect to the access point, and
traffic  between two clients  must  travel  through the  access  point.  Access  Points  are  often
abbreviated  to  AP,  and  you  may  also  see  them  referred  to  as  wireless  routers,  wireless
gateways, and Base Stations (BS). 

Diarmuid O'Briain Free Technology Academy



Open Networks 119

Service Set IDentifier (SSID)

An SSID is a secret key attached to all packets on a wireless network to identify each packet
as part  of that network. The code consists of a string of 1-32 octets. All  wireless devices
attempting to communicate with each other must share the same SSID. Apart from identifying
each packet, an SSID also serves to uniquely identify a group of wireless network devices
used in  a  given  Service  Set.  There  are  two major  variants  of  the  SSID:  Ad-hoc wireless
networks (IBSS) that consist of client machines without an AP use the IBSS IDentifier (IBSS-
ID). 

Infrastructure networks which include an AP (BSS or possibly an ESS) use the BSSID or ESS
ID (E for Extended) instead. 

The naming is for convention only as the IEEE 802.11 standard dictates that an IBSS, BSS,
and ESS are each defined by an SSID, otherwise known as a Network Name. A network name
is commonly set to the name of the network operator, such as a company name. Equipment
manufacturers have liberally used all of the above SSID naming conventions to essentially
describe the same thing. In some instances, the convention is wrong, as in the case of BSSID. 

The SSID on wireless clients can be set either manually, by entering the SSID into the client
network  settings,  or  automatically,  by  leaving the  SSID unspecified  or  blank.  A network
administrator often uses a public SSID that is set on the access point and broadcast to all
wireless devices in range. 

Most IEEE 802.11 access point vendors allow the use of an SSID of any to enable an IEEE
802.11 NIC to connect to any IEEE 802.11 network. 

Disabling SSID Broadcasting

Many  wireless  AP  vendors  have  added  a  configuration  option  which  lets  you  disable
broadcasting of the SSID. This adds little security because it is only able to prevent the SSID
from being broadcast with Probe Request and Beacon frames. The SSID must be broadcast
with Probe Response frames. In addition, the wireless access cards will broadcast the SSID in
their association and re-association frames. Because of this, the SSID cannot be considered a
valid security tool. 

7.1.5 WiFi Security

The ability to enter a network while mobile has great benefits. However, wireless networking
has many security issues. Hackers have found wireless networks relatively easy to break into
in the past, and even use wireless technology to crack into wired networks. 

Free Technology Academy Diarmuid O'Briain



120 Open Networks

Methods of counteracting security risks

There are many technologies available to counteract wireless network intrusion, but currently
no method is absolutely secure. The best strategy may be to combine a number of security
measures. There are three steps to take towards securing a wireless network: 

1. All wireless LAN devices need to be secured. 
2. All users of the wireless network need to be educated in wireless network security. 
3. All wireless networks need to be actively monitored for weaknesses and breaches. 

Wireless Encryption Protocol (WEP)

WEP is part of the IEEE 802.11 wireless networking standard. Because wireless networks
broadcast messages using radio, they are susceptible to eavesdropping. 

WEP was  intended  to  provide  confidentiality  comparable  to  that  of  a  traditional  wired
network. Several serious weaknesses were identified by cryptanalysts; a WEP connection can
be cracked with readily available software within minutes. WEP was superseded by WiFi
Protected Access (WPA) in 2003, followed by the full IEEE 802.11i standard in 2004. Despite
its weaknesses, WEP provides a level of security that may deter casual snooping. 

Standard 64-bit  WEP uses a 40 bit  key,  which is  concatenated with a 24-bit  Initialisation
Vector (IV) to form the 64-bit Rivest Cipher 4 (RC4) traffic key. At the time that the original
WEP standard  was  being  drafted,  US  Government  export  restrictions  on  cryptographic
technology  limited  the  key  size.  Once  the  restrictions  were  lifted,  all  of  the  major
manufacturers eventually implemented an extended 128-bit WEP protocol using a 104-bit key
size. 

A 128-bit WEP key is almost always entered by users as a string of 26 Hexadecimal (Hex)
characters (0-9 and A-F). Each character represents 4 bits of the key. 4 × 26 = 104 bits; adding
the 24-bit initialisation vector brings us what we call a "128-bit WEP key". A 256-bit WEP
system is available from some vendors, and as with the above-mentioned system, 24 bits of
that  is  for  the  IV,  leaving  232  actual  bits  for  protection.  This  is  typically  entered  as  58
Hexadecimal characters. (58 × 4 = 232 bits) + 24 I.V. bits = 256 bits of WEP protection. 

Key size is not the only major security limitation in WEP. Cracking a longer key requires
interception of more packets, but there are active attacks that stimulate the necessary traffic.
There are other weaknesses in WEP, including the possibility of IV collisions and altered
packets that are not helped at all by a longer key. 

Diarmuid O'Briain Free Technology Academy



Open Networks 121

WiFi Protected Access (WPA)

WPA is a class of security standard to secure WiFi networks. It was created in response to
several  serious  weaknesses  researchers  had  found  in  the  previous  system,  WEP.  WPA
implements the majority of the IEEE 802.11i standard, and was intended as an intermediate
measure to take the place of WEP while IEEE 802.11i was prepared. WPA is designed to work
with all wireless network interface cards, but not necessarily with first generation wireless
access points. WPA2 (also called IEEE 802.11i) implements the full standard, but will not
work with some older network cards. Both provide good security, with two significant issues: 

• Either WPA or WPA2 must be enabled and chosen in preference to WEP. WEP is

usually presented as the first security choice in most installation instructions. 
• In the Personal mode, the most likely choice for homes and small offices, a passphrase

is  required that,  for full  security,  must  be longer  than the typical  6  to  8 character
passwords users are taught to employ. 

WPA resolves the issue of weak WEP headers, which are called Initialisation Vectors (IV),
and insures the integrity of the messages passed through (Message Integrity Check (MIC)
using Temporal Key Integrity Protocol (TKIP) to enhance data encryption. 

WPA Pre Shared Key (WPA-PSK) is  a special  mode of WPA for home users without  an
enterprise authentication server and provides the same strong encryption protection. 

Security in pre-shared key mode

PSK mode is designed for home and small office networks that cannot afford the cost and
complexity of an IEEE 802.1X authentication server. Each user must enter a passphrase to
access the network. The passphrase may be from 8 to 63 printable American Standard Code
for Information Interchange (ASCII) characters or 64 hexadecimal digits (256 bits). If you
choose to use the ASCII characters, a hash function reduces it from 504 bits (63 characters * 8
bits/character) to 256 bits (using also the SSID). The passphrase may be stored on the user's
computer at their discretion under most operating systems to avoid re-entry. The passphrase
must remain stored in the WiFi access point. 

Security is strengthened by employing a Password-Based Key Derivation Function version 2
(PBKDF2).  However,  the  weak  passphrases  users  typically  employ  are  vulnerable  to
password cracking attacks.  Some consumer  chip  manufacturers  have  attempted  to  bypass
weak passphrase  choice by adding a  method of  automatically  generating  and distributing
strong keys through a software or hardware interface that uses an external method of adding a
new WiFi adapter or appliance to a network. 

Free Technology Academy Diarmuid O'Briain



122 Open Networks

Security with an Authentication Server

With WPA the use of IEEE 802.1x is supported for operation with databases of users stored in
Remote  Access  Dialin  User  Service  (RADIUS)  and  this  is  accessed  using  Extensible
Authentication Protocol (EAP). 

IEEE  802.1X  is  an  IEEE  standard  for  port-based  network  access  control.  It  provides
authentication to devices attached to a LAN port, establishing a point-to-point connection or
preventing access from that port if authentication fails. It is used for certain closed wireless
APs, and is based on the EAP. 

Some  vendors  are  implementing  IEEE  802.1X  for  wireless  APs,  to  be  used  in  certain
situations where an access point needs to be operated as a closed AP, addressing the security
vulnerabilities of WEP. The authentication is usually done by a third-party entity, such as a
RADIUS server. This provides for client-only authentication, or more appropriately, strong
mutual  authentication  using  protocols  such  as  RFC  5216  EAP-Transport  Layer  Security
(EAP-TLS). 

Diarmuid O'Briain Free Technology Academy



Open Networks 123

Upon detection of the new client or the supplicant, the port on the switch (authenticator) will
be enabled and set to the "unauthorised" state. In this state, only IEEE 802.1X traffic will be
allowed; other traffic, such as Dynamic Host Configuration Protocol (DHCP) and Hypertext
Transfer Protocol (HTTP), will be blocked at the data link layer. The authenticator will send
out the EAP-Request identity to the supplicant, the supplicant will then send out the EAP-
response  packet  that  the  authenticator  will  forward  to  the  authenticating  server.  The
authenticating  server  can  accept  or  reject  the  EAP-Request;  if  it  accepts  the  request,  the
authenticator will set the port to the "authorised" mode and normal traffic will be allowed.
When the supplicant logs off, he will send an EAP-logoff message to the authenticator. The
authenticator will then set the port to the "unauthorised" state, once again blocking all non-
EAP traffic. 

IEEE 802.11i WPA2

The WiFi Alliance approved full IEEE 802.11i as WPA2, also called Robust Security Network
(RSN).  WPA2  implements  the  mandatory  elements  of  802.11i.  It  introduces  Advanced
Encryption  Standard (AES) algorithm based algorithm, Counter  Mode with Cipher  Block
Chaining Message Authentication Code Protocol (CCMP) that is considered fully secure. 

Free Technology Academy Diarmuid O'Briain



124 Open Networks

The authentication process has two considerations: 

• the AP still needs to authenticate itself to the client station. 

• keys to encrypt the traffic need to be derived. 

An EAP exchange provides the shared secret key Pairwise Master Key (PMK). This key is
however  designed  to  last  the  entire  session  and  should  be  exposed  as  little  as  possible.
Therefore  the  four-way  handshake  is  used  to  establish  another  key  called  the  Pairwise
Transient Key (PTK). The PTK is generated by concatenating the following attributes: PMK,
AP Nonce (ANonce), Station Nonce (SNonce), AP MAC address and Station MAC address.
In cryptography, a Nonce is a random, arbitrary number that is generated for security purposes
and is used one time only. The product is then put through a cryptographic hash function. 

The handshake also yields the Group Temporal Key (GTK), used to decrypt multicast and
broadcast traffic. The actual messages exchanged during the handshake are depicted in the
diagram. 

7.2 Configuration of a WiFi network on GNU/Linux
In order to configure WiFi interfaces, the wireless-tools package (as well ip) can be used. This
package uses the commands starting with iw command to configure a wireless interface, but
this can also be carried out through the /etc/network/interfaces file. 

7.2.1 Install the wireless-tools package

Like was the case for net-tools the wireless-tools package has been replaced by the iw tool for
configuring GNU/Linux wireless devices. This tool can show and manipulate wireless devices
and their configurations. It replaces the iwconfig tool. 

  $ apt-get install iw
  

Before getting into the iw tool it is important to understand the WiFi card chipset information. 

  $ lspci | grep Network
  04:00.0 Network controller: Broadcom Corporation BCM43228 802.11a/b/g/n
  

Here is a demonstration of some of these in action. Make sure that the network-manager is
disabled. 

   $ sudo stop network-manager
  

Diarmuid O'Briain Free Technology Academy



Open Networks 125

Search for the interface on the host that is wireless capable. 

  $ iw dev eth1 info
  Interface eth1
    ifindex 3
    type managed
    wiphy 0
  

Now bring up the discovered wireless interface. 

  $ sudo ip link set dev eth1 up
  

Run a scan to see if there are any APs available in the area. 

  $ sudo iw dev eth1 scan |grep SSID
    SSID: fta_ssid
    SSID: 20snh
    SSID: OB
    SSID: SKYBF102
    SSID: UPC1373998
  

The full scan is quite long so I extract the data for the BSS associated with the SSID fta_ssid
only. In this case there is no security set. 

  $ sudo iw dev eth1 scan ssid fta_ssid
  BSS d4:ca:6d:61:dd:8d (on eth1)
    TSF: 0 usec (0d, 00:00:00)
    freq: 2412
    beacon interval: 100
    capability: ESS ShortPreamble ShortSlotTime (0x0421)
    signal: -11.00 dBm
    last seen: 0 ms ago
    Information elements from Probe Response frame:
    SSID: fta_ssid
    Supported rates: 1.0* 2.0 5.5 11.0 
    DS Parameter set: channel 1
  

Connect to the BSS with the SSID of fta_ssid. 

  $ sudo iw dev eth1 connect -w fta_ssid
  eth1 (phy #0): connected to d4:ca:6d:61:dd:8d
  

This can be confirmed with the iw link command. 

  $ iw dev eth1 link
  Connected to d4:ca:6d:61:dd:8d (on eth1)
    SSID: fta_ssid
    freq: 2412
  

Free Technology Academy Diarmuid O'Briain



126 Open Networks

7.2.2 Using WPA2

WPA and WPA2 are two security protocols developed by the WiFi Alliance to secure wireless
computer  networks  as  the  WEP  standard from the  original  IEEE 802.11 standard  proved
insecure. WPA is the implementation of the IEEE 802.11i DRAFT standard and WPA2 is the
implementation of the IEEE 802.11i-2004 standard. WPA2 introduced Counter Mode Cipher
Block Chaining Message Authentication Code Protocol (CCMP), a new Advanced Encryption
Standard (AES) based encryption mode with strong security. WPA2 became mandatory for all
new devices since March 2006. 

7.2.3 WPA Supplicant

wpa_supplicant is the WPA Supplicant implementation for GNU/Linux. It implements key
negotiation  with  a  WPA  Authenticator  and  it  controls  the  roaming  and  IEEE  802.11
authentication/association of the wlan driver. 

wpa_supplicant is  designed to  be  a  daemon that  runs  in  the  background and acts  as  the
backend  component  controlling  the  wireless  connection.  It  supports  separate  frontend
programs  and  a  text-based  frontend  (wpa_cli)  and  a  GUI  (wpa_gui)  are  included  with
wpa_supplicant. 

To install the wpa_gui utility the wpagui needs to be installed. 

  $ sudo apt-get install wpagui
  

With a wpa2 key added to the AP rerun the scan on the BSS fta_ssid. Note that the security
information shows that a Pre Shared Key (PSK) is set on the AP. The CCMP ciphers show
that WPA2 is used for security. 

  $ sudo iw dev eth1 scan ssid fta_ssid
  [sudo] password for alovelace: 
  BSS d4:ca:6d:61:dd:8d (on eth1)
    TSF: 0 usec (0d, 00:00:00)
    freq: 2412
    beacon interval: 100
    capability: ESS Privacy ShortPreamble ShortSlotTime (0x0431)
    signal: -22.00 dBm
    last seen: 0 ms ago
    Information elements from Probe Response frame:
    SSID: fta_ssid
    Supported rates: 1.0* 2.0 5.5 11.0 
    DS Parameter set: channel 1
    RSN:   * Version: 1
       * Group cipher: CCMP
       * Pairwise ciphers: CCMP
       * Authentication suites: PSK
       * Capabilities: (0x0000)
  

Diarmuid O'Briain Free Technology Academy



Open Networks 127

Create a wpa_supplicant.conf file with the key on the AP. Use the wpa_passphrase utility to
generate a WPA PSK from an ASCII passphrase for a SSID. 

  $ wpa_passphrase fta_ssid
  # reading passphrase from stdin
  mywpakey
  network={
    ssid="fta_ssid"
    #psk="mywpakey"
    psk=f8af67891dd4b156041e1757b68dec57bfbc28035486f3234aacabaae62ad6b6
  }
  
  
  $ sudo vi wpa_supplicant.conf
  
  network={
    ssid="fta_ssid"
    #psk="mywpakey"
    psk=f8af67891dd4b156041e1757b68dec57bfbc28035486f3234aacabaae62ad6b6
  }
  

To run the wpa_supplicant the following option switches apply. 

Option Description

-B Run daemon in the background

-c Path to configuration file

-D Driver to use

-d Debugging verbosity (-dd even more)

-i Interface to listen on, i.e. eth1

Here is a selection of drivers that are associated with the -D option switch. Whether to use one
of these or another can usually be determined by first trying the generic drivers, and should
they fail use dmesg to determine the driver that the system has used for the interface. 

Free Technology Academy Diarmuid O'Briain



128 Open Networks

Driver Description

nl80211 GNU/Linux Netlink nl80211/cfg80211 (generic)

wext GNU/Linux wireless extensions (generic)

hostap Host AP driver (Intersil Prism2/2.5/3)

hermes Agere Systems Inc. driver (Hermes-I/Hermes-II)

madwifi MADWIFI 802.11 support (Atheros, etc.)

broadcom Broadcom wl.o driver

wired wpa_supplicant wired Ethernet driver

roboswitch wpa_supplicant Broadcom switch driver

bsd BSD 802.11 support (Atheros, etc.)

ndis Windows NDIS driver

nl80211 is the new IEEE 802.11  netlink interface public header. Netlink is a socket family
used for the transfer of networking Inter Process Communication (IPC) between the kernel
and user space processes. For example iproute2 and iw use netlink to communicate with the
kernel. Other older drivers are based on Input/Output ConTroL (ioctl) system calls. Netlink is
designed  to  be  more  flexible  than  ioctl.  cfg80211 is  the  GNU/Linux  IEEE  802.11
configuration API. nl80211 is used to configure a cfg80211 device. 

  $ sudo wpa_supplicant -B -D nl80211 -c /etc/wpa_supplicant.conf -i eth1
  

Confirm that the link is connected. 

   $ iw dev eth1 link
  Connected to d4:ca:6d:70:90:d7 (on eth1)
    SSID: fta_ssid
    freq: 2412
  

Now that the connection is made an IP address needs to be applied to the newly created
interface. This can be done by using the ip addr command for a static address or the dhclient
command to get an IP address from a DHCP Server. 

  $ sudo dhclient eth1
  

Diarmuid O'Briain Free Technology Academy



Open Networks 129

Confirm the address has been established on the interface. 

  $ ip addr list
  1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN 
      link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
      inet 127.0.0.1/8 scope host lo
         valid_lft forever preferred_lft forever
      inet6 ::1/128 scope host 
         valid_lft forever preferred_lft forever
  2: eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc pfifo_fast state DOWN qlen 1000
      link/ether 28:d2:44:19:83:95 brd ff:ff:ff:ff:ff:ff
  3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
      link/ether 1c:3e:84:ed:99:0b brd ff:ff:ff:ff:ff:ff
      inet 78.143.141.175/24 brd 192.168.25.255 scope global eth1
         valid_lft forever preferred_lft forever
      inet6 fe80::1e3e:84ff:feed:990b/64 scope link 
         valid_lft forever preferred_lft forever

Free Technology Academy Diarmuid O'Briain



130 Open Networks

This page is intentionally blank

  

Diarmuid O'Briain Free Technology Academy



Open Networks 131

8. Virtual Private Networks (VPN)
A VPN is a network that uses Internet to transport data, but stops any external members from
accessing that data. 

This  means  that  a  virtual  network  with  connected  VPN nodes  tunnelled  through  another
network,  through  which  the  traffic  passes  and  with  which  no  one  outside  the  VPN  can
interact. It is used when remote users wish to access a corporate network to maintain the
security and privacy of the data. Various methods can be used to configure a VPN, such as
SSH, Secure Sockets Layer (SSL)/Transport Layer Security (TLS)/, Crypto IP Encapsulation
(CIPE),  IP  Security  (IPSec),  Point  to  Point  Tunnelling  Protocol  (PPTP)  and  Layer  2
Tunnelling Protocol (L2TP). 

In order to perform the configuration tests in this section, OpenVPN,will be used. OpenVPN
is a solution based on SSL VPN and can be used for a wide range of solutions, for example,
remote access, VPN point to point, secure WiFi networks or distributed corporate networks.
OpenVPN implements OSI layer 2 or 3 using SSL/TLS protocols and supports authentication
based on certificates, smart cards and other confirmation methods. OpenVPN is not a proxy
applications server and does not operate through a web browser. 

In  order  to  analyse  it,  there  is  an  option  in  OpenVPN  called  OpenVPN  for  Static  key
configurations, which provides a simple method for configuring a VPN that is ideal for tests
or point-to-point connections. The advantages are the simplicity and the fact that it  is not
necessary to have a X509 public key infrastructure (PKI) certificate to maintain the VPN. The
disadvantages are that it only permits one client and one server, as, because the public key and
private key are not used, there may be the same keys as in previous sessions and there must be
a text-mode key in each peer and the secret key must be previously exchanged for a secure
channel. 

Free Technology Academy Diarmuid O'Briain



132 Open Networks

8.1 IPv4 OpenVPN tunnel

For demonstration build a simple Point to Point (P2P) link from one end of the network to the
other. Install the sever and create a working directory in the user home directory (for more
permanent installations there is a system OpenVPN directory  /etc/openvpn that can is used.
Create a configuration file setting the device dev to be created as a tunnel (tun). set-up an IP
scheme for the tunnel that will be created with the address 10.10.10.1 the server side of the
tunnel and 10.10.10.2 the client side. Finally a shared secret key file is identified. This is not
created yet, it will be created on the client and shared with the server. 

8.1.1 Server set-up
  $ sudo apt-get install openvpn
  $ mkdir ~/openvpn
  
  $ vi ~/openvpn/server.ovpn
  
  dev tun 
  ifconfig 10.10.10.1 10.10.10.2
  secret static.key

  

On the client edit the /etc/hosts file with a name for the central OpenVPN server if it is not
named via DNS. Again make a directory in the users home directory  openvpn to house the
configuration and key files. Generate a key file static.key locally and using a secure means (in
this case sftp) copy it to the corresponding directory on the server. 

Diarmuid O'Briain Free Technology Academy



Open Networks 133

8.1.2 Client set-up
  $ sudo apt-get install openvpn

  $ sudo -s
  # cat << OVPNIP >> /etc/hosts
  > # Added for OpenVPN - `date` #
  > 78.143.141.20
  > OVPNIP

  # exit
  $ mkdir ~/openvpn
  $ cd ~/openvpn
  $ openvpn --genkey --secret static.key
  $ cat ~/openvpn/static.key | ssh debianuser@ovpn.ftacademy.org 'cat >> 
  ~/openvpn/static.key'
  
  The authenticity of host 'ovpn.ftacademy.org (78.143.141.20)' can't be 
  established.
  ECDSA key fingerprint is 63:b3:ea:33:ea:8a:34:ee:5b:43:39:94:04:62:9c:bc.
  Are you sure you want to continue connecting (yes/no)? yes
  Warning: Permanently added 'ovpn.ftacademy.org,78.143.141.20' (ECDSA) to 
  the list of known hosts.
  debianuser@ovpn.ftacademy.org's password: myPassword

  

Create a configuration file that points to the remote OpenVPN server, in the rest of the file
mirror what is configured in the client but swap the IP addresses on the ifconfig line. 

  $ vi ~/openvpn/ovpn.ftacademy.org.ovpn
  
  remote ovpn.ftacademy.org
  dev tun 
  ifconfig 10.10.10.2 10.10.10.1
  secret static.key
  

Free Technology Academy Diarmuid O'Briain



134 Open Networks

8.1.3 Run the OpenVPN Server

Change the permissions on the two newly created files and then run the openvpn server using
the configuration file created. 

  $ chmod 600 ~/openvpn/server.ovpn
  $ chmod 400 ~/openvpn/static.key
  
  $ sudo openvpn ~/openvpn/server.ovpn
  Sat May 10 11:08:21 2014 OpenVPN 2.3.2 i686-pc-linux-gnu [SSL (OpenSSL)] [LZO] [EPOLL] 
  [PKCS11] [eurephia] [MH] [IPv6] built on Jul 12 2013
  Sat May 10 11:08:21 2014 TUN/TAP device tun0 opened
  Sat May 10 11:08:21 2014 do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0
  Sat May 10 11:08:21 2014 /sbin/ip link set dev tun0 up mtu 1500
  Sat May 10 11:08:21 2014 /sbin/ip addr add dev tun0 local 10.10.10.1 peer 10.10.10.2
  Sat May 10 11:08:21 2014 UDPv4 link local (bound): [undef]
  Sat May 10 11:08:21 2014 UDPv4 link remote: [undef]
  Sat May 10 11:09:20 2014 Peer Connection Initiated with [AF_INET]78.143.152.254:1194
  Sat May 10 11:09:21 2014 Initialization Sequence Completed
  

Confirm the tun0 interface formed. 

  $ ip addr list tun0
  6: tun0: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN 
  qlen 100
      link/none 
      inet 10.10.10.1 peer 10.10.10.2/32 scope global tun0
         valid_lft forever preferred_lft forever
  

8.1.4 Connect with the OpenVPN client

Change the permissions of the files on the client also, then run openvpn with the configuration
file created. 

  $ chmod 600 ~/openvpn/ovpn.ftacademy.org.ovpn
  $ chmod 400 ~/openvpn/static.key
  
  
  $ sudo openvpn ~/openvpn/ovpn.ftacademy.org.ovpn
  Sat May 10 11:09:20 2014 OpenVPN 2.3.2 x86_64-pc-linux-gnu [SSL (OpenSSL)] [LZO] [EPOLL] 
  [PKCS11] [eurephia] [MH] [IPv6] built on Jul 12 2013
  Sat May 10 11:09:20 2014 TUN/TAP device tun0 opened
  Sat May 10 11:09:20 2014 do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0
  Sat May 10 11:09:20 2014 /sbin/ip link set dev tun0 up mtu 1500
  Sat May 10 11:09:20 2014 /sbin/ip addr add dev tun0 local 10.10.10.2 peer 10.10.10.1
  Sat May 10 11:09:20 2014 UDPv4 link local (bound): [undef]
  Sat May 10 11:09:20 2014 UDPv4 link remote: [AF_INET]78.143.141.20:1194
  Sat May 10 11:09:21 2014 Peer Connection Initiated with [AF_INET]78.143.141.20:1194
  Sat May 10 11:09:22 2014 Initialization Sequence Completed

An IP tunnel is created, confirm the IP address on the new tun0 interface and a traceroute to
the other end of the tunnel determines that the traffic appears to get to the far side in a single
hop despite the fact it traverses multiole routers. Obviously it still does but this traceroute is
encapsulated within a tunnel that itself is transported over the multiple routers. 

Diarmuid O'Briain Free Technology Academy



Open Networks 135

  $ ip addr list dev tun0
  4: tun0: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state
  UNKNOWN qlen 100
      link/none 
      inet 10.10.10.2 peer 10.10.10.1/32 scope global tun0
         valid_lft forever preferred_lft forever
  
  $ traceroute 10.10.10.1
  traceroute to 10.10.10.1 (10.10.10.1), 30 hops max, 60 byte packets
   1  10.10.10.1 (10.10.10.1)  1.975 ms  1.995 ms  2.003 ms
  

Reviewing an OpenVPN packet captured on the  eth0 interface below. Note that the traffic
within  the  tunnel  is  hidden  by  OpenVPN  SSL Obviously  packets  captured  on  the  tun0
interface are the actual traffic unencrypted as tun0 is simply a separate networking interface
from GNU/Linux perspective. 

  Frame : 166 bytes on wire (1328 bits) on interface eth0
  Ethernet II, Src: 28:d2:44:19:83:95, Dst: d4:ca:6d:61:dd:88
  Internet Protocol Version 4, Src: 78.143.152.254, Dst: 78.143.141.20
  User Datagram Protocol, Src Port: openvpn (1194), Dst Port: openvpn 
(1194)
  OpenVPN Protocol, Opcode: 0x19, Key ID: 3
      Type: 0xcb [opcode/key_id]
          1100 1... = Opcode: 0x19
          .... .011 = Key ID: 3
      Session ID: 7496750292753433419
      HMAC: 2d886382a755288784060aced497ae9e34de64fd
      Packet-ID: 2635760
      Net Time: Apr  1, 2060 01:53:55.000000000 IST
      Message Packet-ID Array Length: 225
      Packet-ID Array
  

Free Technology Academy Diarmuid O'Briain



136 Open Networks

8.2 IPv6 OpenVPN tunnel

An alternative to creating an IP tunnel is to encapsulate the Ethernet frames at layer 2, a layer
2 tunnel. 

tun devices receive raw IP packets and give them to a user space program, OpenVPN the
packets are encrypted and sends to the other end of the tunnel where they get decrypted and
are presented to the tun device on that side. 

Using layer 2  tap, Ethernet frames are encrypted instead of IP packets. A tap appears as an
Ethernet interface. In the following example a layer 2 VPN will be created end to end and
IPv6 addresses applied at each end. 

8.2.1 OpenVPN Server - tap

Leaving the infrastructure in place from the last set-up edit the server .ovpn files as follows.
The device is now tap and a script is called which will apply the IPv6 addresses to the new
interface. A setting of script-security of at least level 2 is required. 

  $ vi ~/openvpn/server.ovpn
  
  dev tap
  secret static.key
  script-security 3
  up /home/debianuser/openvpn/ipv6addr.sh
  

Create the ipv6addr.sh and make it executable. 

  $ vi ~/openvpn/ipv6addr.sh 
  #!/bin/bash
  
  ip link set dev $dev up
  ip -6 addr add 2a02:10::1/64 dev $dev
  

Diarmuid O'Briain Free Technology Academy



Open Networks 137

Run the server. 

  $ sudo openvpn ~/OpenVPN/server.ovpn
  Sat May 10 13:00:47 2014 OpenVPN 2.3.2 i686-pc-linux-gnu [SSL (OpenSSL)] [LZO] [EPOLL]  
  [PKCS11] [eurephia] [MH] [IPv6] built on Jul 12 2013
  Sat May 10 13:00:47 2014 NOTE: the current --script-security setting may allow this 
  configuration to call user-defined scripts
  Sat May 10 13:00:47 2014 TUN/TAP device tap0 opened
  Sat May 10 13:00:47 2014 /home/petrauser/OpenVPN/ipv6addr.sh tap0 1500 1576   init
  Sat May 10 13:00:47 2014 UDPv4 link local (bound): [undef]
  Sat May 10 13:00:47 2014 UDPv4 link remote: [undef]
  Sat May 10 13:01:03 2014 Peer Connection Initiated with [AF_INET]78.143.152.254:1194
  Sat May 10 13:01:04 2014 Initialization Sequence Completed
  

Review the tap interface and the assigned IPv6 address. 

  $ ip link show dev tap0
  15: tap0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state  
  UNKNOWN mode DEFAULT qlen 100
      link/ether a6:5e:47:c6:01:55 brd ff:ff:ff:ff:ff:ff

  $ ip addr list dev tap0
  15: tap0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state  
  UNKNOWN qlen 100
      link/ether a6:5e:47:c6:01:55 brd ff:ff:ff:ff:ff:ff
      inet6 2a02:10::1/64 scope global 
         valid_lft forever preferred_lft forever
      inet6 fe80::a45e:47ff:fec6:155/64 scope link 
         valid_lft forever preferred_lft forever
  

8.2.2 OpenVPN Client - tap

Similar to the configuration on the server except the remote pointer to the server. 

  $ vi ~/openvpn/server.ovpn
  
  remote ovpn.ftacademy.org
  dev tap 
  secret static.key
  script-security 3
  up /home/alovelace/OpenVPN/ipv6addr.sh
    

Again like on the server create the ipv6addr.sh and make it executable. The only difference
apart from the IPv6 address is the addition of a default route command via the IPv6 address
on the server side of the tunnel. 

  $ vi ~/openvpn/ipv6addr.sh 
  #!/bin/bash
  
  ip link set dev $dev up
  ip -6 addr add 2a02:10::2/64 dev $dev
  ip -6 route add default via 2a02:10::1
  

Free Technology Academy Diarmuid O'Briain



138 Open Networks

Connect to the server. 

  $ sudo openvpn ovpn.ftacademy.org.ovpn 
  [sudo] password for alovelace: 
  Sat May 10 13:44:21 2014 OpenVPN 2.3.2 x86_64-pc-linux-gnu [SSL (OpenSSL)] [LZO] 
  [EPOLL] [PKCS11] [eurephia] [MH] [IPv6] built on Jul 12 2013
  Sat May 10 13:44:21 2014 NOTE: the current --script-security setting may allow 
  this configuration to call user-defined scripts
  Sat May 10 13:44:21 2014 TUN/TAP device tap0 opened
  Sat May 10 13:44:21 2014 /home/alovelace/OpenVPN/ipv6addr.sh tap0 1500 1576   init
  Sat May 10 13:44:21 2014 UDPv4 link local (bound): [undef]
  Sat May 10 13:44:21 2014 UDPv4 link remote: [AF_INET]78.143.141.20:1194
  Sat May 10 13:44:31 2014 Peer Connection Initiated with 
  [AF_INET]78.143.141.20:1194
  Sat May 10 13:44:32 2014 Initialization Sequence Completed
  

Review the tap interface and the assigned IPv6 address. 

  $ ip link show dev tap0
  15: tap0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast 
state UNKNOWN mode DEFAULT qlen 100
      link/ether 72:2d:57:65:b3:9c brd ff:ff:ff:ff:ff:ff
  
  $ ip addr list dev tap0
  15: tap0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast 
  state UNKNOWN qlen 100
      link/ether 72:2d:57:65:b3:9c brd ff:ff:ff:ff:ff:ff
      inet6 2a02:10::2/64 scope global 
         valid_lft forever preferred_lft forever
      inet6 fe80::702d:57ff:fe65:b39c/64 scope link 
         valid_lft forever preferred_lft forever
  

Ping and traceroute the server from the client, then review the ip -6 route list 

  $ ping6 2a02:10::1
  PING 2a02:10::1(2a02:10::1) 56 data bytes
  64 bytes from 2a02:10::1: icmp_seq=1 ttl=64 time=2.08 ms
  64 bytes from 2a02:10::1: icmp_seq=2 ttl=64 time=1.26 ms
  64 bytes from 2a02:10::1: icmp_seq=3 ttl=64 time=1.24 ms
  
  $ traceroute6 2a02:10::1
  traceroute to 2a02:10::1 (2a02:10::1) from 2a02:10::2, 30 hops max, 24 
  byte packets
   1  2a02:10::1 (2a02:10::1)  1.416 ms  1.462 ms  0.984 ms
  
  $ ip -6 route list
  2a02:10::/64 dev tap0  proto kernel  metric 256 
  fe80::/64 dev eth0  proto kernel  metric 256 
  fe80::/64 dev tap0  proto kernel  metric 256 
  default via fe80::d6ca:6dff:fe61:dd88 dev eth0  proto ra  metric 1024  
  expires 1724sec
  

Diarmuid O'Briain Free Technology Academy



Open Networks 139

8.3 SSH VPN
SSH can be used for VPN tunnelling. SSH is not the most efficient tunnelling mechanism and
is not suitable for high throughput applications. Looking at an example where a remote server
is  running X.org with a  Desktop.  To access  the Desktop the Virtual  Network Computing
(VNC) graphical desktop sharing system is used, however over the public Internet this is a
serious security risk. SSH tunnelling can be used to secure the underlying network layer. 

8.3.1 Set-up VNC Server ran as localhost only

On the server install a Desktop environment and VNC. 

  $ sudo apt-get install gnome-desktop-environment
  $ sudo apt-get install tightvncserver 
  

Server Start the VNC Server with the option switch  -localhost. This prevents remote VNC
Viewers accessing the VNC Server. 

  $ tightvncserver -geometry 800x600 :1
  
  You will require a password to access your desktops. 
  
  Password: <Password>
  Verify:  <Password>
  
  Would you like to enter a view-only password (y/n)? n 
  

Stop the TightVNC Server, so it can be configured: 

  $ tightvncserver -kill :1
  

Free Technology Academy Diarmuid O'Briain



140 Open Networks

The VNC xstartup file needs editing. This change sets the TightVNC Server to render the full
Gnome3/Unity desktop. Copy the  xstartup file to  xstartup.orig and edit the  xstartup file to
replace its content as follows: 

  $ cp ~/.vnc/xstartup ~/.vnc/xstartup.orig
  $ vi ~/.vnc/xstartup 
  
  #!/bin/sh 
  xrdb $HOME/.Xresources 
  xsetroot -solid grey 
  x-terminal-emulator -geometry 80x24+10+10 -ls -title "$VNCDESKTOP Desktop" & 
  gnome-session & 
  

Start the TightVNC Server again now that the changes are made with the desired resolution.
The -localhost option switch prevents remote VNC Viewers accessing the VNC Server. 

  $ tightvncserver -geometry 1024x768 -localhost :1
  

8.4 VNC on the client side
Install TightVNC viewer. 

  $ sudo apt-get install xtightvncviewer 
  

Diarmuid O'Briain Free Technology Academy



Open Networks 141

8.5 SSH connection and VNC connection
On the  client  host  open  an  SSH connection  to  the  server  but  with  some  special  option
switches. 

Option Description

-C Enables compression of data between client
and server.

-L 5901:localhost:5901 Accepts connections from the localhost  on
port 5901 (this equates to the local display :
1) and tunnels it to the SSH client side such
that  it  is  available  locally  on  the  client
machine on its port 5901.

-v Use  when  establishing  the  first  time  as  it
gives verbose information on connection.

  $ ssh -C -L 5901:localhost:5901 alovelace@75.144.153.182
  

On the client run TightVNC viewer to access the local VNC Server on port 5901 (This is in
fact the tunnelled display). 

  $ xtightvncviewer -encodings "copyrect hextile" localhost:5901
  

VNC uses 'raw' pixel encoding by default as it  gives better performance for local access.
However in this case it is not really a local connection but a local connection redirected across
an SSH tunnel. 

• -encodings "copyrect hextile" option switch is more effective over the network, Copy

Rectangle (copyrect) encoding is efficient when something is being moved; the only
data sent is the location of a rectangle from which data should be copied to the current
location.  copyrect is  also be used to  efficiently  transmit  a repeated pattern.  hextile
encoding splits  rectangles  up in  to 16x16 tiles,  which are sent in  a  predetermined
order.  hextile encoding is  usually  the  best  choice for  using in  high-speed network
environments (e.g. Ethernet local-area networks). 

Free Technology Academy Diarmuid O'Briain



142 Open Networks

• The graphic shows a remote Ubuntu server being rendered in TightVNC viewer on a

Linux Mint Desktop. This is performed over an SSH tunnel between the computers. 

Diarmuid O'Briain Free Technology Academy



Open Networks 143

9. IP Telephony
IP  Telephony  (IPT)  or  more  often  called  Voice  over  Internet  Protocol  (VoIP),  Internet
Telephony, Broadband Telephony, Broadband Phone and Voice over Broadband is the routing
of voice conversations over  the Internet or through any other  IP based network.  It  is  the
conduct  of  a  telephone call  where  the  signal  is  carried  in  Internet  Protocol  (IP)  packets,
instead  of  over  dedicated  voice  transmission  lines.  This  allows  the  elimination  of  circuit
switching and a reduction in bandwidth used. Instead,  packet switching is used, where IP
packets  with voice data  are  sent  over  the network only on demand,  i.e.  when a caller  is
actually talking. 

The advantages of IPT over traditional telephony include; 

• Lower costs per call, especially for long-distance calls. 

• Lower infrastructure costs. 

• Integration with existing IT infrastructure.

Like traditional telephony, a telephone call consists of a signalling part and a bearer part. In
IPT there have been a number of attempts to deal with signalling, the initial attempt was to
use  the  International  Telecommunication  Union  (ITU)  Telecommunication  Standardisation
Sector (ITU-T) H.323 recommendation for call and control of audio-visual multimedia. It is
based on the ITU-T Q.931 signalling used in Integrated Signalling Digital Network (ISDN).
However H.323 and its family of protocols while fine for use on LANs prove difficult for
signalling  over  WANs.  A simpler  text  based  signalling  system  called  Session  Initiation
Protocol (SIP) sharing many similarities with Hypertext Transfer Protocol (HTTP) has proven
to be a very successful signalling protocol over both LANs or WANs. HTTP being the IETF
protocol for non real-time traffic and SIP for handling signalling for real-time traffic. SIP was
proposed in  1999 as  RFC 2543 with  a  rewrite  in  2002 as  RFC 3261.  There  are  various
associated supporting RFCs dealing with various SIP specifics. 

SIP  is  an  application-layer  control  protocol  that  can  establish,  modify,  and  terminate
multimedia sessions such as IPT. SIP can also invite participants to already existing sessions,
such  as  multicast  conferences.  Both  H.323 and  SIP only  establish  the  session.  Once  the
interactive audio and video session is  established the end-to-end delivery of the real-time
bearer data services is delivered by Real-time Transport Protocol (RTP). RTP was proposed as
RFC 1889 in 1996 and superseded by RFC 3550 in 2003. 

Free Technology Academy Diarmuid O'Briain



144 Open Networks

9.1 Audio Streams
Audio streams are carried using the RTP. At each end of the RTP stream COder/DECoder
(CODEC)  compress  and  code  sampled  voice  into  data  streams  which  are
uncompressed/decoded at  the receiving end.  End to end audio streams are impacted by a
number of conditions. These conditions must be minimised in network design to ensure voice
quality. 

9.2 Real-Time Transport Protocol
Real-Time Transport Protocol (RTP) developed by the Audio-Video Transport Working Group
of the IETF and published on 1996 as RFC 1889. RTP was also published by the ITU-T as
H.225.0.  It  exists  as  an  Internet  Draft  Standard  defined  in  RFC 3550  that  specifies  the
protocol, with RFC3551 defining a specific profile for Audio and Video Conferences with
Minimal Control. 

RTP defines a standardised packet format for delivering audio and video over the Internet. It
was originally designed as a multicast protocol, but has since been applied in many unicast
applications. It is frequently used in streaming media systems either in conjunction with Real
Time  Streaming  Protocol  (RTSP),  which  establishes  and  controls  single,  or  several  time
synchronised streams of continuous media such as audio and video or in video-conferencing
and Softswitch systems in conjunction with SIP. 

Diarmuid O'Briain Free Technology Academy



Open Networks 145

Code Size Meaning Notes

V 2 bits Version number Currently 2

P 1 bit Padding 1 = Padding to make packet a fixed length

X 1 bit Extension 1 = Additional 2 octet extension

CC 4 bits CSRC Count Number of Content Source Identifiers

M 1 bit Marker Indicates start of new video frame or audio talk spurt

PT 7 bits Payload type Defines codec in use. Matches SDP profile

SN 16 bits Sequence No. Incremented for each RTP packet sent

T 32 bits Timestamp Indicates relative timing of payload sample

SSRCI 32 bits Sync Source ID Unique number to identify a participant

CSRC 32 bits Contrib. Source ID Up to 15 (defined by CC) additional participants. Only used
if  multiple  streams are  mixed  by  a  conference  bridge  for
instance

Here is a packet example from a IP Telephone call.

Frame 10070
Ethernet II, Src: 28:d2:44:19:83:95, Dst: 00:0e:08:d2:e8:2b
Internet Protocol Version 4, Src: 192.168.1.11, Dst: 192.168.1.12
User Datagram Protocol, Src Port: 22156, Dst Port: 16482
Real-Time Transport Protocol
    10.. .... = Version: RFC 1889 Version (2)
    ..0. .... = Padding: False
    ...0 .... = Extension: False
    .... 0000 = Contributing source identifiers count: 0
    0... .... = Marker: False
    Payload type: GSM 06.10 (3)
    Sequence number: 20871
    Timestamp: 1567201601
    Synchronization Source identifier: 0xf67ed7d3 (4135507923)
    Payload: ffffffffffffffffffffffffffffffffffffffffffffffff...
  

Free Technology Academy Diarmuid O'Briain



146 Open Networks

9.3 Delay

Delay is the time required for a signal to traverse the network. Excessive delay can cause
pauses  in  conversation  and  even  causes  the  listener  to  misunderstand  due  to  language
inflection  and  tones.  Pauses  in  the  conversation  can  carry  so  much  of  the  meaning  in
themselves as non-verbal speech. According to the ITU-T recommendation G.114, 150 ms is
the maximum allowable one-way delay. In reality in most IPT networks a delay of up to 250
ms can be tolerated before the call becomes degraded to be noticeable. The 100 ms difference
in these two values is simply a safety net which prevents unperceived congestion problems
from reducing service quality or even bringing it  to a halt.  Normally the delay would be
composed of a number of parts:

• Network delay

• CODEC latency

• Jitter

• Packet loss 

For  the  purpose  of  the example  consider  that  each  packet  holds  10 ms of  audio and the
transfer delay across the network is constant and equal 1 ms.  

Diarmuid O'Briain Free Technology Academy



Open Networks 147

9.3.1 Network Delay

This is the delay incurred by a packet traversing the IP Network. To minimise this delay,
minimise  the number of  routers  that  need to  be traversed.  Alternatively,  specify a  higher
priority for voice traffic using prioritisation schemes such as Weighted Fair Queuing (WFQ)
or flow control mechanisms such as MPLS (Multi-protocol Label Switching). 

9.3.2 CODEC Latency

Each compression algorithm has certain built in delays. G.723 for example adds a fixed delay
of 30 ms. 

Free Technology Academy Diarmuid O'Briain



148 Open Networks

9.3.3 Jitter

Jitter  buffering  is  the  effect  of  network  delay  on  packet  arrival  at  the  Ingress.  Packets
transmitted  at  equal  intervals  from the  Egress  arrive  at  irregular  intervals  at  the  Ingress.
Excessive Jitter makes voice choppy and difficult to understand. Egress and Ingress Packet
intervals should be nearly equal with High Quality Voice. Jitter buffers can be used to smooth
out network fluctuations. 

Jitter  is  used  to  overcome  packet  delays  experienced  in  IP Networks  by  controlling  the
regularity in which voice packets arrive at the receiving end. In an IP Network there is no
guarantee  that  the  packets  sent  will  arrive  at  equal  intervals  or  that  they  will  arrive  in
sequence for that matter. A jitter buffer at the receiving end can re-sort the packets and present
the packets at equal intervals to the decompression algorithm based on the time-stamp within
the RTP header. The jitter buffer must strike a balance between delay and quality. If the buffer
is too small latency will be reduced but voice quality will be degraded causing audible effects
in the received voice. If its too big voice quality will be improved but latency will increase,
having the effect of turning a two-way conversation into a half-duplex one. 

Diarmuid O'Briain Free Technology Academy



Open Networks 149

Jitter Buffer Depth

The  jitter  buffer  is  configurable  and  can  be  optimised  for  given  network  conditions  to
compensate for fluctuations in those conditions. However, the downside is that it  can add
significant delay. 

  D = ED + βEV
 

 where:

  D – Play-out delay (set for each talk spurt)
  ED – Estimated average packet delay
  EV – Estimated average packet delay variation
  β – safety factor (usually β = 4)
  

The diagram shows for the three packets how the effect of Jitter is compensated. The buffer
delays sending the packets by a time greater than the sum of the delays. In this case the delays
are 4 and 3 ms respectfully, so transmitting after a delay of 8 ms. The receiver hears the audio
at the same speed as it is created, therefore the constant transfer delay is immaterial. 

Free Technology Academy Diarmuid O'Briain



150 Open Networks

9.3.4 Packet Loss

Packet  loss  is  a  normal  phenomenon  on  packet  networks.  Loss  can  be  caused  by  many
different reasons: overloaded links, excessive collisions on a LAN, physical media errors and
others.  Transport  layers  such  as  TCP account  for  loss  and  allow  packet  recovery  under
reasonable loss conditions. CODEC’s can also accommodate a certain amount of packet lost
but when it becomes excessive then the clarity of the voice call becomes degraded. Typical
mitigation for packet loss involves replaying the previous packet in place of the lost packet. 

9.3.5 Voice Compression

Diarmuid O'Briain Free Technology Academy



Open Networks 151

Voice  compression  is  an  end-to-end technology which  reduces  the  required  bandwidth  to
carry  a  voice  signal  when  compared  to  the  standard  64  Kb/s  channel  required  for
uncompressed voice (G.711). Whatever is compressed, must be decompressed at the other end
using  the  identical  technology.  The  major  disadvantage  of  voice  compression  is  that  the
process  itself  adds  delay  and  the  more  compression,  the  more  delay  is  induced.  Voice
compression also reduces voice quality. 

9.4 CODEC
A CODEC is a device or program capable of performing transformations on a data stream or
signal.  CODEC’s  can  both  put  the  stream  or  signal  into  an  encoded  form  (often  for
transmission,  storage  or  encryption)  and  retrieve,  or  decode  that  form  for  viewing  or
manipulation in a format more appropriate for these operations. 

The  choice  of  CODEC  has  an  affect  on  voice  quality  when  compression  is  utilised.
Compression in a CODEC has the result of removing redundant or less important information
from the receiving waveform in an effort to reduce bandwidth requirements for transmission. 

The table below lists a number of popular voice CODEC’s:

Standard MOS
End to end

delay
Bit rate 

(kb/s)
Compression 

algorithm
Voice 
quality

G.711 4.4 << 1 ms 64 PCM PSTN standard

G.728 4.2 << 2 ms 16 LD-CELP Good

G.726 4.2 1 ms 16, 24, 32, 40 ADPCM Good 40, fair 24

G.723.1 3.5 67 - 97 ms 5.3, 6.4 ACELP Good 6.4, fair 5.3

G.729A 4.2 25 - 30 ms 8 CS-ACELP Good

CODEC Latency

Each compression algorithm has certain built in delays. G.723 for example adds a fixed delay
of 30 ms. 

Free Technology Academy Diarmuid O'Briain



152 Open Networks

9.4.1 RTP Audio & Video Payloads

RFC 3551 describes the RTP Profiles for Audio and Video Conferences with Minimal Control
used in RTP version 2. 

PT Name Clock rate (Hz) Description

0 PCMU 8,000 ITU G.711 PCM u-Law Audio 64 kb/s

1 1016 8,000 CELP Audio 4.8 kb/s

2 G721 8,000 ITU G.721 ADPCM Audio 32 kb/s

3 GSM 8,000 European GSM Audio 13 kb/s

5 DVI4 8,000 DVI ADPCM Audio 32 kb/s

6 DVI4 16,000 DVI ADPCM Audio 64 kb/s

7 LPC 8,000 Experimental LPC Audio

8 PCMA 8,000 ITU G.711 PCM A-Law Audio 64 kb/s

9 G722 8,000 ITU G.722 Audio

10 L16 44,100 Linear 16 bit Audio 705.6 kb/s

11 L16 44,100 Linear 16 bit stereo Audio 1411.2 kb/s

14 MPA 90,000 MPEG-I or MPEG-II Audio only

15 G728 8,000 ITU G.728 Audio 16 kb/s

18   G729 8000 ITU G.729 Audio 8 kb/s

dyn  G726 8000 ITU G.726 Audio 40 kb/s

dyn  G729 8000 ITU G.726 Audio 40 kb/s

25 CELB 90,000 CelB Video

26 JBEG 90,000 JBEG Video

28 NV 90,000 nv Video

31 H261 90,000 ITU H.261 Video

32 MPV 90,000 MPEG-I and MPEG-II Video

33 MP2T 90,000 MPEG-II transport stream Video

34             H263 90,000 MPEG-4 transport stream Video

Note: Entries with Payload Type dyn have no static payload type assigned and are only used
with a dynamic payload type. 

Diarmuid O'Briain Free Technology Academy



Open Networks 153

9.5 Other Voice Quality Factors

9.5.1 Silence Suppression

Silence  suppression  takes  advantage  of  prolonged  periods  of  silence  in  conversations  to
reduce the number of packets transmitted. In a normal interactive conversation, each speaker
typically listens for about half the time, so it is not necessary to transmit packets carrying the
speaker’s silence. However, it can inadvertently introduce clarity degradation by removing
(clipping) parts of the speech utterances. 

9.5.2 Echo

Echo is caused by the signal reflections of the speaker’s voice from the far end telephony
equipment back into the speaker’s ear. Echo becomes a significant problem when the round
trip delay becomes greater than 50 ms, which is always the case when dealing with an IPT
network. To compensate for echo on the IPT network, echo cancellers are used. 

9.6 Voice Quality Measurements

9.6.1 P.800 MOS

With all the factors affecting voice quality, how can one measure it. The ITU addresses this
issue through two important recommendations. P.800 MOS deals with defining a method to
derive a Mean Opinion Score (MOS) of voice quality. The test involves recording several pre-
selected voice samples over the desired transmission media and then playing them back to a
mixed group of men and women under controlled conditions. The scores given by this group
are then weighed to give a single MOS score ranging between 1 (worst) and 5 (best). A MOS
of 4 is considered toll-quality voice which is the equivalent of a voice call on the 64 kb/s
G.711 channel. 

Free Technology Academy Diarmuid O'Briain



154 Open Networks

9.6.2 P.861 PSQM

Perceptual Speech Quality Measurement (PSQM) tries to automate this process by defining
an algorithm through which a computer can derive scores that have a close correlation to the
MOS scores. While PSQM is useful, many people have voiced concerns over the suitability of
this recommendation to packetised voice networks. It seems that PSQM was designed for the
circuit-switched network and does not take into effect important parameters such as jitter and
frame loss that are only relevant to IPT. As a result of PSQM limitations, researchers are
trying to come up with alternative objective ways to measure voice quality. One such proposal
is the Perceptual Analysis/Measurement System (PAMS) developed by British Telecom (BT).
Tests conducted by BT have shown good correlation between automated PAMS scoring and
manual MOS results. 

9.7 The SIP Protocol and Server Functions
SIP (RFC 3261) as already described is an application-layer signalling or control protocol for
the  creation,  modification,  and  termination  of  multimedia  sessions  with  one  or  more
participants.  These  sessions  include  Internet  telephone  calls,  multimedia  distribution,  and
multimedia  conferences.  SIP invitations  used to  create  sessions  carry  session  descriptions
using the Session Description Protocol (SDP) defined in RFC 2327 that allow participants to
agree on a set of compatible media types. 

SIP makes use of elements called Proxy Servers to:

• Help route requests to the user's current location. 

• Authenticate and authorise users for services. 

• Implement service providers call-routing policies. 

• Provide features of interest to users. 

SIP also provides a registration function that allows users to upload their current locations for
use by Proxy Servers. SIP can run over the top of both TCP and UDP transport protocols,
while  RTP  runs  on  the  UDP  transport  protocol  or  both  can  run  over  Stream  Control
Transmission Protocol (SCTP).

While  the  primary  goal  of  SIP is  to  initiate  a  session,  a  secondary  goal  is  to  deliver  a
description of the session that the user is being invited to attend. SIP conveys information
about the protocol used to describe the session. It uses a single request to send all required
information, as opposed to the extensive call set-up process used with H.323. SIP and H.323
both use RTP and UDP for transport of real voice traffic. 

Diarmuid O'Briain Free Technology Academy



Open Networks 155

SIP Addressing is URL like; 

• E.164 XXX-XXX-XXXX @ 111.111.111.111. 

• user@host or SIP: alovelace@ftacademy.org 

9.7.1 Session Description Protocol

SDP  is  a  format  for  describing  streaming  media  initialisation  parameters.  It  has  been
published  by  the  IETF  in  RFC  4566.  SDP started  off  as  a  component  of  the  Session
Announcement  Protocol  (SAP),  but  found  other  uses  in  conjunction  with  Real  Time
Streaming Protocol  (RTSP),  SIP and just  as  a  standalone  format  for  describing  multicast
sessions. 

Many of the SDP fields have no meaning in a SIP environment but remain within the standard
for those other uses. SDP was not designed for media negotiation and there have been other
proposals.  SIP uses SDP to offer possible media types which can be used for a call.  The
receiving User Agent (UA) responds with the media it wants to use. 

Field Name  Mand./Opt.

v= Protocol version number m

o= Owner/creator & session identity m

s= Session name m

I= Session information o

u= Uniform Resource Identifier o

e= Email address o

p= Phone number o

c= Connection information m

b= Bandwidth information o

t= Time session starts and stops m

r= Repeat times o

z= Time zone corrections o

k= Encryption key o

a= Attribute lines o

m= Media information m

a= Media attributes o

Note: Field order is significant 

Free Technology Academy Diarmuid O'Briain



156 Open Networks

9.7.2 SIP Redirect (Proxy) Server

SIP network  servers  behave  as  proxy  or  redirect  servers.  A SIP Proxy  Server  forwards
requests from a UA to the next SIP Server UA within the network. A SIP Proxy Server also
retains  information  for  billing/accounting  purposes.  SIP Proxy  Servers  respond  to  client
requests and inform them of the requested server’s address. Numerous hops can take place to
reach the final destination. SIP is very flexible and allows servers to contact external location
servers to determine user or routing policies. It does not bind the user into only one scheme to
locate users. 

In addition, SIP servers can either maintain state-full information or forward requests in a
state-less fashion. 

• State-less: processes the message and forgets everything else in regard to the call, until

the arrival of next message. 
• Deployed in the core of the networks, optimised for performance. 

• Could be integrated in IP routers. 

• State-full: holds information in regard to the set-up and tear-down of the call. 

• Maintain state of SIP transaction, but may not see all transactions. Associated

with a session, e.g. BYE. 
• Can perform forking and provide other services to UAs. 

• Call State-full: Proxy Servers 

• Are in the call path from set up to tear down. 

• Can provide information about the call to user or service provider. 

9.7.3 SIP Registrar

A registrar is a server that accepts REGISTER method requests and places the information it
receives in those requests into the location service for the domain it manages. 

9.7.4 Location Server

This  is  a  call  control  Database  which  records  the  details  of  previously  registered  SIP
addresses. 

9.7.5 User Agent Client (UAC)

A user agent client is a logical UA entity that creates a new request and then uses the client
transaction state  machine to  send it.  The role  of UAC lasts  only for the duration of that
transaction. In other words, if a piece of software initiates a request, it acts as a UAC for the
duration of that transaction. If it receives a request later, it assumes the role of a User Agent
Server (UAS) for the processing of that transaction. 

Diarmuid O'Briain Free Technology Academy



Open Networks 157

9.7.6 User Agent Server

A UAS is a logical entity that generates a response to a SIP request. The response accepts,
rejects, or redirects the request. This role lasts only for the duration of that transaction. In
other words, if a piece of software responds to a request, it acts as a UAS for the duration of
that transaction. If it generates a request later, it assumes the role of a UAC for the processing
of that transaction. 

9.7.7 SIP UA and Server Roles

The role of the UAC and UAS, as well as the proxy and redirect servers, is defined on a
transaction-by-transaction basis. For example, the UA initiating a call acts as a UAC when
sending the initial INVITE method request and as a UAS when receiving a BYE method
request from the caller. Similarly, the same software can act as a proxy server for one request
and as a redirect server for the next request. 

9.7.8 SIP Multimedia Protocol Stack

Free Technology Academy Diarmuid O'Briain



158 Open Networks

SIP utilises both UDP, TCP or SCTP. UDP allows the application to more carefully control the
timing of messages and their retransmission, to perform parallel searches without requiring
TCP connection state for each outstanding request, and to use multicast. Routers can more
readily snoop SIP UDP packets. 

TCP allows easier passage through existing firewalls. When TCP is used, SIP can use one or
more  connections  to  attempt  to  contact  a  user  or  to  modify  parameters  of  an  existing
conference. Different SIP requests for the same SIP call may use different TCP connections or
a single persistent connection, as appropriate. 

9.7.9 SIP Commands and Responses

SIP  defines  several  methods:  REGISTER,  INVITE,  ACK,  OPTIONS,  BYE,  CANCEL,
SUBSCRIBE, PUBLISH and NOTIFY. Methods that are not supported by a proxy or redirect
server are treated by that server an OPTIONS method and forwarded accordingly. Methods
that are not supported by a UAS or registrar cause a  501 (Not Implemented) response to be
returned. 

• REGISTER is used by a SIP device to register with a SIP Server. 

• INVITE is used by a registered SIP device to request a connection with another device

or service. 
• ACK and CANCEL are used when setting up sessions. 

• BYE is used to terminate sessions. 

The SIP events framework provides an extensible facility for requesting notification of certain
events from other SIP UAs. 

• SUBSCRIBE is used to allow a client application subscribe to a service like voice-

mail or other more specific services like remote patient medical device for example. 
• PUBLISH allows  a  service  to  report  an  event,  for  example  a  voice-mail  service

reporting that  it  has  received a new voice-mail,  or in  the medical  device example
might  report  pre-programmed information like the customers personal  and medical
details in response to an event. 

• NOTIFY is used with a Presence Server. A presence server is a broker that devices

subscribe  services  to,  the  broker  manages  the  relationship  with  the  services.  If  it
received a PUBLISH from a service, it checks its database for subscribed devices to
the service and generates NOTIFY messages for each device on the list. 

Diarmuid O'Briain Free Technology Academy



Open Networks 159

SIP Headers Used in Requests and Responses

Call-ID Used to uniquely identify a call between two user agents

Contact Used to convey URL of original resource requested or request originator

CSeq Command Sequence identifies out of sequence requests & retransmissions

From Identifies originator of request

To Indicates recipient of request

Subject Optional header indicating subject of media session

Content-Length Number of octets in the message body

Content-Type Indicates Internet media type. If not present application/SDP is assumed

User Agent Provides additional information about the user agent e.g. manufacturer

Server Provides additional information about the User Agent Server

Via Records the route taken by a request and used to route response

Record-Route Used to force all requests between User Agents to be routed via a Proxy

Route Forces routing through a path extracted from a Record-Route header

Authorization Carries credentials of user agent to a server

Encryption Used to specify the portion of a SIP message that has been encrypted

Hide Requests next hop proxy to encrypt the Via headers

Priority Allow the user agent to set the priority of a request: e.g. urgent, emergency

Supported List one more options implemented in a user agent or server

Unsupported Indicates features that are not supported by the server

SIP Responses and Error Codes

SIP responses are distinguished from requests by having a  Status-Line as their start-line. A
Status-Line  consists  of  the  protocol  version  followed  by  a  numeric  Status-Code  and  its
associated textual phrase, with each element separated by a single SP character. The first digit
of  the  Status-Code  defines  the  class  of  response.  The  last  two  digits  do  not  have  any
categorisation role. For this reason, any response with a status code between 100 and 199 is
referred to as a "1xx response", any response with a status code between 200 and 299 as a
"2xx response", and so on. 

Free Technology Academy Diarmuid O'Briain



160 Open Networks

9.7.10 SIP Registration

Device registration entails sending a REGISTER method request to a special UAS known as a
registrar. A registrar acts as the front end to the location service for a domain, reading and
writing mappings based on the contents of REGISTER requests. This location service is then
typically consulted by a proxy server that is responsible for routing requests for that domain.
The registrar and proxy server are logical roles that can be played by a single device in a
network. 

The UAC of each terminal sends a SIP REGISTER method to declare itself to the network.
The register assigns the information to the location server and returns a 200 OK message or a
401 UNAUTHORISED if it is going to present an authentication challenge. The terminal at
that stage may attempt to subscribe to additional services with a SIP SUBSCRIBE method. If
this is allowed a 200 OK response is returned otherwise the terminal will receive a 403 NOT
SUPPORTED message. 

Example Registration 

SIP device 6001 sends a SIP REGISTER method to the SIP server. The request includes the
user's contact list. This SIP Server sends a 401 UNAUTHORISED message to SIP device 6001
with a challenge to SIP device 6001. The device encrypts the user information according to
the challenge issued by the SIP server and sends the response to the SIP server. The SIP server
validates the SIP device 6001 credentials  and registers the user in its  contact database.  It
returns a 200 OK response in acknowledgement to the SIP device 6001.  

Diarmuid O'Briain Free Technology Academy



Open Networks 161

  Frame 1 REGISTER | 6001 -> SIP Server
  
     REGISTER sips:192.168.1.10 SIP/2.0
     Via: SIP/2.0/TLS 192.168.1.11:5061;branch=z9hG4bKnashds7
     Max-Forwards: 70
     From: 6001 <sips:6001@192.168.1.11>;tag=a73kszlfl
     To: 6001 <sips:6001@192.168.1.11>
     Call-ID: fg3j56k79d3DK09@192.168.1.11
     CSeq: 1 REGISTER
     Contact: <sips:6001@192.168.1.11>
     Content-Length: 0
  
  
  Frame 2 401 UNAUTHORISED | SIP Server -> 6001
  
     SIP/2.0 401 Unauthorised
     Via: SIP/2.0/TLS 192.168.1.11:5061;branch=z9hG4bKnashds7
      ;received=192.168.1.11
     From: 6001 <sips:6001@192.168.1.11>;tag=a73kszlfl
     To: 6001 <sips:6001@192.168.1.11>;tag=4543334455
     Call-ID: fg3j56k79d3DK09@192.168.1.11
     CSeq: 1 REGISTER
     WWW-Authenticate: Digest realm="sip_realm.ftacademy.org", qop="auth",
      nonce="6b9c8e4adf84f1ca94341a89cbe5acd4",
      opaque="", stale=FALSE, algorithm=MD5
     Content-Length: 0
  
  
  Frame 3 REGISTER | 6001 -> SIP Server
  
     REGISTER sips:192.168.1.10 SIP/2.0
     Via: SIP/2.0/TLS 192.168.1.11:5061;branch=dh78H9Ng2FDd3
     Max-Forwards: 70
     From: 6001 <sips:6001@192.168.1.11>;tag=ghY7k9h34fP9
     To: 6001 <sips:6001@192.168.1.11>
     Call-ID: fg3j56k79d3DK09@192.168.1.11
     CSeq: 2 REGISTER
     Contact: <sips:6001@192.168.1.11>
     Authorization: Digest username="6001", realm="sip_realm.ftacademy.org"
      nonce="6b9c8e4adf84f1ca94341a89cbe5acd4", opaque="",
      uri="sips:192.168.1.10",
      response="4adf8be5ca9436b9acd44f1c8e41a89"
     Content-Length: 0
  
  
  Frame 4 200 OK | SIP Server -> 6001
  
     SIP/2.0 200 OK
     Via: SIP/2.0/TLS 192.168.1.11:5061;branch=dh78H9Ng2FDd3
      ;received=192.168.1.11
     From: 6001 <sips:6001@192.168.1.11>;tag=ghY7k9h34fP9
     To: 6001 <sips:6001@192.168.1.11>;tag=ft65hJ21FD
     Call-ID: fg3j56k79d3DK09@192.168.1.11
     CSeq: 2 REGISTER
     Contact: <sips:6001@192.168.1.11>;expires=3600
     Content-Length: 0
  

Free Technology Academy Diarmuid O'Briain



162 Open Networks

9.7.11 SIP Call Setup

The SIP Proxy Server controls calls between the SIP devices within the IPT network. Any SIP
Device wishing to call another will send the SIP Proxy Server a SIP INVITE method which
will  contain the proposed call  parameters in an SDP message. The SIP Proxy Server will
acknowledge this with a 100-TRYING message. The SIP Proxy Server forwards the INVITE
method to the called SIP Device but will insert an additional  Via: header putting in its own
details to ensure the return message comes via itself. If the called device is available the SIP
Proxy Server  will  receive a  180-RINGING message.  It  forwards  it  to  the originator  after
stripping out the top Via: header line. When the called SIP Device answers it sends a 200-OK
message to  the  SIP Proxy Server  which  in  turn  forwards  it  after  inserting  a  Via: header.
Similarly an  ACKnowledgement method will pass to the called device from the originating
device  via  the  SIP Proxy  Server  and a  Real  Time  Protocol  (RTP)  media  stream will  be
established based on that negotiated in the SDP information in the SIP messages. 

Note: This flow is somewhat simplified. It is typical for a 401 UNAUTHORISED to be sent
back from the SIP Proxy Server  in  response to  the initial  INVITE method as the request
requires user authentication. 

Diarmuid O'Briain Free Technology Academy



Open Networks 163

  Frame 1  INVITE | 6002 -> SIP Proxy Server 
  
      INVITE
      Message Header
          CSeq: 1 INVITE
          Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG1ea92;rport User-Agent: Ekiga
          From: "6002" <sip:6002@192.168.1.12>;tag=7e5de992
          Call id: 9e60e992@192.168.1.12
          To: <sip:6001@192.168.1.10>
          Contact: "6002" <sip:6002@DEVICE 6002:5060>
          Allow: INVITE,ACK,OPTIONS,BYE,CANCEL,SUBSCRIBE,NOTIFY,REFER,MESSAGE,INFO,PING,PRACK
          Content length: 868
          Content-Type: : application/sdp
          Max-Forwards: 70
      Message Body
      Version=0
      Owner=6002 2890844526 2890844526 IN IP4 192.168.1.11
      Session name=-
      Connection info=IN IP4 192.168.1.11
      Time=0 0
      Media info=audio 49172 RTP/AVP 0
      Media attributes=rtpmap:0 PCMU/8000
  
  Frame 2  100 Trying | SIP Proxy Server -> 6002
  
     SIP/2.0 100 Trying
     Message Header
         Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG1ea92;rport User-Agent: Ekiga
         From: 6002 <sip:6002@192.168.1.10>;tag=9fxced76sl
         To: 6001 <sip:6001@192.168.1.10>
         Call-ID: 4553838437475765942@192.168.1.11
         CSeq: 2 INVITE
         Content-Length: 0
  
  Frame 3  INVITE | SIP Proxy Server -> 6001 
  
      INVITE
      Message Header
          CSeq: 1 INVITE
          Via: SIP/2.0/UDP DEVICE SIP_Proxy:5060;branch=z9hG1ea92;rport User-Agent: Asterisk
          Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG1ea92;rport User-Agent: Ekiga
          From: "6002" <sip:6002@192.168.1.12>;tag=7e5de992
          Call id: 9e60e992@192.168.1.12
          To: <sip:6001@192.168.1.10>
          Contact: "6002" <sip:6002@DEVICE 6002:5060>
          Allow: INVITE,ACK,OPTIONS,BYE,CANCEL,SUBSCRIBE,NOTIFY,REFER,MESSAGE,INFO,PING,PRACK
          Content length: 868
          Content-Type: : application/sdp
          Max-Forwards: 70
      Message Body
      Version=0
      Owner=6002 2890844526 2890844526 IN IP4 192.168.1.11
      Session name=-
      Connection info=IN IP4 192.168.1.11
      Time=0 0
      Media info=audio 49172 RTP/AVP 0
      Media attributes=rtpmap:0 PCMU/8000
    
  Frame 4  180 RINGING | 6001 -> SIP Proxy Server
  
      SIP/2.0 180 RINGING
      Message Header
         Via: SIP/2.0/UDP DEVICE SIP_Proxy:5060;branch=z9hG1ea92;rport User-Agent: Asterisk
         Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG1ea92;rport User-Agent: Ekiga
         From: 6002 <sip:6002@192.168.1.10>;tag=9fxced76sl
         To: 6001 <sip:6001@192.168.1.10>
         Call-ID: 4553838437475765942@192.168.1.11
         CSeq: 2 INVITE
         Content-Length: 0
  

Free Technology Academy Diarmuid O'Briain



164 Open Networks

  
  Frame 5  180 RINGING | SIP Proxy Server -> 6002
  
      SIP/2.0 180 RINGING
      Message Header
         Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG1ea92;rport User-Agent: Ekiga
         From: 6002 <sip:6002@192.168.1.10>;tag=9fxced76sl
         To: 6001 <sip:6001@192.168.1.10>
         Call-ID: 4553838437475765942@192.168.1.11
         CSeq: 2 INVITE
         Content-Length: 0
  
  Frame 6  200 OK | 6001 -> SIP Proxy Server
  
      SIP/2.0 200 OK
      Message Header
         Via: SIP/2.0/UDP DEVICE SIP_Proxy:5060;branch=z9hG1ea92;rport User-Agent: Asterisk
         Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG1ea92;rport User-Agent: Ekiga
         From: 6002 <sip:6002@192.168.1.10>;tag=9fxced76sl
         To: 6001 <sip:6001@192.168.1.10>
         Call-ID: 4553838437475765942@192.168.1.11
         CSeq: 2 INVITE
         Content-Length: 0
    
  Frame 7  200 OK | SIP Proxy Server -> 6002
  
      SIP/2.0 200 OK
      Message Header
         Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG1ea92;rport User-Agent: Ekiga
         From: 6002 <sip:6002@192.168.1.10>;tag=9fxced76sl
         To: 6001 <sip:6001@192.168.1.10>
         Call-ID: 4553838437475765942@192.168.1.11
         CSeq: 2 INVITE
         Content-Length: 0
    
  Frame 8  ACK | 6002 -> SIP Proxy Server
  
      ACK
      Message Header
         Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG1ea92;rport User-Agent: Ekiga
         From: 6002 <sip:6002@192.168.1.10>;tag=9fxced76sl
         To: 6001 <sip:6001@192.168.1.10>
         Call-ID: 4553838437475765942@192.168.1.11
         CSeq: 2 ACK
         Content-Length: 0
  
  Frame 9  ACK | SIP Proxy Server -> 6001
  
      SIP/2.0 200 OK
      Message Header
         Via: SIP/2.0/UDP DEVICE SIP_Proxy:5060;branch=z9hG1ea92;rport User-Agent: Asterisk
         Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG1ea92;rport User-Agent: Ekiga
         From: 6002 <sip:6002@192.168.1.10>;tag=9fxced76sl
         To: 6001 <sip:6001@192.168.1.10>
         Call-ID: 4553838437475765942@192.168.1.11
         CSeq: 2 ACK
         Content-Length: 0
  

The RTP Stream establishes between SIP device 6002 and SIP device 6001. 

Frame 123
Real-Time Transport Protocol
    10.. .... = Version: RFC 1889 Version (2)
    ..0. .... = Padding: False
    ...0 .... = Extension: False
    .... 0000 = Contributing source identifiers count: 0
    0... .... = Marker: False
    Payload type: GSM 06.10 (3)
    Sequence number: 20871
    Timestamp: 1567201601
    Synchronization Source identifier: 0xf67ed7d3 (4135507923)
    Payload: ffffffffffffffffffffffffffffffffffffffffffffffff...

Diarmuid O'Briain Free Technology Academy



Open Networks 165

9.7.12 SIP Call Terminate

The call can be terminated by a BYE message from either phone. If a terminate recording is
required the SIP Proxy Server can impose a terminate via the SIP Proxy in the original set-up
messages. 

  Frame 1  BYE | 6002 -> SIP Proxy Server
  
      BYE
      Message Header
         Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG1ea92;rport User-Agent: Ekiga
         From: 6002 <sip:6002@192.168.1.10>;tag=9fxced76sl
         To: 6001 <sip:6001@192.168.1.10>
         Call-ID: 4553838437475765942@192.168.1.11
         CSeq: 2 BYE
         Content-Length: 0
  
  Frame 2  BYE | SIP Proxy Server -> 6001
  
      BYE
      Message Header
         Via: SIP/2.0/UDP DEVICE SIP_Proxy:5060;branch=z9hG1ea92;rport User-Agent: Asterisk
         Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG1ea92;rport User-Agent: Ekiga
         From: 6002 <sip:6002@192.168.1.10>;tag=9fxced76sl
         To: 6001 <sip:6001@192.168.1.10>
         Call-ID: 4553838437475765942@192.168.1.11
         CSeq: 2 BYE
         Content-Length: 0
  
  
  Frame 3  200 OK | 6001 -> SIP Proxy Server
  
      SIP/2.0 200 OK
      Message Header
         Via: SIP/2.0/UDP DEVICE SIP_Proxy:5060;branch=z9hG1ea92;rport User-Agent: Asterisk
         Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG1ea92;rport User-Agent: Ekiga
         From: 6002 <sip:6002@192.168.1.10>;tag=9fxced76sl
         To: 6001 <sip:6001@192.168.1.10>
         Call-ID: 4553838437475765942@192.168.1.11
         CSeq: 2 BYE
         Content-Length: 0
  

Free Technology Academy Diarmuid O'Briain



166 Open Networks

  
  Frame 4  200 OK | SIP Proxy Server -> 6002
  
      SIP/2.0 200 OK
      Message Header
         Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG1ea92;rport User-Agent: Ekiga
         From: 6002 <sip:6002@192.168.1.10>;tag=9fxced76sl
         To: 6001 <sip:6001@192.168.1.10>
         Call-ID: 4553838437475765942@192.168.1.11
         CSeq: 2 BYE
         Content-Length: 0

9.8 IPT and the PSTN
IPT networks must interact with the PSTN either over Plain Old Telephone Service (POTS)
lines, ISDN or with Inter Machine Trunks (IMT) for bearer channels and SS7 interface to an
Service Switching Point (SSP) for signalling. 

9.8.1 Softswitch

A Softswitch is the central device in an IPT. It includes the SIP Proxy Server functions already
described plus Call Control, H.323 Gatekeeper, Gateways that allow for interconnection to the
Public Switched Telephony Networks (PSTN) as well as back-end services like Billing and
Service Delivery platforms. 

Diarmuid O'Briain Free Technology Academy



Open Networks 167

A Softswitch  can  control  connections  at  the  junction  point  between  circuit  and  packet
networks. A single device containing both the switching logic and the switching fabric can be
used for this purpose; however, modern technology has led to a preference for decomposing
this device into; 

• Call Agent  (CA)

• H.323 Gatekeeper

• Signalling Gateway (SG)

• MG Controller (MGC) 

• Media Gateways (MG)

9.8.2 Call Agent

The Call Agent takes care of functions like billing, call routing, signalling, call services and so
on  and  is  the  brain of  the  device.  A Call  Agent  may  control  several  different  MG’s  in
geographically dispersed areas over a TCP/IP link. 

The call agent functions include: 

• Billing 

• Call routing 

• Signalling 

• Call services 

A CA may control several different MG’s in geographically dispersed areas over a TCP/IP
links. 

9.8.3 Media Gateway

The MG connects different types of digital media stream together to create an end-to-end path
for the media (voice and data) in the call. It may have interfaces to connect to traditional
PSTN networks like E1, E3 or STM1, it  may have interfaces to connect  to ATM and IP
networks and in the modern system will have Ethernet interfaces to connect IPT calls. The
call agent will instruct the MG to connect media streams between these interfaces to connect
the call, all transparently to the end-users. 

Looking towards the end users from the switch, the MG may be connected to several access
devices.  These access devices can range from small  Analogue Telephone Adaptors (ATA)
which  provide  just  one  telephone  plug  to  an  Integrated  Access  Device  (IAD)  or  Private
Automatic  Branch  eXchange  (PABX)  which  may  provide  several  hundred  telephone
connections. 

Free Technology Academy Diarmuid O'Briain



168 Open Networks

9.9 MG Controllers
MGs provide a conversion point between the audio signals carried in RTP streams and other
network bearer channels. They are controlled by MGCs using the Media Gateway Control
Protocol (MGCP). MGCP was first proposed as RFC 2705 in 1999 and updated by RFC 3435
in 2003. 

Another  protocol  Megaco  (H.248)  H.248  or  Gateway  Control  Protocol  (GCP)  is  a  joint
recommendation  from  the  ITU-T  and  is  also  the  subject  of  IETF  RFC  3525.  It  is  an
implementation of the Media Gateway Control Protocol Architecture from RFC 2805 which
defines protocols that are used between elements of a physically  decomposed multimedia
gateway. The protocol controls the elements of a physically decomposed multimedia gateway,
which enables separation of the call control logic from media processing logic. 

Megaco (H.248) performs the same functions as MGCP, it uses a different syntax, commands
and processes and supports a broader range of networks. 

9.9.1 Signalling Gateway 

The SG provides  Transparent  inter-working of signalling between circuit-switched and IP
network. It may terminate SS7 signalling or translate and relay messages over an IP network
to a MGC or another SG. It provides a full duplex inter-networking function between SS7 and
IP protocols. 

The SG communicate with: 

• SS7 network over A-Links to SSPs

• MG over TCP/IP 

• MGC which communicates with multiple MG’s via MGCP or H.248 Megaco 

Diarmuid O'Briain Free Technology Academy



Open Networks 169

9.10 Services
Custom services  can be created by accessing subroutines  in  the application servers  using
Application Program Interfaces (API). When service modules are used in combination the
service possibilities are  vast.  Here are  some common protocols  and APIs  used to  deliver
services on SIP networks. 

Call Processing Language (CPL): is an XML-based scripting language for describing and
controlling call services. 

SIP Common Gateway Interface (CGI): is almost identical to HTTP CGI and is particularly
suitable as a web service creation environment. 

The Java APIs for Integrated Networks (JAIN): are specified as a community extension to
the Java platform. By providing a new level of abstraction and associated Java interfaces for
service  creation  across  circuit  switched  and  packet  networks,  JAIN  bridges  IP  and  IN
protocols to create an open market. 

OneAPI: is  a  set  of  application  programming  interfaces  (APIs)  that  expose  network
capabilities over IP networks. OneAPI complements existing client-side and Web APIs by
providing access to network capabilities and information, regardless of operator. The OneAPI
supersedes  a  series  of  earlier  protocols  called  Parlay  X  APIs.  Basically  it  allows  an
application  to  authenticate  new users  against  a  service  providers  subscriber  identity  data.
Applications are build to operate with one service provider, but the identity feature will work
across all carriers’ networks as OneAPI acts as a universal bridge between different operators.

Free Technology Academy Diarmuid O'Briain



170 Open Networks

9.11 FOSS Implementations
There are a number of FOSS licensed SIP switch products available. 

• Asterisk 

• Cipango SipServlets 1.1 application server 

• Elastix 

• Enterprise Communications System sipXecs 

• FreePBX 

• FreeSWITCH 

• GNU SIP Witch 

• Kamailio, formerly OpenSER 

• Mobicents Platform 

• Mysipswitch 

• OpenSIPS, fork of OpenSER 

• SailFin 

• SIP Express Router (SER) 

• Yate 

• YXA, based on Erlang 

Additionally there is lots of choice for SIP Client devices. 

• Blink, for Linux and Windows 

• Ekiga, formerly named GnomeMeeting 

• Empathy, using GTK+ libraries and Telepathy framework 

• Jitsi, a Java VoIP and Instant Messaging client with ZRTP encryption, for FreeBSD,

Linux, Mac OS X, Windows 
• KPhone, using Qt libraries, for Linux 

• Linphone, with a core/UI separation, the GUI is using GTK+ libraries, for Linux, Mac

OS X, Windows, and mobile phones 
• MicroSIP, lightweight softphone, using PJSIP stack, for Windows 

• PhoneGaim, based on Pidgin 

• QuteCom, formerly named OpenWengo, using Qt libraries, for Windows, Mac, and

Linux 
• SFLphone, with GTK+/Qt GUI, also supports IAX2 protocol, for Linux 

• Telephone, Mac OS X softphone written in Cocoa/Objective-C 

• Twinkle, using Qt libraries, for Linux 

• Yate client, using Qt libraries 

Diarmuid O'Briain Free Technology Academy



Open Networks 171

9.12 Test network

To build the network in the diagram the document describes the process using an Asterisk
Server, an Ekiga of SFLphone soft client and 2 LinkSys SPA IP phones. 

9.12.1 Asterisk Server

Prepare a GNU/Linux server which will fulfil the role of an Asterisk Server with a fixed IP
address, a  netmask and a default gateway. (hint - edit the /etc/network/interfaces file). 

  $ ip addr | grep inet
      inet 127.0.0.1/8 scope host lo
      inet6 ::1/128 scope host 
      inet 192.168.1.10/24 brd 192.168.1.255 scope global eth1
      inet6 fe80::ba27:ebff:fe95:4739/64 scope link 
  

Update the system and install the Asterisk Server. 

  $ sudo apt-get update
  
  $ sudo apt-get install asterisk
  
    - Configuring libvpb0
      - ITU-T telephone code: 353, Click OK   # i.e. 353 is the Ireland CC

 The files that are required for a basic set-up are in the /etc/asterisk/ directory. These are: 

• sip.conf 

• extensions.conf 

• voicemail.conf 

Free Technology Academy Diarmuid O'Briain



172 Open Networks

SIP Channel configuration – sip.conf

Backup the /etc/asterisk/sip.conf file 

  $ sudo mv /etc/asterisk/sip.conf /etc/asterisk/sip.conf.orig

Configure three SIP channels as shown in the network diagram. 

General 

This section defines a context in which the extensions will be configured later, a port number
for SIP messaging and an IP address to bind to, this is the IP address on the interface that
messages are expected on, i.e. the listening address. The default of 0.0.0.0 means listen on all
network interfaces. 

Channels

Each channel is  labelled,  the extension number is used in the example i.e.  [6001].    The
channel type can be <peer | user | friend>.

Channel type

• peer: is a SIP entity to which Asterisk sends calls, like another SIP provider. The peer

must authenticate at registration.

• user:  is  a SIP entity which can make calls  through the Asterisk switch but cannot

receive calls.

• friend: is an entity which is both a user and a peer, i.e. an IP Phone, Soft-client etc.

Asterisk actually creates two objects, a peer and a user, both with the same name.

Context

Defines a context in the extensions list.

Secret

Shared secret that the SIP Client device must also have.

Host

IP address of the SIP Client. In the case of it being set to  dynamic then the SIP Client will
register its IP address at the time of registration. This allows a DHCP Server to be used for
example to supply IP addresses to the SIP Client devices.

Diarmuid O'Briain Free Technology Academy



Open Networks 173

  $ sudo vi /etc/asterisk/sip.conf
  
  [general]
  context=internal
  port=5060
  bindaddr=0.0.0.0
  
  [6001]
  type=friend
  context=internal
  secret=1234
  host=dynamic
  
  [6002]
  type=friend
  context=internal
  secret=1234
  host=dynamic
  
  [6003]
  type=friend
  context=internal
  secret=1234
  host=dynamic
  

SIP Dialplan – extensions.conf

Now backup the /etc/asterisk/extensions.conf file. 

  $ sudo mv /etc/asterisk/extensions.conf /etc/asterisk/extensions.conf.orig

Now  adding  the  three  entries  to  the  dialplan  for  SIP Devices  as  shown  in  the  network
diagram. 

General 

Set the static option to yes, this relates to the dialplan save command. The writeprotect set to
no and static=yes, then the current dialplan can be saved with the  dialplan save command
overwriting the existing extensions.conf.  Clearglobalvars if set will clear global variables in
the event of an Asterisk reload. In this case it is set to ensure that  global variables will be
persistent in the case of a reload. 

Free Technology Academy Diarmuid O'Briain



174 Open Networks

Context

The context  is  where  the  extensions  are  defined in  a  dialplan  priority  ordered list  in  the
following format:

exten = extension,priority,Command(parameters)

So for example the line below means this line is the first priority for extension 6001. The
command Dial tells the Asterisk Switch to place a call of type SIP to ${EXTEN}. ${EXTEN}
simply replaces itself with the extension field, in this case 6001. So it is possible to rewrite
this line with 6001 in place of ${EXTEN}.  There are many other types (for example): 

zap Regular telephone line card in the Asterisk Switch (line card)

mgcp MGCP

misdn ISDN channel

h.323 H.323 network device

iax / iax2 Inter Asterisk eXchange protocol

skinny Cisco Skinny client-only

sip SIP

gtalk Google Talkchannel

ss7 SS7

  exten => 6001,1,Dial(SIP/${EXTEN})

The Hangup line is the second priority and should the call fail then this is the next step in the
dial plan. This causes a hang up of the calling channel. A cause code like 404 NOT FOUND
can be put in the parenthesis is given the channel's hangup cause is set to the given value.

  exten => 6001,2,Hangup()
  exten => 6001,2,Hangup(404 NOT FOUND)

Diarmuid O'Briain Free Technology Academy



Open Networks 175

Configure the dialplan to accommodate the three extensions in the diagram.

  $ sudo vi /etc/asterisk/extensions.conf
  
  [general]
  static=yes
  writeprotect=no
  clearglobalvars=no
  
  [internal]
  exten => 6001,1,Dial(SIP/${EXTEN})
  exten => 6001,2,Hangup()
  
  exten => 6002,1,Dial(SIP/${EXTEN})
  exten => 6002,2,Hangup()
  
  exten => 6003,1,Dial(SIP/${EXTEN})
  exten => 6003,2,Hangup()
  

Restart Asterisk Server and use the rasterisk CLI interface to review the SIP peers, users and
dialplan. 

  $ sudo service asterisk restart
   
  $ sudo rasterisk
  
  NetDev01*CLI> sip set debug on
  NetDev01*CLI> sip reload
  NetDev01*CLI> sip show users
  
  NetDev01*CLI> sip show peers
  Name/username     Host           Dyn Forcerport ACL Port   Status     
  6001/6001         192.168.1.11    D   N             5060   Unmonitored   
  6002/6002         192.168.1.12    D   N             5060   Unmonitored 
  6003/6003         192.168.1.13    D   N             5060   Unmonitored 
  
  
  NetDev01*CLI> sip show users
  Username    Secret    Accountcode   Def.Context   ACL  ForcerPort
  6003        1234                    default       No   Yes       
  6002        1234                    default       No   Yes       
  6001        1234                    default       No   Yes        
  
  
  NetDev01*CLI> dialplan show internal
  [ Context 'internal' created by 'pbx_config' ]
    '6001' =>         1. Dial(SIP/6001)                [pbx_config]
                      2. Hangup()                      [pbx_config]
    '6002' =>         1. Dial(SIP/6002)                [pbx_config]
                      2. Hangup()                      [pbx_config]
    '6003' =>         1. Dial(SIP/6003)                [pbx_config]
                      2. Hangup()                      [pbx_config]
  

Free Technology Academy Diarmuid O'Briain



176 Open Networks

9.12.2 SIP Softphone Client

On the computer with the soft-client which is acting as a SIP Device, i.e. 192.168.1.11 install
the SIP Ekiga and the SFLphone Client software. 

  $ sudo apt-get install ekiga
  $ sudo apt-get install sflphone-gnome
  

Run the Ekiga application, select Edit -> Accounts, select Accounts -> Add a SIP Account. 

Fill in the table as shown, in this case for 6001 and click OK. The account should register with
the Asterisk Server. 

Diarmuid O'Briain Free Technology Academy



Open Networks 177

Another option is the SPL Softphone. 

Run the application and select Edit -> Accounts, then select Add. 

Fill-out the Account Parameters similar to what is shown below as select Apply. The Status
should change to Registered. 

Free Technology Academy Diarmuid O'Briain



178 Open Networks

9.12.3 SIP Phone

There are many manufacturers of SIP phones like LinkSys, Yealink to name a few. Configure
2 devices for 192.168.1.12 and 192.168.1.13. The following needs to be configured: 

• Network settings 

• Host-name: 6001 

• IP Address: 192.168.1.11 

• IP net-mask: 255.255.255.0 

• IP Gateway: 192.168.1.1 

• SIP settings 

• SIP Port: 5060 

• Proxy and Registration 

• SIP Proxy: 192.168.1.10 

• Make Call Without Reg: no 

• Answer Call Without Reg: no 

• Subscriber information 

• Display name: 6001 

• Authentication ID: 6001 

• User ID: 6001 

• Use Authentication ID: Yes 

• Audio Configuration 

• Preferred Codec: G711u 

• Silence Suppression Enable: no 

9.12.4 Configuring voice-mail

Asterisk  includes  a  working  voice-mail  module  and  it  is  configured  via
/etc/asterisk/voicemail.conf file. Backup the default file.

  $ sudo mv /etc/asterisk/voicemail.conf /etc/asterisk/voicemail.conf.orig

General

For the simple setup it is just necessary to establish the file format to use for voice-mails. 
Options are < wav |  wav49 | gsm | g723sf | >. For quality wav is a good selection, for small 
files use either wav49 or gsm.

Diarmuid O'Briain Free Technology Academy



Open Networks 179

Default

Voice-mail boxes are setup under the [default] context heading. 

Entries for each voice-mail box should follows this format: 

<nnnn> => <pppp>,<name>, <email> 

where nnnn is the SIP Device identity, pppp is the voice-mail PIN. 

  $ sudo vi /etc/asterisk/voicemail.conf
  
  [general]
  format=wav
  
  [default]
  6001 => 2345,Ada Lovelace,alovelace@ftacademy.org
  6002 => 9876,Charles Babbage,cbabbage@ftacademy.org
  6003 => 6789,Luigi Menabrea,lmenabrea@ftacademy.org
  

Dialplan

To complete,  re-modify the  /etc/asterisk/extensions.conf file to add the voice-mail  to each
extension. The 20 in the Dial() refers to a time-out delay of 20 seconds before moving to the
next  priority.  i.e.  2.  If  the  letter  u is  present  in  the  voicemail()  command will  cause  the
unavailable message to be played. 

The line  exten => 6999,1,VoiceMailMain(${CALLERID(num)}) establishes number  6999 as
the voice-mail number. When it is rang the number of the device is passed to the voice-mail
module, it requests a pass-code before allowing access to the voice-mails. The pass-code is
the number in the voicemail.conf corresponding to the SIP device ID. i.e. 9876 for 6002. 

  $ sudo vi /etc/asterisk/extensions.conf
  
  [general]
  static=yes
  writeprotect=no
  clearglobalvars=no
  
  [internal]
  exten => 6001,1,Dial(SIP/${EXTEN},20)
  exten => 6001,2,voicemail(${EXTEN},u)
  
  exten => 6002,1,Dial(SIP/${EXTEN},20)
  exten => 6002,2,voicemail(${EXTEN},u)
  
  exten => 6003,1,Dial(SIP/${EXTEN},20)
  exten => 6003,2,voicemail(${EXTEN},u)
  
  exten => 6999,1,VoiceMailMain(${CALLERID(num)})
  

Free Technology Academy Diarmuid O'Briain



180 Open Networks

To disable the password request when ringing in to retrieve voice-mails add the option s at the
end of the line as follows: 

  exten => 6999,1,VoiceMailMain(${CALLERID(num)},s)
  

Reload the voice-mail settings and confirm setup. 

  NetDev01*CLI> voicemail reload
  Reloading voice-mail configuration...
  
  NetDev01*CLI> voicemail show users
  Context    Mbox  User                      Zone       NewMsg
  default    6001  Ada Lovelace                              0
  default    6002  Charles Babbage                           0
  default    6003  Luigi Menabrea                            0
  3 voice-mail users configured.
  

9.13 Testing the configuration
Ensure the user is in the  /etc/group entry for  wireshark. Unplug all phones so that the SIP
Proxy Server is the only device on the network. 

  $ sudo vi /etc/group
  
  ...
  wireshark:x:127:alovelace
  ...
  

On the  SIP Proxy  Server  either  run  Wireshark or  its  command-line  derivative  tshark to
capture all traffic on port 5060 or 

  $ tshark -V -i eth1  -S "-----"  -f 'port 5060' | tee /tmp/sipCapture.txt
  
  - -V - Detailed output
  - -i <interface> - Interface
  - -S - Page separator
  - -f <filter> - Filter traffic of this type.
  tee - Read from standard input and write to standard output and files.
  

Diarmuid O'Briain Free Technology Academy



Open Networks 181

9.13.1 Registration test - IP Phone

Power up one of the IP Phones,  say  6002 and the device,  a  Linksys/SPA941 sends a  SIP
registration message to the SIP Proxy Server. 

  Frame 1 
  Ethernet II, Src: 00:0e:08:d2:e8:2b), Dst: b8:27:eb:95:47:39
  Internet Protocol Version 4, Src: 192.168.1.12, Dst: 192.168.1.10
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Request-Line: REGISTER sip:192.168.1.10 SIP/2.0
      Message Header
          Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG4bK-f50830af
          From: "6002" <sip:6002@192.168.1.10>;tag=b8433b6f238a1904o0
          To: "6002" <sip:6002@192.168.1.10>
          Call-ID: 6b81461c-88494544@192.168.1.12
          CSeq: 4157 REGISTER
          Max-Forwards: 70
          Contact: "6002" <sip:6002@192.168.1.12:5060>;expires=3600
          User-Agent: Linksys/SPA941
          Content-Length: 0
          Allow: ACK, BYE, CANCEL, INFO, INVITE, NOTIFY, OPTIONS, REFER
          Supported: replaces
  

The SIP Proxy Server, an  Asterisk PBX responds with the  401 UNAUTHORISED message
inviting  the  IP  Phone  to  authenticate  using  the  scheme:  Digest with  the  MD5 hashing
algorithm on the realm asterisk and it supplies a number to be used once (nonce) 752fc98f. 

  Frame 2 
  Ethernet II, Src: b8:27:eb:95:47:39, Dst: 00:0e:08:d2:e8:2b)
  Internet Protocol Version 4, Src: 192.168.1.10, Dst: 192.168.1.12
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Status-Line: SIP/2.0 401 Unauthorised
      Message Header
          Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG4bK;
               received=192.168.1.12;rport=5060
          From: "6002" <sip:6002@192.168.1.10>;tag=b8433b6f238a1904o0
          To: "6002" <sip:6002@192.168.1.10>;tag=as092cae5e
          Call-ID: 6b81461c-88494544@192.168.1.12
          CSeq: 4157 REGISTER
          Server: Asterisk PBX
          Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY, 
                 INFO, PUBLISH
          Supported: replaces, timer
          WWW-Authenticate: Digest algorithm=MD5, realm="asterisk", nonce="752fc98f"
          Content-Length: 0
  

Free Technology Academy Diarmuid O'Briain



182 Open Networks

The IP Phone responds with a username 6002, on the realm asterisk, the nonce 752fc98f, a uri
sip:192.168.1.10,  the  algorithm  MD5 and  a  response  to  the  authentication  query
661a4caa478660bcde036ebbb0853cdf. 

  
  Frame 3 
  Ethernet II, Src: 00:0e:08:d2:e8:2b), Dst: b8:27:eb:95:47:39
  Internet Protocol Version 4, Src: 192.168.1.12, Dst: 192.168.1.10
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Request-Line: REGISTER sip:192.168.1.10 SIP/2.0
      Message Header
          Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG4bK-b287c76b
          From: "6002" <sip:6002@192.168.1.10>;tag=b8433b6f238a1904o0
          To: "6002" <sip:6002@192.168.1.10>
          Call-ID: 6b81461c-88494544@192.168.1.12
          CSeq: 4158 REGISTER
          Max-Forwards: 70
          Authorization: Digest username="6002",realm="asterisk",nonce="752fc98f",
                         uri="sip:192.168.1.10",algorithm=MD5,
                         response="661a4caa478660bcde036ebbb0853cdf"
          Contact: "6002" <sip:6002@192.168.1.12:5060>;expires=3600
          User-Agent: Linksys/SPA941
          Content-Length: 0
          Allow: ACK, BYE, CANCEL, INFO, INVITE, NOTIFY, OPTIONS, REFER
          Supported: replaces
  

The SIP Proxy Server responds to the successful authentication with a  200 OK message to
indicate that the IP Phone has been registered with a contact URI User Part of: 6002, a contact
Uniform Resource Identifier (URI) Host Part of:  192.168.1.12 and a contact URI Host Port
of: 5060. 

  Frame 4 
  Ethernet II, Src: b8:27:eb:95:47:39, Dst: 00:0e:08:d2:e8:2b)
  Internet Protocol Version 4, Src: 192.168.1.10, Dst: 192.168.1.12
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Status-Line: SIP/2.0 200 OK
      Message Header
          Via: SIP/2.0/UDP 192.168.1.12:5060;
               branch=z9hG4bK-b287c76b;received=192.168.1.12;rport=5060
          From: "6002" <sip:6002@192.168.1.10>;tag=b8433b6f238a1904o0
          To: "6002" <sip:6002@192.168.1.10>;tag=as092cae5e
          Call-ID: 6b81461c-88494544@192.168.1.12
          CSeq: 4158 REGISTER
          Server: Asterisk PBX
          Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY, 
                 INFO, PUBLISH
          Supported: replaces, timer
          Expires: 3600
          Contact: <sip:6002@192.168.1.12:5060>;expires=3600
          Date: Wed, 08 Apr 2015 21:09:10 GMT
          Content-Length: 0
  

Diarmuid O'Briain Free Technology Academy



Open Networks 183

9.13.2 Registration test - Softphone

Run up the Ekiga Softphone on a laptop and monitor the process, it mirrors that of the IP
Phone. 

  Frame 1 
  Ethernet II, Src: 28:d2:44:19:83:95, Dst: b8:27:eb:95:47:39
  Internet Protocol Version 4, Src: 192.168.1.11, Dst: 192.168.1.10
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Request-Line: REGISTER sip:192.168.1.10 SIP/2.0
      Message Header
          CSeq: 1 REGISTER
          Via: SIP/2.0/UDP 192.168.1.51:5060;
               branch=z9hG4bK68548735-aee2-e411-8843-28d244198395;rport
          User-Agent: Ekiga Softphone
          From: <sip:6001@192.168.1.10>;tag=6e088735-aee2-e411-8843-28d244198395
          Call-ID: 36fa8635-aee2-e411-8843-28d244198395@riomhaire-OB
          To: <sip:6001@192.168.1.10>
          Contact: <sip:6001@192.168.1.51:5060>;q=1
          Allow: INVITE,ACK,OPTIONS,BYE,CANCEL,SUBSCRIBE,NOTIFY,REFER,MESSAGE,
                 INFO,PING,PRACK
          Expires: 3600
          Content-Length: 0
          Max-Forwards: 70
  
  
  Frame 2
  Ethernet II, Src: b8:27:eb:95:47:39, Dst: 28:d2:44:19:83:95
  Internet Protocol Version 4, Src: 192.168.1.10, Dst: 192.168.1.11
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Status-Line: SIP/2.0 401 Unauthorised
      Message Header
          Via: SIP/2.0/UDP 192.168.1.51:5060;
               branch=z9hG4bK68548735-aee2-e411-8843-28d244198395;
               received=192.168.1.51;rport=5060
          From: <sip:6001@192.168.1.10>;tag=6e088735-aee2-e411-8843-28d244198395
          To: <sip:6001@192.168.1.10>;tag=as2ef2ea7f
          Call-ID: 36fa8635-aee2-e411-8843-28d244198395@riomhaire-OB
          CSeq: 1 REGISTER
          Server: Asterisk PBX
          Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY, 
                 INFO, PUBLISH
          Supported: replaces, timer
          WWW-Authenticate: Digest algorithm=MD5, realm="asterisk", nonce="3ca33900"
          Content-Length: 0
  
  

Free Technology Academy Diarmuid O'Briain



184 Open Networks

  Frame 3
  Ethernet II, Src: 28:d2:44:19:83:95, Dst: b8:27:eb:95:47:39
  Internet Protocol Version 4, Src: 192.168.1.11, Dst: 192.168.1.10
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Request-Line: REGISTER sip:192.168.1.10 SIP/2.0
      Message Header
          CSeq: 2 REGISTER
          Via: SIP/2.0/UDP 192.168.1.51:5060;
               branch=z9hG4bK1e078835-aee2-e411-8843-28d244198395;rport
          User-Agent: Ekiga Softphone
          Authorization: Digest username="6001", realm="asterisk", 
                         nonce="3ca33900",  uri="sip:192.168.1.10", algorithm=MD5, 
                         response="eaee51c6b4a0caa137b8872d1bf4ff2b"
          From: <sip:6001@192.168.1.10>;tag=6e088735-aee2-e411-8843-28d244198395
          To: <sip:6001@192.168.1.10>
          Contact: <sip:6001@192.168.1.51:5060>;q=1
          Allow: INVITE,ACK,OPTIONS,BYE,CANCEL,SUBSCRIBE,NOTIFY,REFER,MESSAGE,
                 INFO,PING,PRACK
          Expires: 3600
          Content-Length: 0
  
  
  Frame 4
  Ethernet II, Src: b8:27:eb:95:47:39, Dst: 28:d2:44:19:83:95
  Internet Protocol Version 4, Src: 192.168.1.10, Dst: 192.168.1.11
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Status-Line: SIP/2.0 200 OK
      Message Header
          Via: SIP/2.0/UDP 192.168.1.51:5060;
               branch=z9hG4bK1e078835-aee2-e411-8843-28d244198395;
               received=192.168.1.51;rport=5060
          From: <sip:6001@192.168.1.10>;tag=6e088735-aee2-e411-8843-28d244198395
          To: <sip:6001@192.168.1.10>;tag=as2ef2ea7f
          Call-ID: 36fa8635-aee2-e411-8843-28d244198395@riomhaire-OB
          CSeq: 2 REGISTER
          Server: Asterisk PBX
          Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY, 
                 INFO, PUBLISH
          Supported: replaces, timer
          Expires: 3600
          Contact: <sip:6001@192.168.1.51:5060>;expires=3600
          Date: Wed, 08 Apr 2015 21:39:47 GMT
          Content-Length: 0
  

Diarmuid O'Briain Free Technology Academy



Open Networks 185

Following the registration the Ekiga Softphone attempts to PUBLISH a service. The service is
defined as eXtendable Markup Language (XML). 

  Frame 5
  Ethernet II, Src: 28:d2:44:19:83:95, Dst: b8:27:eb:95:47:39
  Internet Protocol Version 4, Src: 192.168.1.11, Dst: 192.168.1.10
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Request-Line: PUBLISH sip:6001@192.168.1.10 SIP/2.0
      Message Header
          CSeq: 3 PUBLISH
          Via: SIP/2.0/UDP 192.168.1.51:5060;
               branch=z9hG4bK3a538935-aee2-e411-8843-28d244198395;rport
          User-Agent: Ekiga Softphone
          From: <sip:6001@192.168.1.10>
          Call-ID: f8448935-aee2-e411-8843-28d244198395@riomhaire-OB
          To: <sip:6001@192.168.1.10>
          Expires: 300
          Event: presence
          Content-Length: 486
          Content-Type: application/pidf+xml
          Max-Forwards: 70
      Message Body
          eXtensible Markup Language
              <?xml
                  version="1.0"
                  encoding="UTF-8"
                  ?>
              <presence
                  xmlns="urn:ietf:params:xml:ns:pidf"
                  xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
                  xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"
                  entity="pres:6001@192.168.1.10">
                  <tuple
                      id="TB799B8A0">
                      <status>
                          <basic>
                              open
                              </basic>
                          </status>
                      <contact
                          priority="1">
                          sip:6001@192.168.1.10
                          </contact>
                      <note>
                          I&apos;m available using Ekiga
                          </note>
                      <timestamp>
                          2015-04-16T14:57:37+01:00
                          </timestamp>
                      </tuple>
                  </presence>

Free Technology Academy Diarmuid O'Briain



186 Open Networks

The SUBSCRIBE message is used to connect to a published service. 

  Frame 6
  Ethernet II, Src: 28:d2:44:19:83:95, Dst: b8:27:eb:95:47:39
  Internet Protocol Version 4, Src: 192.168.1.11, Dst: 192.168.1.10 (192.168.1.10)
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Request-Line: SUBSCRIBE sip:6001@192.168.1.10 SIP/2.0
          Method: SUBSCRIBE
          Request-URI: sip:6001@192.168.1.10
      Message Header
          CSeq: 1 SUBSCRIBE
          Via: SIP/2.0/UDP 192.168.1.51:5060;
               branch=z9hG4bKf4578935-aee2-e411-8843-28d244198395;rport
          User-Agent: Ekiga/4.0.1
          From: <sip:6001@192.168.1.10>;tag=94538935-aee2-e411-8843-28d244198395
          Call-ID: ce3c8935-aee2-e411-8843-28d244198395@riomhaire-OB
          To: <sip:6001@192.168.1.10>
          Accept: application/simple-message-summary
          Contact: <sip:6001@192.168.1.51:5060>
          Allow: INVITE,ACK,OPTIONS,BYE,CANCEL,SUBSCRIBE,NOTIFY,REFER,MESSAGE,
                 INFO,PING,PRACK
          Expires: 3600
          Event: message-summary
          Content-Length: 0
          Max-Forwards: 70
  

9.13.3 Voice call test

The IP Phone, a Linksys/SPA941 number 6002 sends a SIP INVITE method to the SIP Proxy
Server requesting a session with  6003. It is willing to establish the session for any of the
CODECs: 

• PCMU/8000 

• G726-32/8000 

• G723/8000 

• PCMA/8000 

• G729a/8000 

• G726-40/8000 

• G726-24/8000 

• G726-16/8000 

Diarmuid O'Briain Free Technology Academy



Open Networks 187

  Frame 1
  Ethernet II, Src: 00:0e:08:d2:e8:2b, Dst: b8:27:eb:95:47:39
  Internet Protocol Version 4, Src: 192.168.1.12, Dst: 192.168.1.10
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Request-Line: INVITE sip:6003@192.168.1.10 SIP/2.0
      Message Header
          Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG4bK-8b01725e
          From: "6002" <sip:6002@192.168.1.10>;tag=3996f9ed38e5b11o0
          To: "6003" <sip:6003@192.168.1.10>
          Call-ID: d36d581d-f5a812a1@192.168.1.12
          CSeq: 101 INVITE
          Max-Forwards: 70
          Contact: "6002" <sip:6002@192.168.1.12:5060>
          Expires: 240
          User-Agent: 
          Content-Length: 391
          Allow: ACK, BYE, CANCEL, INFO, INVITE, NOTIFY, OPTIONS, REFER
          Supported: replaces
          Content-Type: application/sdp
      Message Body
          Session Description Protocol
              Session Description Protocol Version (v): 0
              Owner/Creator, Session Id (o): - 8603 8603 IN IP4 192.168.1.12
              Session Name (s): -
              Connection Information (c): IN IP4 192.168.1.12
              Time Description, active time (t): 0 0
              Media Description, name and address (m): audio 16454 RTP/AVP 0 2 4
              Media Attribute (a): rtpmap:0 PCMU/8000          8 18 96 97 98 101
              Media Attribute (a): rtpmap:2 G726-32/8000
              Media Attribute (a): rtpmap:4 G723/8000
              Media Attribute (a): rtpmap:8 PCMA/8000
              Media Attribute (a): rtpmap:18 G729a/8000
              Media Attribute (a): rtpmap:96 G726-40/8000
              Media Attribute (a): rtpmap:97 G726-24/8000
              Media Attribute (a): rtpmap:98 G726-16/8000
              Media Attribute (a): rtpmap:101 telephone-event/8000
              Media Attribute (a): fmtp:101 0-15
              Media Attribute (a): ptime:30
              Media Attribute (a): sendrecv
  

The SIP Proxy Server, an Asterisk PBX responds with a 401 UNAUTHORISED message and
an MD5 challenge for the nonce 0b543a15. 

  Frame 2
  Ethernet II, Src: b8:27:eb:95:47:39, Dst: 00:0e:08:d2:e8:2b
  Internet Protocol Version 4, Src: 192.168.1.10, Dst: 192.168.1.12
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Status-Line: SIP/2.0 401 Unauthorised
      Message Header
          Via: SIP/2.0/UDP 192.168.1.12:5060;
               branch=z9hG4bK-8b01725e;received=192.168.1.12;rport=5060
          From: "6002" <sip:6002@192.168.1.10>;tag=3996f9ed38e5b11o0
          To: "6003" <sip:6003@192.168.1.10>;tag=as1ad8b26f
          Call-ID: d36d581d-f5a812a1@192.168.1.12
          CSeq: 101 INVITE
          Server: Asterisk PBX
          Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY, 
                 INFO, PUBLISH
          Supported: replaces, timer
          WWW-Authenticate: Digest algorithm=MD5, realm="asterisk", nonce="0b543a15"
          Content-Length: 0
  

Free Technology Academy Diarmuid O'Briain



188 Open Networks

The IP Phone responds with an ACK method. 

  Frame 3 
  Ethernet II, Src: 00:0e:08:d2:e8:2b, Dst: b8:27:eb:95:47:39
  Internet Protocol Version 4, Src: 192.168.1.12, Dst: 192.168.1.10
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Request-Line: ACK sip:6003@192.168.1.10 SIP/2.0
      Message Header
          Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG4bK-8b01725e
          From: "6002" <sip:6002@192.168.1.10>;tag=3996f9ed38e5b11o0
          To: "6003" <sip:6003@192.168.1.10>;tag=as1ad8b26f
          Call-ID: d36d581d-f5a812a1@192.168.1.12
          CSeq: 101 ACK
          Max-Forwards: 70
          Contact: "6002" <sip:6002@192.168.1.12:5060>
          User-Agent: Linksys/SPA941
          Content-Length: 0
  

Diarmuid O'Briain Free Technology Academy



Open Networks 189

The IP Phone then re-sends the INVITE method including a response to the authentication
challenge in Frame 2. 

  Frame 4
  Ethernet II, Src: 00:0e:08:d2:e8:2b, Dst: b8:27:eb:95:47:39
  Internet Protocol Version 4, Src: 192.168.1.12, Dst: 192.168.1.10
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Request-Line: INVITE sip:6003@192.168.1.10 SIP/2.0
      Message Header
          Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG4bK-db213ea6
          From: "6002" <sip:6002@192.168.1.10>;tag=3996f9ed38e5b11o0
          To: "6003" <sip:6003@192.168.1.10>
          Call-ID: d36d581d-f5a812a1@192.168.1.12
          CSeq: 102 INVITE
          Max-Forwards: 70
          Authorization: Digest username="6002",realm="asterisk",nonce="0b543a15",
                         uri="sip:6003@192.168.1.10",algorithm=MD5,
                         response="e65f2c2bcac5a1f58148bb2362d0a88b"
          Contact: "6002" <sip:6002@192.168.1.12:5060>
          Expires: 240
          User-Agent: Linksys/SPA941
          Content-Length: 391
          Allow: ACK, BYE, CANCEL, INFO, INVITE, NOTIFY, OPTIONS, REFER
          Supported: replaces
          Content-Type: application/sdp
      Message Body
          Session Description Protocol
              Session Description Protocol Version (v): 0
              Owner/Creator, Session Id (o): - 8603 8603 IN IP4 192.168.1.12
              Session Name (s): -
              Connection Information (c): IN IP4 192.168.1.12
              Time Description, active time (t): 0 0
              Media Description, name and address (m): audio 16454 RTP/AVP 0 2 4 
              Media Attribute (a): rtpmap:0 PCMU/8000          8 18 96 97 98 101
              Media Attribute (a): rtpmap:2 G726-32/8000
              Media Attribute (a): rtpmap:4 G723/8000
              Media Attribute (a): rtpmap:8 PCMA/8000
              Media Attribute (a): rtpmap:18 G729a/8000
              Media Attribute (a): rtpmap:96 G726-40/8000
              Media Attribute (a): rtpmap:97 G726-24/8000
              Media Attribute (a): rtpmap:98 G726-16/8000
              Media Attribute (a): rtpmap:101 telephone-event/8000
              Media Attribute (a): fmtp:101 0-15
              Media Attribute (a): ptime:30
              Media Attribute (a): sendrecv
  

Free Technology Academy Diarmuid O'Briain



190 Open Networks

As  the  authentication  passes  the  SIP Proxy Server  sends  a  100 TRYING message  to  the
originating IP Phone. 

  Frame 5
  Ethernet II, Src: b8:27:eb:95:47:39, Dst: 00:0e:08:d2:e8:2b
  Internet Protocol Version 4, Src: 192.168.1.10, Dst: 192.168.1.12
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Status-Line: SIP/2.0 100 Trying
      Message Header
          Via: SIP/2.0/UDP 192.168.1.12:5060;
               branch=z9hG4bK-db213ea6;received=192.168.1.12;rport=5060
          From: "6002" <sip:6002@192.168.1.10>;tag=3996f9ed38e5b11o0
          To: "6003" <sip:6003@192.168.1.10>
          Call-ID: d36d581d-f5a812a1@192.168.1.12
          CSeq: 102 INVITE
          Server: Asterisk PBX
          Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY, 
                 INFO, PUBLISH
          Supported: replaces, timer
          Contact: <sip:6003@192.168.1.10:5060>
          Content-Length: 0
  

Diarmuid O'Briain Free Technology Academy



Open Networks 191

The SIP Proxy forwards the INVITE method to the destination IP Phone 6003, replacing the
Via: with its own line. (In some implementations the SIP Proxy Server adds a  Via: header
above the original Via: header). 

  
  Frame 6
  Ethernet II, Src: b8:27:eb:95:47:39, Dst: 00:0e:08:d2:e8:2a
  Internet Protocol Version 4, Src: 192.168.1.10, Dst: 192.168.1.13
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Request-Line: INVITE sip:6003@192.168.1.13:5060 SIP/2.0
          Method: INVITE
          Request-URI: sip:6003@192.168.1.13:5060
      Message Header
          Via: SIP/2.0/UDP 192.168.1.10:5060;branch=z9hG4bK5c5878cc;rport
          Max-Forwards: 70
          From: "6002" <sip:6002@192.168.1.10>;tag=as2bb1ea4b
          To: <sip:6003@192.168.1.13:5060>
          Contact: <sip:6002@192.168.1.10:5060>
          Call-ID: 2f6514fc5ee9128b21d27e8d2ca276cd@192.168.1.10:5060
          CSeq: 102 INVITE
          User-Agent: Asterisk PBX
          Date: Wed, 08 Apr 2015 22:05:04 GMT
          Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY, 
                 INFO, PUBLISH
          Supported: replaces, timer
          Content-Type: application/sdp
          Content-Length: 297
      Message Body
          Session Description Protocol
              Session Description Protocol Version (v): 0
              Owner/Creator, Session Id (o): root 689995268 689995268  
                                             IN IP4 192.168.1.10
              Session Name (s): Asterisk PBX
              Connection Information (c): IN IP4 192.168.1.10
              Time Description, active time (t): 0 0
              Media Description, name and address (m): audio 12968 RTP/AVP 0 3 8 101
              Media Attribute (a): rtpmap:0 PCMU/8000
              Media Attribute (a): rtpmap:3 GSM/8000
              Media Attribute (a): rtpmap:8 PCMA/8000
              Media Attribute (a): rtpmap:101 telephone-event/8000
              Media Attribute (a): fmtp:101 0-16
              Media Attribute (a): ptime:20
              Media Attribute (a): sendrecv

The  IP Phone  6003 responds  with  a  100 TRYING message  which  is  followed  by a  180
RINGING message when the IP Phone starts ringing. 

  Frame 7
  Ethernet II, Src: 00:0e:08:d2:e8:2a, Dst: b8:27:eb:95:47:39
  Internet Protocol Version 4, Src: 192.168.1.13, Dst: 192.168.1.10
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Status-Line: SIP/2.0 100 Trying
      Message Header
          To: <sip:6003@192.168.1.13:5060>
          From: "6002" <sip:6002@192.168.1.10>;tag=as2bb1ea4b
          Call-ID: 2f6514fc5ee9128b21d27e8d2ca276cd@192.168.1.10:5060
          CSeq: 102 INVITE
          Via: SIP/2.0/UDP 192.168.1.10:5060;branch=z9hG4bK5c5878cc
          Server: Linksys/SPA941
          Content-Length: 0  

Free Technology Academy Diarmuid O'Briain



192 Open Networks

When answered the IP Phone 6003 sends a 200 OK message to indicate the receiver has gone
off hook and it receives a ACK method in acknowledgement. 

  Frame 8
  Ethernet II, Src: 00:0e:08:d2:e8:2a, Dst: b8:27:eb:95:47:39
  Internet Protocol Version 4, Src: 192.168.1.13, Dst: 192.168.1.10
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Status-Line: SIP/2.0 200 OK
      Message Header
          To: <sip:6003@192.168.1.13:5060>;tag=20b726cc77a8f284i0
          From: "6002" <sip:6002@192.168.1.10>;tag=as2bb1ea4b
          Call-ID: 2f6514fc5ee9128b21d27e8d2ca276cd@192.168.1.10:5060
          CSeq: 102 INVITE
          Via: SIP/2.0/UDP 192.168.1.10:5060;branch=z9hG4bK5c5878cc
          Contact: "6003" <sip:6003@192.168.1.13:5060>
          Server: Linksys/SPA941
          Content-Length: 208
          Allow: ACK, BYE, CANCEL, INFO, INVITE, NOTIFY, OPTIONS, REFER
          Supported: replaces
          Content-Type: application/sdp
      Message Body
          Session Description Protocol
              Session Description Protocol Version (v): 0
              Owner/Creator, Session Id (o): - 2332769 2332769 IN IP4 192.168.1.13
              Session Name (s): -
              Connection Information (c): IN IP4 192.168.1.13
              Time Description, active time (t): 0 0
              Media Description, name and address (m): audio 16398 RTP/AVP 0 101
              Media Attribute (a): rtpmap:0 PCMU/8000
              Media Attribute (a): rtpmap:101 telephone-event/8000
              Media Attribute (a): fmtp:101 0-15
              Media Attribute (a): ptime:30
              Media Attribute (a): sendrecv
  
  
  Frame 9
  Ethernet II, Src: b8:27:eb:95:47:39, Dst: 00:0e:08:d2:e8:2a
  Internet Protocol Version 4, Src: 192.168.1.10, Dst: 192.168.1.13
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Request-Line: ACK sip:6003@192.168.1.13:5060 SIP/2.0
      Message Header
          Via: SIP/2.0/UDP 192.168.1.10:5060;branch=z9hG4bK67b7e50e;rport
          Max-Forwards: 70
          From: "6002" <sip:6002@192.168.1.10>;tag=as2bb1ea4b
          To: <sip:6003@192.168.1.13:5060>;tag=20b726cc77a8f284i0
          Contact: <sip:6002@192.168.1.10:5060>
          Call-ID: 2f6514fc5ee9128b21d27e8d2ca276cd@192.168.1.10:5060
          CSeq: 102 ACK
          User-Agent: Asterisk PBX
          Content-Length: 0
  

Diarmuid O'Briain Free Technology Academy



Open Networks 193

The SIP Proxy Server  forwards  the  200 OK message to  the originator  IP Phone  6002 to
confirm the other IP Phone 6003 has gone off hook and received an ACK method in receipt. A
RTP media stream can now flow between 6002 and 6003. 

  Frame 10
  Ethernet II, Src: b8:27:eb:95:47:39, Dst: 00:0e:08:d2:e8:2b
  Internet Protocol Version 4, Src: 192.168.1.10, Dst: 192.168.1.12
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Status-Line: SIP/2.0 200 OK
      Message Header
          Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG4bK-
db213ea6;received=192.168.1.12;rport=5060
          From: "6002" <sip:6002@192.168.1.10>;tag=3996f9ed38e5b11o0
          To: "6003" <sip:6003@192.168.1.10>;tag=as6f48c732
          Call-ID: d36d581d-f5a812a1@192.168.1.12
          CSeq: 102 INVITE
          Server: Asterisk PBX
          Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY, 
                 INFO, PUBLISH
          Supported: replaces, timer
          Contact: <sip:6003@192.168.1.10:5060>
          Content-Type: application/sdp
          Content-Length: 276
      Message Body
          Session Description Protocol
              Session Description Protocol Version (v): 0
              Owner/Creator, Session Id (o): root 1936169497 1936169497 
                                             IN IP4 192.168.1.10
              Session Name (s): Asterisk PBX
              Connection Information (c): IN IP4 192.168.1.10
              Time Description, active time (t): 0 0
              Media Description, name and address (m): audio 16186 RTP/AVP 0 8 101
              Media Attribute (a): rtpmap:0 PCMU/8000
              Media Attribute (a): rtpmap:8 PCMA/8000
              Media Attribute (a): rtpmap:101 telephone-event/8000
              Media Attribute (a): fmtp:101 0-16
              Media Attribute (a): ptime:20
              Media Attribute (a): sendrecv
  
  
  Frame 11
  Ethernet II, Src: 00:0e:08:d2:e8:2b, Dst: b8:27:eb:95:47:39
  Internet Protocol Version 4, Src: 192.168.1.12, Dst: 192.168.1.10
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Message Header
          Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG4bK-7ae9b810
          From: "6002" <sip:6002@192.168.1.10>;tag=3996f9ed38e5b11o0
          To: "6003" <sip:6003@192.168.1.10>;tag=as6f48c732
          Call-ID: d36d581d-f5a812a1@192.168.1.12
          CSeq: 102 ACK
          Max-Forwards: 70
          Authorization: Digest username="6002",realm="asterisk",nonce="0b543a15",
                         uri="sip:6003@192.168.1.10",algorithm=MD5,
                         response="e65f2c2bcac5a1f58148bb2362d0a88b"
          Contact: "6002" <sip:6002@192.168.1.12:5060>
          User-Agent: Linksys/SPA941
          Content-Length: 0
  

Free Technology Academy Diarmuid O'Briain



194 Open Networks

9.13.4 Hangup test

Place the IP Phone 6002 receiver on-hook so the device sends a BYE method to the SIP Proxy
Server for Call ID 2f6514fc5ee9128b21d27e8d2ca276cd. 

  Frame 1
  Ethernet II, Src: 00:0e:08:d2:e8:2b, Dst: b8:27:eb:95:47:39
  Internet Protocol Version 4, Src: 192.168.1.12, Dst: 192.168.1.10
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Request-Line: BYE sip:6003@192.168.1.10:5060 SIP/2.0
      Message Header
          Via: SIP/2.0/UDP 192.168.1.12:5060;branch=z9hG4bK-55a96bae
          From: "6002" <sip:6002@192.168.1.10>;tag=3996f9ed38e5b11o0
          To: "6003" <sip:6003@192.168.1.10>;tag=as6f48c732
          Call-ID: d36d581d-f5a812a1@192.168.1.12
          CSeq: 103 BYE
          Max-Forwards: 70
          Authorization: Digest username="6002",realm="asterisk",nonce="0b543a15",
                         uri="sip:6003@192.168.1.10:5060",algorithm=MD5,
                         response="8cb8308cde00ab5b64d60e754fe70d0a"
          User-Agent: Linksys/SPA941
          Content-Length: 0
  

The SIP Proxy Server acknowledges this by sending a 200 OK message back in response. 

  Frame 2
  Ethernet II, Src: b8:27:eb:95:47:39, Dst: 00:0e:08:d2:e8:2b
  Internet Protocol Version 4, Src: 192.168.1.10, Dst: 192.168.1.12
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Status-Line: SIP/2.0 200 OK
      Message Header
          Via: SIP/2.0/UDP 192.168.1.12:5060;
               branch=z9hG4bK-55a96bae;received=192.168.1.12;rport=5060
          From: "6002" <sip:6002@192.168.1.10>;tag=3996f9ed38e5b11o0
          To: "6003" <sip:6003@192.168.1.10>;tag=as6f48c732
          Call-ID: d36d581d-f5a812a1@192.168.1.12
          CSeq: 103 BYE
          Server: Asterisk PBX
          Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY, 
                 INFO, PUBLISH
          Supported: replaces, timer
          Content-Length: 0
  

Diarmuid O'Briain Free Technology Academy



Open Networks 195

The SIP Proxy Server sends the BYE method to the IP Phone 6003 to inform it that 6002 has
gone on-hook. 

  Frame 3
  Ethernet II, Src: b8:27:eb:95:47:39, Dst: 00:0e:08:d2:e8:2a
  Internet Protocol Version 4, Src: 192.168.1.10, Dst: 192.168.1.13
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Request-Line: BYE sip:6003@192.168.1.13:5060 SIP/2.0
      Message Header
          Via: SIP/2.0/UDP 192.168.1.10:5060;branch=z9hG4bK0ff44bda;rport
          Max-Forwards: 70
          From: "6002" <sip:6002@192.168.1.10>;tag=as2bb1ea4b
          To: <sip:6003@192.168.1.13:5060>;tag=20b726cc77a8f284i0
          Call-ID: 2f6514fc5ee9128b21d27e8d2ca276cd@192.168.1.10:5060
          CSeq: 105 BYE
          User-Agent: Asterisk PBX
          X-Asterisk-HangupCause: Normal Clearing
          X-Asterisk-HangupCauseCode: 16
          Content-Length: 0
  

The IP Phone 6003 acknowledges this to the SIP Proxy and goes on-hook. Call is completed. 

  
  Frame 4
  Ethernet II, Src: 00:0e:08:d2:e8:2a, Dst: b8:27:eb:95:47:39
  Internet Protocol Version 4, Src: 192.168.1.13, Dst: 192.168.1.10
  User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
  Session Initiation Protocol
      Status-Line: SIP/2.0 200 OK
      Message Header
          To: <sip:6003@192.168.1.13:5060>;tag=20b726cc77a8f284i0
          From: "6002" <sip:6002@192.168.1.10>;tag=as2bb1ea4b
          Call-ID: 2f6514fc5ee9128b21d27e8d2ca276cd@192.168.1.10:5060
          CSeq: 105 BYE
          Via: SIP/2.0/UDP 192.168.1.10:5060;branch=z9hG4bK0ff44bda
          Server: Linksys/SPA941
          Content-Length: 0

Free Technology Academy Diarmuid O'Briain



196 Open Networks

9.14 Asterisk GUI
For more complex configurations Asterisk has a configuration ready-made GUI. 

9.14.1 Install Asterisk-gui

The GNU/Linux subversion (SVN) version control system client is required to download the
latest version of the asterisk-gui from the Digium website. 

  $ sudo apt-get install subversion
  

Download the latest source to the source directory on the asterisk server. 

  $ cd /usr/src
  
  $ sudo svn checkout http://svn.digium.com/svn/asterisk-gui/trunk asterisk-gui
  

Run the configure script to prepare for the system. 

  $ cd /usr/src/asterisk-gui
  $ sudo ./configure
  
                 .$$$$$$$$$$$$$$$=..      
              .$7$7..          .7$$7:.    
            .$$:.                 ,$7.7   
          .$7.     7$$$$           .$$77  
       ..$$.       $$$$$            .$$$7 
      ..7$   .?.   $$$$$   .?.       7$$$.
     $.$.   .$$$7. $$$$7 .7$$$.      .$$$.
   .777.   .$$$$$$77$$$77$$$$$7.      $$$,
   $$$~      .7$$$$$$$$$$$$$7.       .$$$.
  .$$7          .7$$$$$$$7:          ?$$$.
  $$$          ?7$$$$$$$$$$I        .$$$7 
  $$$       .7$$$$$$$$$$$$$$$$      :$$$. 
  $$$       $$$$$$7$$$$$$$$$$$$    .$$$.  
  $$$        $$$   7$$$7  .$$$    .$$$.   
  $$$$             $$$$7         .$$$.    
  7$$$7            7$$$$        7$$$      
   $$$$$                        $$$       
    $$$$7.                       $$  (TM)     
     $$$$$$$.           .7$$$$$$  $$      
       $$$$$$$$$$$$7$$$$$$$$$.$$$$$$      
         $$$$$$$$$$$$$$$$.                
  
  configure: Package configured for: 
  configure: OS type  : linux-gnu
  configure: Host CPU : armv7l
  

Diarmuid O'Briain Free Technology Academy



Open Networks 197

Use the make utility to determine what needs to be recompiled and recompile as required. The
make install copies files into the appropriate directories on the system. 

  $ sudo make
  
   +------- Asterisk-GUI Build Complete -------+
   + Asterisk-GUI has successfully been built, +
   + and can be installed by running:          +
   +                                           +
   +               make install                +
   +-------------------------------------------+
  

  $ sudo make install
  
   +---- Asterisk GUI Installation Complete ---+
   +                                           +
   +    YOU MUST READ THE SECURITY DOCUMENT    +
   +                                           +
   + Asterisk-GUI has successfully been        +
   + installed.                              +
   +                                           +
   +-------------------------------------------+
   +                                           +
   +          BEFORE THE GUI WILL WORK         +
   +                                           +
   + Before the GUI will run, you must perform +
   + some modifications to the Asterisk        +
   + configuration files in accordance with    +
   + the README file.  When done, you can      +
   + check your changes by doing:              +
   +                                           +
   +               make checkconfig            +
   +                                           +
   +-------------------------------------------+
  

Free Technology Academy Diarmuid O'Briain



198 Open Networks

9.14.2 Asterisk configuration files

Edit the file Asterisk httpd.conf to uncomment the enabled,  enabledstatic as well as change
the bindaddr=127.0.0.1 to bindaddr=0.0.0.0. 

  $ sudo vi /etc/asterisk/http.conf
  enabled=yes
  enablestatic=yes
  
  bindaddr=0.0.0.0
  

Edit the Asterisk manager.conf file to look like this. 

  $ sudo vi /etc/asterisk/manager.conf
  
  [general]
  enabled = yes
  webenabled = yes
  port = 5038
  bindaddr = 0.0.0.0
  
  #include "manager.d/*.conf"
  

Create a configuration file for the admin user. 

  $ sudo -s 
  # cat << EOM >> /etc/asterisk/manager.d/admin.conf
  [admin]
  secret = voippass
  read = system,call,log,verbose,command,agent,config,read,write,originate
  write = system,call,log,verbose,command,agent,config,read,write,originate
  EOM
  # exit
  $ 

Map  the  /var/lib/asterisk/static-http/ directory,  the  location  of  the  index.html file  to  the
/usr/share/asterisk/ directory  which  is  the  root  directory  of  the  webserver.  Change  the
ownership of the Asterisk library files to that of asterisk and group asterisk. 

  $ sudo rm -rf /usr/share/asterisk/static-http/
  $ sudo ln -s /var/lib/asterisk/static-http/ /usr/share/asterisk/
  $ cd /var/lib/asterisk
  $ sudo chown -R asterisk.asterisk static-http
  $ sudo chown -R asterisk.asterisk scripts
  $ sudo chown -R asterisk.asterisk gui_backups
  

Diarmuid O'Briain Free Technology Academy



Open Networks 199

Give ownership of the Asterisk configuration files to user asterisk, group asterisk also. 

  $ sudo chown asterisk:asterisk /etc/asterisk/*.conf
  $ sudo chmod 644 /etc/asterisk/*.conf
  $ sudo chown asterisk:asterisk /etc/asterisk/manager.d/*.conf
  $ sudo chmod 644 /etc/asterisk/manager.d/*.conf
  

Restart the Asterisk server to force a re-read of the configuration files. 

  $ sudo service asterisk restart
  Stopping Asterisk PBX: asterisk.
  Starting Asterisk PBX: asterisk.
  

9.14.3 Connect to the Asterisk Server GUI 

http://<Server IP Address>:8088/asterisk/static/config/index.html 

Username: admin

Password: voippass

Free Technology Academy Diarmuid O'Briain



200 Open Networks

The configuration of the Asterisk Server using the GUI and the full range of its capabilities is
outside the scope of this document. The diagram below shows the configuration of 3 user
extensions similar to that established manually in the example.

9.15 Conclusion 
IPT and Softswitch is  a branch of  Networking Engineering in  its  own right.  It  not alone
requires skills in IP networking but an understanding of traditional telecommunications. This
serves as an introduction to the topic, for a more complete understanding it is necessary to
look further afield. The following websites are great places to explore the topic further.

http://www.asterisk.org/

http://www.voip-info.org/

http://www.digium.com/

Diarmuid O'Briain Free Technology Academy



Open Networks 201

10. IP Services

10.1 Configuration of inetd or xinetd
The next step in the configuration of the network is to configure the servers and services that
will allow another user to access the local machine or its services. The server programs will
use the ports to listen to the requests from the clients, which will be sent to this service as
IP:port. The servers may work in two different ways: standalone (in which the service listens
to the assigned port and is always active) or through the Internet Service Daemon (inetd). 

inetd often  called  the  Internet  Super  Server  daemon  controls  and  manages  the  network
connections of the services specified in the /etc/inetd.conf file. inetd is a server of servers. It
executes rarely used servers on demand, to conserve system resources by avoiding to fork a
lot of processes which might lie dormant for most of their lifetime.. When a service request is
made, starts up the appropriate server and transfers the request. After some concerns regarding
security  the  eXtended  InterNET  Daemon  (xinetd)  evolved  as  an  alternative  with  the
configuration files located in /etc/xinetd.conf. 

Two important files must be configured: /etc/services and /etc/inetd.conf or /etc/xinetd.conf. In
the first file, the services, the ports and the protocol are associated, and in the second, the
server programs that will respond to a request to a determined port. The /etc/services format is
name port/protocol aliases, where the first field is the service name, the second is the port
where the service is attended and the protocol that it uses, and the next field is an alias of the
name. There is a series of default pre-configured services. 

 /etc/services 

  tcpmux          1/tcp                           # TCP port service multiplexer
  echo            7/tcp
  echo            7/udp
  discard         9/tcp           sink null
  discard         9/udp           sink null
  systat          11/tcp          users
  daytime         13/tcp
  daytime         13/udp
  netstat         15/tcp
  qotd            17/tcp          quote
  msp             18/tcp                          # message send protocol
  msp             18/udp
  chargen         19/tcp          ttytst source
  chargen         19/udp          ttytst source
  ftp-data        20/tcp
  ftp             21/tcp
  fsp             21/udp          fspd
  ssh             22/tcp                          # SSH Remote Login Protocol
  ssh             22/udp
  telnet          23/tcp
  smtp            25/tcp          mail
  time            37/tcp          timserver
  time            37/udp          timserver
  ...            
  

Free Technology Academy Diarmuid O'Briain



202 Open Networks

The  /etc/inetd.conf file  is  the  configuration  for  the  master  network  service  (inetd server
daemon). Each line contains seven fields separated by spaces: service socket_type proto flags
user server_path server_args, where: 

• service: is the service described in the first column in /etc/services 

• socket_type:  is the type of socket (possible values are stream, dgram, raw, rdm, or

seqpacket) 
• proto: is the protocol that is valid for this input (it must match that in /etc/services) 

• flags:  indicates the action that should be taken when there is a new connection on a

service that is attending another connection,  (wait  tells inetd not to start up a new
server or nowait means that inetd must start up a new server) 

• user: will be the local user-name with which the client that has started up the service is

identified 
• server_path: is the directory where the server is located 

• server_args: are possible arguments that will be passed to the server 

An example of some  /etc/inetd.conf lines is (# is a comment, so if a service has #
before the name, it means that it is not available): 

/etc/inetd.conf 

  ...
  telnet stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.telnetd
  ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.ftpd
  # fsp dgram udp wait root /usr/sbin/tcpd /usr/sbin/in.fspd
  shell stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rshd
  login stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rlogind
  # exec stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rexecd...
  ...
  

The /etc/xinetd.conf configuration file essentially calls in the files in the /etc/xinetd.d directory

with the line includedir /etc/xinetd.d. Each file is a description of a single service

and take the form: 

    service <service_name>
                {
                       <attribute> <assign_op> <value> <value> ...
                       ...
                }
  

Diarmuid O'Briain Free Technology Academy



Open Networks 203

In the example the default Debian GNU/Linux xinetd files are displayed with the time service
file expanded. 

  $ ls /etc/xinetd.d
  
  chargen  daytime  discard  echo  time
  
  
  $ cat /etc/xinetd.d/time
  
  # default: off
  # description: An RFC 868 time server. This protocol provides a
  # site-independent, machine readable date and time. The Time service sends back
  # to the originating source the time in seconds since midnight on January first
  # 1900.
  # This is the tcp version.

  service time
  {
        disable         = yes
        type            = INTERNAL
        id              = time-stream
        socket_type     = stream
        protocol        = tcp
        user            = root
        wait            = no
  }                                                                               
  
  # This is the udp version.
  service time
  {
        disable         = yes
        type            = INTERNAL
        id              = time-dgram
        socket_type     = dgram
        protocol        = udp
        user            = root
        wait            = yes
  }   

Free Technology Academy Diarmuid O'Briain



204 Open Networks

10.2 Other network services
Apart from the inetd/xinetd configuration, the typical configuration of network services in a
desktop  or  basic  server  environment  might  also  include  (some of  these  services  will  be
examined in the chapter on servers): 

• ssh: secure interactive connection to replace telnet that includes two configuration files

/etc/ssh/ssh_config (for the client) and /etc/ssh/sshd_config (for the server) 
• exim: Mail Transfer Agent (MTA), includes configuration files: /etc/exim/exim.conf,

/etc/mailname, /etc/aliases, /etc/email-addresses. 
• fetchmail: daemon for downloading the mail from a POP3 account, /etc/fetchmailrc 

• procmail: program for filtering and distributing local mail, ~/.procmailrc 

• tcpd: Filtering services for enabled and disabled machines and domains for connecting

to the server (wrappers): /etc/hosts.allow, /etc/hosts.deny 
• DHCP:  Service  for  managing  (server)  or  obtaining  an  IP  (client),

/etc/dhcp3/dhclient.conf  (client),  /etc/default/dhcp3-server  (server),
/etc/dhcp3/dhcpd.conf (server) 

• CVS:  system  for  managing  concurrent  versions,  /etc/cvs-cron.conf,  /etc/cvs-

pserver.conf 
• NFS: network file system, /etc/exports 

• Samba:  network  file  system  and  sharing  printers  in  Windows  networks,

/etc/samba/smb.conf 
• lpr: daemon for the printing system, /etc/printcap (for the Ipr system -not CUPS-) 

• Apache2: Web Server, /etc/apache2/* 

• squid: Server proxy-cache, /etc/squid/* 

10.2.1 Additional configuration: protocols and networks

There are other configuration files that are hardly ever used, but that can be interesting. The
/etc/protocols is a file that shows the protocol identifiers with the protocol names; in this way,
programmers can specify the protocols by their names in the programs. 

/etc/protocols 

  ip    0       IP           # internet protocol, pseudo protocol number
  #hopopt       0       HOPOPT # IPv6 Hop-by-Hop Option [RFC1883]
  icmp  1       ICMP    # internet control message protocol
  igmp  2       IGMP            # Internet Group Management
  ggp   3       GGP             # gateway-gateway protocol
  ipencap       4       IP-ENCAP # IP encapsulated in IP (officially ``IP'')
  st    5       ST              # ST datagram mode
  tcp   6       TCP             # transmission control protocol
  egp   8       EGP             # exterior gateway protocol
  igp   9       IGP             # any private interior gateway (Cisco)
  pup   12      PUP             # PARC universal packet protocol
  udp   17      UDP             # user datagram protocol
  ...

Diarmuid O'Briain Free Technology Academy



Open Networks 205

The  /etc/networks file  has  a  function  similar  to  /etc/hosts,  but  where  the  networks  are
concerned, it shows the network names in relation to its IP address (the route command will
show the name of the network and not its address in this case). 

/etc/networks 

  default       0.0.0.0
  loopback      127.0.0.0
  link-local    169.254.0.0
  

10.2.2 Security aspects

It  is  important  to  take  into  account  the  security  aspects  in  network  connections,  as  a
significant amount of attacks occur through the network. We will discuss this subject in more
detail in the unit on security; however, there are some basic recommendations that should be
taken into account in order to minimise the risks immediately before and after configuring the
network in our computer: 

• Do not activate services in /etc/inetd.conf, or include service files in xinetd.d that will

not be used, insert an # before the name to avoid sources of risk 
• Modify the  /etc/ftpusers file to deny access to certain users who may have an FTP

connection to your machine 
• Modify the /etc/securetty file which lists ttys from which root can log in, to indicate

from which terminals (a name per line), for example: tty1 tty2 tty3 tty4, it  will be
possible  for  the  root  superuser  to  connect.  The root  superuser  will  not  be able  to
connect from any of the remaining terminals 

• Use the tcpd program. This server is a wrapper that makes it possible to allow/deny a

service from a given node and it is placed in /etc/inetd.conf as a service intermediary.
The tcpd verifies certain access rules in two files: /etc/hosts.allow and /etc/host.deny 

• If the connection is accepted, it starts up an appropriate service passed as an

argument (for example, the FTP service line shown earlier in inetd.conf: 

ftp stream tcp nowait root /usr/sbin/tcpd/usr/sbin/in.ftpd 

tcpd  first  search  /etc/hosts.allow and  then  inside  of  /etc/hosts.deny.  The
hosts.deny file  contains  the  rules  on  which  nodes  do  not  have  access  to  a

service within this machine. A restrictive configuration is ALL: ALL, as it will

only allow access to the services from the nodes declared in /etc/hosts.allow 
• The  /etc/hosts.equiv file permits access to this machine without having to enter the

password. Using this mechanism is not recommended; users should be advised not to
use the equivalent from the user account, through the .rhosts file. 

Free Technology Academy Diarmuid O'Briain



206 Open Networks

• In Debian GNU/Linux, it is important to configure  /etc/security/access.conf, the file

that indicates the rules on who and from where it is possible to log in to this machine.
This file has a line by command with three fields separated by a  : of the permission
type:  Users:  origin.  The  first  will  be  an  +o- (allow  or  deny),  the  second  a  user
name/user names, group or user@host, and the third will be the name of a device,
node, domain, node or networks addresses or ALL. 

Example 6.21. Example of access.conf 

This command does not permit root logins over tty1: 

ALL EXCEPT root:tty1 ... 
•

It permits access to u1, u2, g1 and all those in the ftacademy.org domain: 

+:u1 u2 g1 .ftacademy.org:ALL 
•

10.2.3 IP Options

IP Forwarding 

IP Forwarding is a kernel option that by default is disabled. To check the net.ipv4.ip_forward
register with the sysctl utility use the following command. sysctl is the command used to read
and configure kernel parameters at runtime. 

  $ sysctl net.ipv4.ip_forward
  net.ipv4.ip_forward = 0
  
  $ sysctl net.ipv6.conf.all.forwarding 
  net.ipv6.conf.all.forwarding = 0
  

So IP forwarding is disabled for IPv4 and IPv6. To temporarily enable IP forwarding use the
following commands. These in effect changes the value in /proc/sys/net/ipv4/ip_forward and
/proc/sys/net/ipv6/conf/all/forwarding to 1. 

  $ sudo sysctl -w net.ipv4.ip_forward=1
  net.ipv4.ip_forward = 1
  
  $ sudo sysctl -w net.ipv6.conf.all.forwarding=1
  net.ipv6.conf.all.forwarding=1
   

This is a temporary solution and upon the next reboot the option will be back to  0 in the
register. To make it permanent edit the options in the /etc/sysctl.conf file. Note that to enable
IPv6 packet forwarding disables SLAAC for this host. 

  ...
  net.ipv4.ip_forward=1
  net.ipv6.conf.all.forwarding=1
  ...
  

Diarmuid O'Briain Free Technology Academy



Open Networks 207

To reload the changed values run the syctl command with the -p option switch. 

  $ sudo sysctl -p /etc/sysctl.conf
  

Other widely used are: ip_default_ttl, which is the lifetime for an IP packet (64 milliseconds,
by default), ip_bootp_agent logical variable (BOOLEAN) which accepts packets (or not) with
the origin address of the 0.b.c.d type and the destination of this node, broadcast or multicast. 

10.2.4 Commands for solving problems with the network

If there are problems in the configuration of the network, begin by verifying the output of the
following commands to obtain an initial idea: 

  $ ip link show
  $ ip addr list
  $ cat /proc/interrupts 
  $ dmesg | less
  

In order to verify the network connection, we can use the following commands (netkit-ping,
traceroute, dnsutils, iptables and net-tools must be installed): 

  $ ping ftacademy.org                    # verifies the Internet connection
  $ traceroute ftacademy.org              # scans IP packets
  $ ip route list                         # verifies the routing configuration
  $ dig [@ftacademy.org] www.ftacademy.org   # verifies the registries in
                                          # on the dns.ftacademy.org server.
  $ sudo iptables -L -n |less             # verifies packet filtering (kernel >=2.4)
  $ ss -A all                             # shows all the open ports
  $ ss -l --inet                          # shows all the listening sockets
  $ ss -l -A tcp                          # shows the listening tcp ports (number)
  $ ss -l -A udp                          # shows the listening udp ports (number) 

10.3 DHCP Configuration
DHCP. It is very simple to configure and it is useful because, instead of having to configure
each  node  in  a  network  individually,  this  can  be  done  in  a  centralised  manner  and
administering it is therefore easier. The configuration of a client is very easy, as we only have
to install one of the following packages: 

• dhclient (Internet Systems Consortium) 

• dhcp3-client (version 3, Internet Software Consortium) 

• dhcpcd (Yoichi Hariguchi and Sergei Viznyuk) 

• pump (Red Hat) 

Free Technology Academy Diarmuid O'Briain



208 Open Networks

For a basic configuration edit the /etc/network/interfaces, which defines the interfaces of the
host. If the interface eth0 is to be configured through DHCP during boot up, add/edit the eth0
entry in the file where: 

• auto: the interface should be configured during boot time 

• inet: interface uses TCP/IP networking 

• dhcp: the interface can be configured through DHCP  

  $ sudo vi /etc/network/interfaces
  
  auto eth0
  iface eth0 inet dhcp
  

10.3.1 DHCP Server

Configuring the server  requires more care,  but it  is  not  especially  complicated.  Install  as
follows: 

  $ sudo apt-get install isc-dhcp-server
  

Configuration 

With root permissions edit the /etc/default/isc-dhcp-server file, 

  $ sudo -s
  # vi /etc/default/isc-dhcp-server
  
  INTERFACES="eth0"
  

The main configuration file for the dhcp-server is  /etc/dhcp/dhcpd.conf. Edit it like this and
any options notmentioned below that are in the file should be left alone. 

  $ sudo vi /etc/dhcp/dhcpd.conf
  
  
  option domain-name "ftacademy.org";
  option domain-name-servers 78.143.141.250, 78.143.141.251;
  
  subnet 192.168.1.0 netmask 255.255.255.0 {
    range 192.168.1.2 192.168.1.250;
    option domain-name "intranet.ftacademy.org";
    option routers 192.168.1.1;
    option broadcast-address 192.168.1.255;
    option domain-name-servers 78.143.141.250, 8.8.8.8;
    default-lease-time 600;
    max-lease-time 7200;
  
  }

Diarmuid O'Briain Free Technology Academy



Open Networks 209

To make the changes effective restart the dhcp-daemon. Run with root privileges:  

  $ sudo service isc-dhcp-server restart
  

This  creates  a  DHCP  Server  on  interface  eth0 that  assigns  IP  addresses  in  the  range
192.168.1.2 - 192.168.1.250/24, giving a default gateway of 192.168.1.1. 

10.4 IP Masquerade
The IP Masquerade is a resource used so that a set of machines may use a single IP address.
This permits the hidden nodes on a private network, such as 198.162.10.1 to access the public
network,  say the Internet;  but  they  cannot  directly  accept  external  calls  or  services;  only
through the machine that has the real IP. Traffic from the private network to the Internet must
have the private source IP address replaced with the Masquerade public IP address. Outward
connections must be tracked so incoming returning traffic can be correctly identified and the
correct  private  IP address  swapped in  the packet  header  for  the  public IP address  before
forwarding to the private network. This is achievable because of a GNU/Linux feature called
Connection  Tracking  (conntrack).  While  on  the  public network  the  source  IP address  is
masquraded as if it came from the GNU/Linux server. The iproute2 ip command incorporates
the tools to do this. 

ip route add nat <internal network>[/<mask length>] via <public addr> 

Assuming the requirement is to NAT for the private address space 192.168.10.0/24 via the
public interface eth2 on public IP address 78.143.141.52. 

  $ sudo ip addr add 192.168.10.1/24 dev eth0
  $ sudo ip addr add 78.143.141.52/24 dev eth2
  $ sudo iptables --table nat --append POSTROUTING --source 192.168.10.0/24
  --out-interface eth2 --jump MASQUERADE
  

The firewall if one is implemented has to be adapted to allow traffic in and out of eth2 for the
192.168.10.0/24 network. 

  $ sudo iptables -append FORWARD --source 192.168.10.0/24 --out-interface 
  eth2 -j ACCEPT
  $ sudo iptables -append FORWARD --destination 192.168.10.0/24 --match 
  state --state ESTABLISHED,RELATED --in-interface eth2 --jump ACCEPT
  

Free Technology Academy Diarmuid O'Briain



210 Open Networks

This page is intentionally blank

Diarmuid O'Briain Free Technology Academy



Open Networks 211

11. Software Defined Networking (SDN)

11.1 Introduction
Over the last ten years or so the landscape in computing has changed dramatically with the
Cloud, large-scale Data Centres and virtualisation. However while networks have increased in
speed and there has been a convergence on Ethernet as the standard for all links, to the point
that  the  difference  between  LAN,  MAN  and  Wide  Area  Network  WAN  has  diminished
dramatically. What has not changed however is the core switch and router function which is
generally a hardware based stand-alone device that is self sufficient in terms of the data they
switch or route and the control necessary to make that happen. 

While the underlying networks have converged towards the all Ethernet / all Internet Protocol
IP model, in some form the number of services have increased rapidly. In the past Service
Providers provided Internet Access in the form of Broadband and possibly layered a voice
service either as a circuit switched out of band telephone line or as a VoIP service with some
packet priority mechanism to give Quality of Service (QoS). In more recent years this service
is increasingly being supplemented with a Television over IP (TVoIP) service that more often
than not requires a separate Set Top Box (STB) for its provision. 

11.2 Software Defined Networking 

Free Technology Academy Diarmuid O'Briain



212 Open Networks

A quiet revolution started with an SDN test in Ohio State University in 2001; the idea being to
remove the control functions from an Ethernet switch and leave it with only data forwarding
functions with the extracted control functions migrated to a server called an SDN Controller,
the SDN Controller taking control of several bare-metal or white-box switches to form an
SDN Island. A bare-metal switch is built from standardised commodity parts thereby reducing
the cost of manufacture as the intelligence has been extracted to commodity servers. This
gives the SDN Controller a visibility of the complete range of ports across several hardware
platforms  over  a  Control  -  Data  Plane  Interface  (CDPI).  The  SDN  Controller  itself  is
programmable, centrally managed and agile. Thus the hardware elements become known as
the Data Plane while the SDN Controller  is  the Control Plane.  Because the Controller  is
programmable  it  makes  the  creation  of  an  Application  Plane  tier  possible  which  gains
accesses to the SDN Controller via a North Bound Interface (NBI). To complete an SDN
solution an Administration and Management tier is added to manage the overall network. 

To make all of this possible it was essential that hardware vendors develop devices that could
be readily controlled by an SDN Controller over a standards based protocol. To this end the
OpenFlow protocol was developed at Stanford University. This new protocol would allow the
SDN  Controller  access  and  manipulate  the  data  forwarding  plane  of  the  hardware.  This
protocol evolved into an open standard whose adoption,  development  and promotion was
vested in the Open Networking Foundation (ONF) in 2011. 

Over the years hardware manufacturers of switches and routers were making increasingly
larger profits as the demand for networking devices sky-rocketed. This was particularly so due
the development of large scale data centres. The new SDN model is ideally suited to meet the
needs of Data Centres while at the same time allow them to make significant reduction in
costs. 

11.3 SDN operation
In order  to  understand how SDN switching works  consider  a  traditional  switch.  A frame
arrives at a switch port, the switch inspects the frame header and determines if it has a record
for the destination MAC address. If it doesn't, then the frame is forwarded on all ports and the
source port MAC is recorded upon which the port the frame was received. If it does then the
frame is only forwarded to the known port associated with the destination MAC. All these
decisions are made in the individual switch. 

Diarmuid O'Briain Free Technology Academy



Open Networks 213

In and SDN Network when as is shown in detail in the mininet example labs below, when a
frame arrives at a OpenFlow Switch, tt performs a table entry check and if it finds that it has a
table-miss, which means there is no flow entry associated with this frame, it will send an
OpenFlow  Packet  In (OFPT_PACKET_IN) message to the SDN Controller  with a unique
Buffer IDentifier for a decision. The SDN Controller responds to OpenFlow Switch using the
same Buffer IDentifier with the decision to Output to switch port on all ports. 

The response from the second host arrives at the OpenFlow Switch and is given a new Buffer
IDentifier,  again  there  is  a  table-miss  so  the  OpenFlow  Switch  sends  an  OpenFlow
OFPT_PACKET_IN message  to  SDN  Controller.  The  SDN  Controller  now  sends  an
OpenFlow Flow MOD to the OpenFlow Switch to add an entry to the Flow Table for this now
known traffic. Subsequent similar packets are then forwarded automatically by the OpenFlow
Switch until the itle time-out of 60 seconds has been exceeded and then the process must be
repeated. 

The next packet in from the original host triggers another OFPT_PACKET_IN. This time the
SDN Controller knows the port that the second host is connect on, so it sends an OpenFlow
Flow  MOD to  the  OpenFlow Switch  to  add  an  entry  to  the  Flow  Table  for  the  traffic.
Subsequent similar packets are then forwarded automatically by the OpenFlow Switch until
the itle time-out of 60 seconds has been exceeded and then the process must be repeated. 

Free Technology Academy Diarmuid O'Briain



214 Open Networks

In the example the frame that arrived was unmatched by the OpenFlow Switch. It is typical
for the SDN Controller to pre-load the OpenFlow Switch with flows. It is also not simply the
MAC fields in the frame header nor the IP Addresses in the packet header. Flows can be based
on a multitude of values within the overall frame and its sub packet and even transport session
headers: 

• The port the frame arrived on 

• The source Ethernet port 

• The destination Ethernet port 

• The source IPv4 or IPv6 address 

• The destination IPv4 or IPv6 address 

• IPv6 Flow Label 

• IPv6 Extension Header pseudo-field 

• ICMPv6 type or code 

• Target IP address, source or target link layer address in IPv6 Neighbour Discovery

(ND) 
• VLAN IDentifier (VLAN-ID) 

• VLAN Priority Code Point (PCP) 

• Differentiated Services (DiffServ) Code Point (DSCP) 

• IP Header Explicit Congestion Notification (ECN) 

• IPv4 or IPv6 Protocol number 

• TCP Source, Destination port or flags 

• UDP Source or Destination port 

• Stream Control Transmission Protocol (SCTP) Source or Destination port 

• ICMP Type or Code 

• ARP Opcode 

• MAC Addresses in ARP payload 

• IP Addresses in ARP payload 

• The LABEL, Traffic Class (TC) or Bottom of Stack (BoS) in first MPLS Shim header 

• User Customer Address (UCA) field in  the first  Provider  Backbone Bridge (PBB)

instance tag 

Diarmuid O'Briain Free Technology Academy



Open Networks 215

11.3.1 Flow Tables

In the forwarding instructions the controller specifies to the OpenFlow switch the group of
parameters used to define individual flows and what action to carry out on frames that match
the flow. The OpenFlow switch has as can be seen in the diagram multiple Flow Tables. In the
initial OpenFlow version this was limited to a single table however the Application Specific
Integrated Circuit (ASIC) hardware in switches were capable of much more so later versions
of  the  OpenFlow  protocol  allowed  for  multiple  tables  which  improves  performance  and
scalability. 

11.3.2 Group Tables

OpenFlow protocol also added Group Tables consisting of group entries. A flow entry can be
pointed to a group, which enables OpenFlow to have additional methods of forwarding: 

• SELECT: for load sharing and redundancy 

• ALL: for multicast or broadcast forwarding 

• INDIRECT: which allows for multiple flow entries to point to a common group ID 

• FAST FAILOVER: which enables the switch to change forwarding without requiring

communication with the SDN Controller in the event of a port failure 

11.3.3 Meter Tables

The Meter Tables consists of  per-flow meters used by OpenFlow to implement QoS. Each
per-flow meter measures the rate of frames assigned to it and controls the rate of those frames.
Each meter consists of one or more meter bands which specify the rate at which the band
applies and how frames are processed. Each meter band is identified by its rate and contains: 

• Band type: defines how packet are processed 

• rate: defines the lowest rate at which the band can apply 

• burst: defines the granularity of the meter band 

• counters: updated when packets are processed by a meter band 

• type specific arguments 

• drop: discard the packet. Can be used as a rate limiter band 

• dscp remark: increase the drop precedence of the DSCP field in the IP header.

Can act a simple DiffServ policer 

Free Technology Academy Diarmuid O'Briain



216 Open Networks

11.4 SDN Controllers
There  are  are  a  number  of  SDN  Controllers,  chief  among  them  are  some  Free  and
OpenSource (FOSS) projects. Here are three of the most popular SDN Controllers however
there are many more. 

• NOX is a general purpose OpenFlow based SDN Controller written in C/C++. 

• POX is a general OpenFlow based SDN controller built using Python. POX supports

an SDN API with virtualisation support. 
• Floodlight is  a  FOSS,  Java  based  OpenFlow  Controller.  It  incorporates  a

REpresentational  State  Transfer  (REST)  Web  Services  API  as  the  recommended
interface to develop applications. 

11.5 SDN Applications

11.5.1 SDN Routing Service

As  we  have  seen  the  SDN  Controller  manages  switches  on  the  CDPI  using  OpenFlow
protocol.  On  the  NBI  the  SDN  Controller  interfaces  using  REST API  with  application
services. In traditional networks networks are linked by routers. In an SDN Network groups
of switches are managed by a controller and this is called an  OpenFlow Island. In an SDN
Network the Flows that the SDN Controller send to the individual switches are controlled by
SDN Applications. One typical example is the routing service. 

Diarmuid O'Briain Free Technology Academy



Open Networks 217

Routing in this case is an SDN Application and consists of: 

• Link Discovery Module (LDM) 

• Topology Manager 

• Virtual Routing Engine (VRE) 

11.6 Link Discovery Module
The LDM discovers and maintains  the status  of  all  physical  links  on the network.  When
OpenFlow Switches discover other switches via Link Layer Discovery Protocol (LLDP) this
information is passed to the Link Discovery Module (LDM). Additionally when unknown
traffic is discovered by an OpenFlow Switch as described above the SDN Controller also
passes this to the LDM. In this way the LDM derives the information to build a picture of the
overall network topology as a Neighbour Database. 

11.7 Topology Manager
The Topology Manager builds the topology from the Neighbour Database. It generates the
logical OpenFlow Islands and determines the shortest path between OpenFlow nodes. From
this the Topology Manager can build the individual topology databases for the controllers
which  contain  the  shortest  paths  plus  alternate  paths  to  each  OpenFlow  node  or  hosts
connected to them. 

Free Technology Academy Diarmuid O'Briain



218 Open Networks

11.8 Virtual Routing Engine (VRE)
The function of the VRE is to allow SDN networks interoperate with traditional networks. It
builds a virtual networking topology to represent the SDN network to the traditional networks
using traditional routing protocols like Open Shortest Path First (OSPF) and Border Gateway
Protocol (BGP). 

While it is essential for SDN to have an application like the Routing Service to handling
routing within the SDN and to interact with traditional networks, the SDN architecture lends
itself readily to newer SDN Applications that can interact with the Controller over the REST
API and thereby influence the OpenFlow Switches in new and imaginative ways not possible
in today's traditional networks. 

11.9 Using Mininet to experment with SDN
Mininet is a project that creates a virtual network on a computer, a network emulator. On it it
is  possible  to  develop a  network  of  hosts,  switches,  routers  and  links  based  on a  single
GNU/Linux kernel. Minitnet uses Linux Containers (LXC) lightweight virtualisation to allow
for experementation with SDNs and SDN Controllers. For example a SDN Controller can be
given a network of devices to work with and because they are based on the GNU/Linux kernel
behave exactly as a standalone GNU/Linux device. 

To allow for experimentation lets set-up a Mininet VM image to work with. Install Oracle
VirtualBox as a hypervisor first (https://www.virtualbox.org). 

11.10 Set-up a guest VM with the mininet image
Download VM from //http://mininet.org/download/// 

• Run the Oracle VirtualBox Manager and click the New button to create a new virtual machine. 

• Name: mininet 

• Type: Linux 

• Version: Linux 2.6 / 3.x (64 bit) 

• Memory size: 1024 MB 

• Hard drive 

• Use and existing virtual hard drive file 

• Select mininet-vm-x86_64.vmdk, click Open, then Create 

• Mininet VM settings 

• General → Advanced → Shared Clipboard: Bidirectional 

• Network → Adapter 1 

• Attached to: Bridged Adapter 

• Name: wlan0 (or whatever interface the host is using) 

• Power on VM 

Diarmuid O'Briain Free Technology Academy

http://mininet.org/download///
https://www.virtualbox.org/


Open Networks 219

Login to the image and update and upgrade the image. 

  mininet-vm login: mininet
  Password: mininet
  
  $ sudo apt-get update
  $ sudo apt-get upgrade
  

Get the IP address of the mininet VM. 

  $ ip addr show
  1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default 
      link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
      inet 127.0.0.1/8 scope host lo
         valid_lft forever preferred_lft forever
      inet6 ::1/128 scope host 
         valid_lft forever preferred_lft forever
  2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default 
  qlen 1000
      link/ether 08:00:27:e6:cb:e2 brd ff:ff:ff:ff:ff:ff
      inet 192.168.22.83/24 brd 192.168.25.255 scope global eth0
         valid_lft forever preferred_lft forever
      inet6 fe80::a00:27ff:fee6:cbe2/64 scope link 
         valid_lft forever preferred_lft forever
  

From the host computer SSH to the VM guest. 

  $ ssh mininet@192.168.22.83
  mininet@192.168.22.83's password: mininet
  mininet@mininet:~$
  

11.10.1 Add rights to wireshark for user

For  experimentation  purposes  it  is  important  that  Wireshark is  installed  to  allow for  the
capture of packets on the mininet VM. 

  $ apt-get install wireshark tshark
  
  $ sudo dpkg-reconfigure wireshark-common
  
  Package configuration                                                                                            
                                                                                                                   
   ┌──────────────────────────────────────┤ Configuring wireshark-common ├──────────────────────────────────────┐  
   │                                                                                                            │  
   │ Dumpcap can be installed in a way that allows members of the "wireshark" system group to capture packets.  │  
   │ This is recommended over the alternative of running Wireshark/Tshark directly as root, because less of     │  
   │ the code will run with elevated privileges.                                                                │  
   │                                                                                                            │  
   │ For more detailed information please see /usr/share/doc/wireshark-common/README.Debian.                    │  
   │                                                                                                            │  
   │ Enabling this feature may be a security risk, so it is disabled by default. If in doubt, it is suggested   │  
   │ to leave it disabled.                                                                                      │  
   │                                                                                                            │  
   │ Should non-superusers be able to capture packets?                                                          │  
   │                                                                                                            │  
   │                               <Yes>                                  <No>                                  │  
   │                                                                                                            │  
   └────────────────────────────────────────────────────────────────────────────────────────────────────────────┘  

                                                                           

Free Technology Academy Diarmuid O'Briain



220 Open Networks

Add the mininet user to the wireshark group. 

  $ sudo usermod -a -G wireshark mininet
  

Allow users access to dumpcap. 

  $ sudo setcap 'CAP_NET_RAW+eip CAP_NET_ADMIN+eip' /usr/bin/dumpcap
  

Logout and log back in as user mininet. 

Confirm that wireshark can access the Ethernet interface. 

  $ tshark -i eth0
  Capturing on 'eth0'
    1   0.000000 Routerbo_c0:4d:fa → Broadcast    ARP 60 Who has 
  192.168.25.177?  Tell 192.168.25.254
    2   0.183036 HewlettP_f3:08:3a → Broadcast    ARP 60 Who has 
  192.168.25.147?  Tell 192.168.25.161
  

11.11 Confirm Wireshark works over SSH
wireshark can be run on the mininet VM guest and viewed on the host via ssh which forwards
the graphical output via X11 forwarding to the host display via the -X option. 

  $ ssh -X mininet@192.168.22.83 'wireshark -i lo'

11.12 Build a mininet test network
Look at the startup options for mininet. When connecting to the mininet VM guest via SSH
use the -X option to enable X11 forwarding. This is useful for opening shells for different
hosts. 

  host~$ ssh -X mininet@192.168.22.83
  

Diarmuid O'Briain Free Technology Academy



Open Networks 221

  $ sudo mn -h
  Usage: mn [options]
  (type mn -h for details)
  
  The mn utility creates Mininet network from the command line. It can create
  parametrized topologies, invoke the Mininet CLI, and run tests.
  
  Options:
    -h, --help                          show this help message and exit
    --switch=SWITCH                     default|ivs|lxbr|ovs|ovsbr|ovsk|ovsl|user[,param=value...]
    --host=HOST                         cfs|proc|rt[,param=value...]
    --controller=CONTROLLER             default|none|nox|ovsc|ref|remote|ryu[,param=value...]
    --link=LINK                         default|tc[,param=value...]
    --topo=TOPO                         linear|minimal|reversed|single|torus|tree[,param=value...]
    -c, --clean                         clean and exit
    --custom=CUSTOM                     read custom classes or params from .py file(s)
    --test=TEST                         cli|build|pingall|pingpair|iperf|all|iperfudp|none
    -x, --xterms                        spawn xterms for each node
    -i IPBASE, --ipbase=IPBASE          base IP address for hosts
    --mac                               automatically set host MACs
    --arp                               set all-pairs ARP entries
    -v VERBOSITY, --verbosity=VERBOSITY info|warning|critical|error|debug|output
    --innamespace                       sw and ctrl in namespace?
    --listenport=LISTENPORT             base port for passive switch listening
    --nolistenport                      don't use passive listening port
    --pre=PRE                           CLI script to run before tests
    --post=POST                         CLI script to run after tests
    --pin                               pin hosts to CPU cores (requires --host cfs or --host rt)
    --nat                               adds a NAT to the topology that connects Mininet hosts
                                        to the physical network. Warning: This may route any
                                        traffic on the machine that uses Mininet's IP subnet
                                        into the Mininet network. If you need to change
                                        Mininet's IP subnet, see the --ipbase option.
    --version                           prints the version and exits
    --cluster=server1,server2...        run on multiple servers (experimental!)
    --placement=block|random            node placement for --cluster (experimental!)

  

Free Technology Academy Diarmuid O'Briain



222 Open Networks

Establish a basic network with an SDN Controller (c0) an Open vSwitch (OVS) and three
hosts. 

Options: 

• Switch 

• ivs - Indigo Virtual Switch 

• lxbr - Linux Bridge 

• ovs - Open vSwitch 

• ovsbr - Open vSwitch in standalone/bridge mode 

• ovsk - OpenFlow 1.3 switch 

• ovsl - Open VSwitch legacy kernel-space switch using ovs-openflowd 

• Controller 

• nox - Nicira Networks OpenFlow controller 

• ovsc - Open vSwitch controller 

• ref - OpenFlow reference controller 

• remote - Controller running outside of mininet (i.e. OpenDaylight for example)

• ryu - RYU Network Operating System 

• topo 

• linear - Linear topology of k switches, with n hosts per switch 

• minimal - Single switch and two hosts 

• reversed - Single switch connected to k hosts, with reversed ports, the lowest-

numbered host is connected to the highest-numbered port 
• single - Single switch connected to k hosts 

• torus - 2-D Torus mesh interconnect topology 

• tree - a tree network with a given depth and fanout 

• mac - automatically set host MACs 

Create a basic network to start with from the mn mininet launch command. 

  $ sudo mn --topo tree,depth=1,fanout=3 --switch ovsk --controller ref --mac
  *** Creating network
  *** Adding controller
  *** Adding hosts:
  h1 h2 h3 
  *** Adding switches:
  s1 
  *** Adding links:
  (s1, h1) (s1, h2) (s1, h3) 
  *** Configuring hosts
  h1 h2 h3 
  *** Starting controller
  c0 
  *** Starting 1 switches
  s1 
  *** Starting CLI:
  

Diarmuid O'Briain Free Technology Academy



Open Networks 223

Review the network elements and the links between them. 

  mininet> hosts
  *** Unknown command: hosts
  mininet> nodes
  available nodes are: 
  c0 h1 h2 h3 s1
  
  mininet> links
  s1-eth1<->h1-eth0 (OK OK)
  s1-eth2<->h2-eth0 (OK OK)
  s1-eth3<->h3-eth0 (OK OK)
  
  mininet> dump
  <Host h1: h1-eth0:10.0.0.1 pid=7960> 
  <Host h2: h2-eth0:10.0.0.2 pid=7963> 
  <Host h3: h3-eth0:10.0.0.3 pid=7965> 
  <OVSSwitch s1: lo:127.0.0.1,s1-eth1:None,s1-eth2:None,s1-eth3:None pid=7970> 
  <Controller c0: 127.0.0.1:6633 pid=7952> 
  

To run commands on the hosts, use the hostname followed by the command. For example
look at the IP address on h1 and route table on h2. 

  mininet> h2 ip addr show | grep eth0
  159: h2-eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
  group default qlen 1000
      inet 10.0.0.2/8 brd 10.255.255.255 scope global h2-eth0
  
  mininet> h2 ip route
  10.0.0.0/8 dev h2-eth0  proto kernel  scope link  src 10.0.0.2 
  

Test connectivity from one host to another. 

Test options in the cli are: 

• build 

• pingall - Ping between all hosts 

• pingallfull - Ping between all hosts, including times 

• pingpair - Ping between first two hosts 

• iperf <host1> <host2> - Run TCP iperf between two hosts 

• iperfudp <bw i.e. 100M> <host1> <host2> - UDP iperf 

  mininet> h1 ping -c1 h3
  PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
  64 bytes from 10.0.0.3: icmp_seq=1 ttl=64 time=4.66 ms
  
  --- 10.0.0.3 ping statistics ---
  1 packets transmitted, 1 received, 0% packet loss, time 0ms
  rtt min/avg/max/mdev = 4.664/4.664/4.664/0.000 ms
  

Free Technology Academy Diarmuid O'Briain



224 Open Networks

Look at network links between elements. 

  mininet> net
  h1 h1-eth0:s1-eth1
  h2 h2-eth0:s1-eth2
  h3 h3-eth0:s1-eth3
  s1 lo:  s1-eth1:h1-eth0 s1-eth2:h2-eth0 s1-eth3:h3-eth0
  c0
  

The mininet command pingall is useful for checking connectivity between hosts. 

  mininet> pingall
  *** Ping: testing ping reachability
  h1 → h2 h3 
  h2 → h1 h3 
  h3 → h1 h2 
  *** Results: 0% dropped (6/6 received)
  

iperf can be ran from the mininet prompt to test bandwidth between links. Here is an example
between h1 and h2. 

  mininet> iperf h1 h2
  *** Iperf: testing TCP bandwidth between h1 and h2
  *** Results: ['18.0 Gbits/sec', '18.0 Gbits/sec']
  

Running commands on hosts can be done directly from the mininet command shell as seen
above or individual xterms can be ran for hosts. In the example see the IPv4 addresses for
each host. 

Diarmuid O'Briain Free Technology Academy



Open Networks 225

11.12.1 Exiting mininet

To exit mininet use the exit command. 

  mininet> exit
  *** Stopping 1 controllers
  c0 
  *** Stopping 1 switches
  s1 ...
  *** Stopping 3 links
  
  *** Stopping 3 hosts
  h1 h2 h3 
  *** Done
  completed in 3.536 seconds
  

It is a good idea to follow this up with sudo mn -c to tidy up before running another network. 

  $ sudo mn -c
  *** Removing excess controllers/ofprotocols/ofdatapaths/pings/noxes
  killall controller ofprotocol ofdatapath ping nox_core lt-nox_core ovs-
 openflowd 
  ovs-controller udpbwtest mnexec ivs 2> /dev/null
  killall -9 controller ofprotocol ofdatapath ping nox_core lt-nox_core 
  ovs-openflowd ovs-controller udpbwtest mnexec ivs 2> /dev/null
  pkill -9 -f "sudo mnexec"
  *** Removing junk from /tmp
  rm -f /tmp/vconn* /tmp/vlogs* /tmp/*.out /tmp/*.log
  *** Removing old X11 tunnels
  *** Removing excess kernel datapaths
  ps ax | egrep -o 'dp[0-9]+' | sed 's/dp/nl:/'
  ***  Removing OVS datapathsovs-vsctl --timeout=1 list-br
  ovs-vsctl --timeout=1 list-br
  *** Removing all links of the pattern foo-ethX
  ip link show | egrep -o '([-_.[:alnum:]]+-eth[[:digit:]]+)'
  *** Killing stale mininet node processes
  pkill -9 -f mininet:
  *** Shutting down stale tunnels
  pkill -9 -f Tunnel=Ethernet
  pkill -9 -f .ssh/mn
  rm -f ~/.ssh/mn/*
  *** Cleanup complete.
  

Free Technology Academy Diarmuid O'Briain



226 Open Networks

11.13 Configuring hosts
Recreate the same network but this time specifying the bandwidth of links and adding delay.
The options: 

• host 

• cfs - Completely Fair Scheduler (CFS) 

• proc 

• rt, - Real Time (RT) 

• cpu=<positive fraction, or -1> - CPU bandwidth limit 

Note: RT_GROUP_SCHED must be enables in the kernel to change the rt,cpu. 

  $ sudo mn --topo tree,depth=1,fanout=3 --switch ovsk --controller ref 
  --mac --host rt,cpu=0.25  

11.14 Configuring links
Recreate the same network but this time for traffic control (tc) specify the bandwidth of links
and adding delay. The options: 

• link tc 

• bw=<value> - Value in Mb/s 

• delay=<value> - Time unit expressed as '5ms', '50us' or '1s' 

• max_queue_size=<x> - Queue size in packets 

• loss=<0 - 100> - Percentage loss 

• use_htb=<True | False> - Hierarchical Token Bucket (HTB) rate limiter 

  $ sudo mn --topo tree,depth=1,fanout=3 --switch ovsk --controller ref 
  --mac --link tc,bw=100,delay=20ms
  [sudo] password for mininet: 
  *** Creating network
  *** Adding controller
  *** Adding hosts:
  h1 h2 h3 
  *** Adding switches:
  s1 
  *** Adding links:
  (100.00Mbit 20ms delay) (100.00Mbit 20ms delay) (s1, h1) (100.00Mbit 20ms
  delay) (100.00Mbit 20ms delay) (s1, h2) (100.00Mbit 20ms delay) 
  (100.00Mbit 20ms delay) (s1, h3) 
  *** Configuring hosts
  h1 h2 h3 
  *** Starting controller
  c0 
  *** Starting 1 switches
  s1 (100.00Mbit 20ms delay) (100.00Mbit 20ms delay) (100.00Mbit 20ms 
  delay) 
  *** Starting CLI:
  

Diarmuid O'Briain Free Technology Academy



Open Networks 227

Repeat the iperf test between h1 and h2. Note the difference in results from the earlier test.
*** Results: ['18.0 Gbits/sec', '18.0 Gbits/sec']. 

  mininet> iperf h1 h2
  *** Iperf: testing TCP bandwidth between h1 and h2
  *** Results: ['85.7 Mbits/sec', '99.3 Mbits/sec']
  

11.15 Reviewing OpenFlow traffic
The OpenFlow traffic between the Controller c0 and the Open vSwitch s1. As the controller
and switch share the same VM guest they control channel is via the loopback interface, so
monitoring the loopback  lo0 interface will  give access to this messaging. In this  case the
messaging is using OpenFlow v1.0 so using the filter of we can see communications between
the devices. 

An Internet Control Message Protocol (ICMP) arrives at  s1. It does a table entry check and
finds that it has a  table-miss no flow entry. The vSwitch  s1 sends an OpenFlow  Packet In
(OFPT_PACKET_IN) message to the controller c0 with a unique Buffer IDentifier 128 for a
decision. 

Free Technology Academy Diarmuid O'Briain



228 Open Networks

  Frame 1: OFPT_PACKET_IN
  Ethernet II, Src: 00:00:00_00:00:00, Dst: 00:00:00_00:00:00
  Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
  Transmission Control Protocol, Src Port: 60348, Dst Port: 6633, Seq: 9, 
  Ack: 9, Len: 60
  OpenFlow
      version: 1
      type: OFPT_PACKET_IN (10)
      length: 60
      xid: 0
      buffer_id: 128
      total_len: 42
      in_port: 1
      reason: OFPR_NO_MATCH (0)
      Ethernet packet
  

The controller c0 responds to the vSwitch s1 using the Buffer IDentifier 128 with the decision
to Output to switch port on all ports. 

  Frame 2: OFPT_PACKET_OUT
  Ethernet II, Src: 00:00:00_00:00:00, Dst: 00:00:00_00:00:00
  Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
  Transmission Control Protocol, Src Port: 6633, Dst Port: 60348, Seq: 9, 
  Ack: 69, Len: 24
  OpenFlow
      version: 1
      type: OFPT_PACKET_OUT (13)
      length: 24
      xid: 0
      buffer_id: 128
      in_port: 1
      actions_len: 8
      of_action list
          of_action_output
              type: OFPAT_OUTPUT (0)
              len: 8
              port: 65531
              max_len: 0
  

Diarmuid O'Briain Free Technology Academy



Open Networks 229

The response from the host h2 arrives at the Open vSwitch s1 and is given a Buffer IDentifier
129, again there is a table-miss so the vSwitch  s1 sends an OpenFlow  OFPT_PACKET_IN
message to the controller c0. 

  Frame 3: OFPT_PACKET_IN
  Ethernet II, Src: 00:00:00_00:00:00, Dst: 00:00:00_00:00:00
  Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
  Transmission Control Protocol, Src Port: 60348, Dst Port: 6633, Seq: 69, 
  Ack: 33, Len: 60
  OpenFlow
      version: 1
      type: OFPT_PACKET_IN (10)
      length: 60
      xid: 0
      buffer_id: 129
      total_len: 42
      in_port: 2
      reason: OFPR_NO_MATCH (0)
      Ethernet packet
  

Free Technology Academy Diarmuid O'Briain



230 Open Networks

In this case the controller c0 sends an OpenFlow Flow MOD to the Open vSwitch s1 to add an
entry to the Flow Table for traffic from 10.0.0.2 → 10.0.0.1 on Ethernet port 2 → port 1.
Subsequent similar packets are then forwarded automatically by the Open vSwitch until the
itle time-out of 60 seconds has been exceeded and then the process must be repeated. 

  Frame 4: OPENFLOW FLOW MODIFICATION
  Ethernet II, Src: 00:00:00_00:00:00, Dst: 00:00:00_00:00:00
  Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
  Transmission Control Protocol, Src Port: 6633, Dst Port: 60348, Seq: 33, 
  Ack: 129, Len: 80
  OpenFlow
      version: 1
      type: OFPT_FLOW_MOD (14)
      length: 80
      xid: 0
      of_match
          wildcards: 0x0000000000000000
          in_port: 2
          eth_src: 00:00:00_00:00:02
          eth_dst: 00:00:00_00:00:01
          vlan_vid: 65535
          vlan_pcp: 0
          eth_type: 2054
          ip_dscp: 0
          ip_proto: 2
          ipv4_src: 10.0.0.2
          ipv4_dst: 10.0.0.1
          tcp_src: 0
          tcp_dst: 0
      cookie: 0
      _command: 0
      idle_timeout: 60
      hard_timeout: 0
      priority: 0
      buffer_id: 129
      out_port: 0
      flags: Unknown (0x00000000)
      of_action list
          of_action_output
              type: OFPAT_OUTPUT (0)
              len: 8
              port: 1
              max_len: 0
  

Diarmuid O'Briain Free Technology Academy



Open Networks 231

The next packet in from h1 triggers another OFPT_PACKET_IN. 

  Frame 5: OFPT_PACKET_IN
  Ethernet II, Src: 00:00:00_00:00:00, Dst: 00:00:00_00:00:00
  Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
  Transmission Control Protocol, Src Port: 60348, Dst Port: 6633, Seq: 129,
  Ack: 113, Len: 116
  OpenFlow
      version: 1
      type: OFPT_PACKET_IN (10)
      length: 116
      xid: 0
      buffer_id: 130
      total_len: 98
      in_port: 1
      reason: OFPR_NO_MATCH (0)
      Ethernet packet
  

This time Controller c0 knows the port that h2 is on so it sends an OpenFlow Flow MOD to
the vSwitch  s1 to add an entry to the Flow Table for traffic from 10.0.0.1 → 10.0.0.2 on
Ethernet port 1 → port 2. Subsequent similar packets are then forwarded automatically by the
Open vSwitch until the itle time-out of 60 seconds has been exceeded and then the process
must be repeated. 

Free Technology Academy Diarmuid O'Briain



232 Open Networks

  Frame 6: OPENFLOW FLOW MODIFICATION
  Ethernet II, Src: 00:00:00_00:00:00, Dst: 00:00:00_00:00:00
  Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
  Transmission Control Protocol, Src Port: 6633, Dst Port: 60348, Seq: 113,
  Ack: 245, Len: 80
  OpenFlow
      version: 1
      type: OFPT_FLOW_MOD (14)
      length: 80
      xid: 0
      of_match
          wildcards: 0x0000000000000000
          in_port: 1
          eth_src: 00:00:00_00:00:01
          eth_dst: 00:00:00_00:00:02
          vlan_vid: 65535
          vlan_pcp: 0
          eth_type: 2048
          ip_dscp: 0
          ip_proto: 1
          ipv4_src: 10.0.0.1
          ipv4_dst: 10.0.0.2
          tcp_src: 8
          tcp_dst: 0
      cookie: 0
      _command: 0
      idle_timeout: 60
      hard_timeout: 0
      priority: 0,ip=[controller IP]
      buffer_id: 130
      out_port: 0
      flags: Unknown (0x00000000)
      of_action list
          of_action_output
              type: OFPAT_OUTPUT (0)
              len: 8
              port: 2
              max_len: 0
  

Ping is not the only command you can run on a host. Mininet hosts can run any command or
application that is available to the underlying Linux system and its file system. You can also
enter any bash command, including job control (&, jobs, kill, etc..) 

Next, run a simple HTTP server on h1, making a request from h3, then shut down the web
server. 

Diarmuid O'Briain Free Technology Academy



Open Networks 233

11.16 Webserver test
Install the lynx text based web client on the mininet VM. 

  $ sudo apt-get install lynx
  

Check the IP addresses of the h1 and h3 hosts. Confirm connectivity between them. 

  mininet> h1 ip addr | grep "inet.*eth0"
      inet 10.0.0.1/8 brd 10.255.255.255 scope global h1-eth0
  
  mininet> h3 ip addr | grep "inet.*eth0"
      inet 10.0.0.3/8 brd 10.255.255.255 scope global h3-eth0
  
  mininet> h1 ping -c1 10.0.0.3
  PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
  64 bytes from 10.0.0.3: icmp_seq=1 ttl=64 time=4.46 ms
  

xterm h1 and h3 so you have access to individual shells for each host. 

  mininet> xterm h1
  mininet> xtern h3
  

Run a webserver on h1 xterm. 

  root@mininet-vm:~# python -m SimpleHTTPServer 80
  Serving HTTP on 0.0.0.0 port 80 ...
  

Use lynx on the h3 xterm to access the webserver. 

  root@mininet-vm:~# lynx 10.0.0.1
                                                 Directory listing for / (p1 of 2)
  Directory listing for /
       __________________________________________________________________
  
       * .bash_history
       * .bash_logout
       * .bashrc
       * .cache/
       * .gitconfig
       * .mininet_history
       * .profile
       * .rnd
       * .ssh/
       * .wireshark/
       * .Xauthority
       * install-mininet-vm.sh
       * loxigen/
       * mininet/
       * oflops/
       * oftest/
       * openflow/
  -- press space for next page --
    Arrow keys: Up and Down to move.  Right to follow a link; Left to go back.
   H)elp O)ptions P)rint G)o M)ain screen Q)uit /=search [delete]=history list 
  

Free Technology Academy Diarmuid O'Briain



234 Open Networks

On the webserver xterm on h1 the following message pops up. 

  10.0.0.3 - - [18/Mar/2015 01:11:34] "GET / HTTP/1.0" 200 -
  

An alternative is to run the server in the mininet console as a background process and the use
lynx to view it. 

  mininet> h1 python -m SimpleHTTPServer 80 &
  Serving HTTP on 0.0.0.0 port 80 ...
  
  mininet> h2 lynx h1
                                                 Directory listing for / (p1 of 2)
  Directory listing for /
       __________________________________________________________________
  
       * .bash_history
       * .bash_logout
       * .bashrc
       * .cache/
       * .gitconfig
       * .mininet_history
       * .profile
       * .rnd
       * .ssh/
       * .wireshark/
       * .Xauthority
       * install-mininet-vm.sh
       * loxigen/
       * mininet/
       * oflops/
       * oftest/
       * openflow/
  -- press space for next page --
    Arrow keys: Up and Down to move.  Right to follow a link; Left to go back.
   H)elp O)ptions P)rint G)o M)ain screen Q)uit /=search [delete]=history list 
  

Kill the webserver on host h1. 

  mininet> h1 ps -ef | grep SimpleHTTPServer
  root      2624  1406  0 01:17 pts/4    00:00:00 python -m SimpleHTTPServer 80
  root      2669  1406  0 01:19 pts/4    00:00:00 grep SimpleHTTPServer

  mininet> h1 kill 2624
  

Diarmuid O'Briain Free Technology Academy



Open Networks 235

So what happened ? 

From → to Version Length Type BufID Reason/Action

S1 → C0 OF 1.0 158 OFPT_PACKET_IN 342 Reason:  OFPR_NO_MATCH
10.0.0.3  →  10.0.0.1  TCP  SYN
39109 → 80 In pt: 3

C0 → S1 OF 1.0 90 OFPT_PACKET_OUT 342 Action: OFPAT_OUTPUT In pt: 3
Out pt: 65531

S1 → C0 OF 1.0 158 OFPT_PACKET_IN 343 Reason:  OFPR_NO_MATCH
10.0.0.1  →  10.0.0.3  TCP  SYN,
ACK 80 → 39109 In pt: 1

C0 → S1 OF 1.0 146 OFPT_FLOW_MOD 343 Action:  OFPR_FLOW_MOD
10.0.0.1 → 10.0.0.3 TCP SRC: 80
TCP DST: 39109 In pt: 1 Out pt:3

S1 → C0 OF 1.0 150 OFPT_PACKET_IN 344 Reason:  OFPR_NO_MATCH
10.0.0.3  →  10.0.0.1  TCP  ACK
39109 → 80 In pt: 3

C0 → S1 OF 1.0 146 OFPT_FLOW_MOD 344 Action:  OFPR_FLOW_MOD
10.0.0.3  →  10.0.0.1  TCP  SRC:
39109 TCP DST: 80 In pt: 3 Out
pt:1

h3 tried to send an Ethernet frame containing a TCP SYN message to port  80 on the  h1
webserver. 

The Open vSwitch  s1 does not have a flow for this in its flow table so it encapsulated the
message in an OpenFlow OFPT_PACKET_IN message with Buffer ID 342 and a Reason code
of OFPR_NO_MATCH. 

Controller  C0 responded with an  Output to switch port (OFPAT_OUTPUT) message telling
the Open vSwitch s1 to send on all its ports. 

When the responding SYN, ACK is received the Open vSwitch s1 has no match for the return
path either so it encapsulates in an OpenFlow  OFPT_PACKET_IN message with Buffer ID
343 and a Reason code of OFPR_NO_MATCH. 

This time the Ethernet port for the destination is known as a result of the earlier message so
the Controller c0 instructs the Open vSwitch s1 with a OpenFlow Flow Modification messafe
to map HTTP traffic for 10.0.0.1 → 10.0.0.3 in on port 1 to be forwarded to port 3. 

The next response from h3 will again be forwarded as an OFPT_PACKET_IN message with
Buffer ID 344 and a Reason code of OFPR_NO_MATCH to Controller c0. 

Free Technology Academy Diarmuid O'Briain



236 Open Networks

As the Ethernet port for h1 is now known an OpenFlow Flow Modification message to map
HTTP traffic for 10.0.0.3 → 10.0.0.1 in on port 3 to be forwarded to port 1 is sent to the Open
vSwitch s1 from the Controller c0. 

All similar traffic to/from h1 to h3 will now be handled by the Open vSwitch s1 with need for
recourse to the Controller c0 until the idle timeout of 60 seconds has passed. 

11.17 Custom Topologies
The topologies created thusfar have been defined by the mn command options and these are
limited.  It  will  become  necessary  to  create  more  customised  topologies  and  this  can  be
achieved using Python scripts. Mininet has example scripts in:

 /home/mininet/mininet/examples 

and custom scripts are created in: 

/home/mininet/mininet/custom. 

  $ cd /home/mininet/mininet/custom
  /home/mininet/mininet/custom$ ls
  README  topo-2sw-2host.py
  
  $ cat README 
  This directory should hold configuration files for custom mininets.
  
  See custom_example.py, which loads the default minimal topology. The 
advantage of defining a mininet in a separate file is that you then use the
--custom option in mn to run the CLI or specific tests with it.
  
  To start up a mininet with the provided custom topology, do:
    sudo mn --custom custom_example.py --topo mytopo
  

Diarmuid O'Briain Free Technology Academy



Open Networks 237

An example is given for a two switch solution with a host in each. 

  /home/mininet/mininet/custom$ cat topo-2sw-2host.py
   
  """Custom topology example
  
  Two directly connected switches plus a host for each switch:
  
     host --- switch --- switch --- host
  
  Adding the 'topos' dict with a key/value pair to generate our newly 
defined
  topology enables one to pass in '--topo=mytopo' from the command line.
  """
  
  from mininet.topo import Topo
  
  class MyTopo( Topo ):
      "Simple topology example."
  
      def __init__( self ):
          "Create custom topo."
  
          # Initialize topology
          Topo.__init__( self )
  
          # Add hosts and switches
          leftHost = self.addHost( 'h1' )
          rightHost = self.addHost( 'h2' )
          leftSwitch = self.addSwitch( 's3' )
          rightSwitch = self.addSwitch( 's4' )
  
          # Add links
          self.addLink( leftHost, leftSwitch )
          self.addLink( leftSwitch, rightSwitch )
          self.addLink( rightSwitch, rightHost )
  
  
  topos = { 'mytopo': ( lambda: MyTopo() ) }
  

Free Technology Academy Diarmuid O'Briain



238 Open Networks

Run this example and confirm it is working. 

  $ sudo mn --custom topo-2sw-2host.py --topo mytopo
  
  *** Creating network
  *** Adding controller
  *** Adding hosts:
  h1 h2 
  *** Adding switches:
  s3 s4 
  *** Adding links:
  (h1, s3) (s3, s4) (s4, h2) 
  *** Configuring hosts
  h1 h2 
  *** Starting controller
  c0 
  *** Starting 2 switches
  s3 s4 
  *** Starting CLI:
  
  mininet> net
  h1 h1-eth0:s3-eth1
  h2 h2-eth0:s4-eth2
  s3 lo:  s3-eth1:h1-eth0 s3-eth2:s4-eth1
  s4 lo:  s4-eth1:s3-eth2 s4-eth2:h2-eth0
  c0
  

11.17.1 Create custom topology

Diarmuid O'Briain Free Technology Academy



Open Networks 239

Taking this diagram as an example to build. Use the existing file as a template to build the
required custom topology. 

  --------------------------------Custom-OvS.py------------------------------------
  
  #!/usr/bin/python
  
  """
  Custom topology example
  
  Three directly connected switches plus a host attached to each 
  switch with a controller (c0):
  
               c0
               /|\
              / | \
             /  |  \
     h1 --- s1  |  s3 --- h3
             \  |  /
              \ | /
               \|/
               s2 --- h2
  
  """
  from mininet.net import Mininet
  from mininet.node import Controller
  from mininet.cli import CLI
  from mininet.log import setLogLevel, info
  from mininet.topo import Topo
  
  def customNet():
  
      "Create a customNet and add devices to it."
  
      net = Mininet( controller=Controller )
  
      # Add controller
      info( 'Adding controller\n' )
      net.addController ('c0')
  
      # Add hosts 
      info( 'Adding hosts\n' )
      h1 = net.addHost( 'h1' )
      h2 = net.addHost( 'h2' )
      h3 = net.addHost( 'h3' )
  
      # Add switches
      info( 'Adding switches\n' )
      s1 = net.addSwitch( 's1' )
      s2 = net.addSwitch( 's2' )
      s3 = net.addSwitch( 's3' )
  
      # Add links
      info( 'Adding switch links\n' )
      net.addLink( s1, s2 )
      net.addLink( s2, s3 )
  
      info( 'Adding host links\n' )
      net.addLink( h1, s1 )
      net.addLink( h2, s2 )
      net.addLink( h3, s3 )
  
      info( '*** Starting network\n')
      net.start()

Free Technology Academy Diarmuid O'Briain



240 Open Networks

  
      info( '*** Running CLI\n' )
      CLI( net )
  
      info( '*** Stopping network' )
      net.stop()
  
  if __name__ == '__main__':
      setLogLevel( 'info' )
      customNet()
  
  ---------------------------------------------------------------------------------

Now run the new custom topology. 

  /home/mininet/mininet/custom$ sudo ./custom-OvS.py 
  Adding controller
  Adding hosts
  Adding switches
  Adding switch links
  Adding host links
  *** Starting network
  *** Configuring hosts
  h1 h2 h3 
  *** Starting controller
  c0 
  *** Starting 3 switches
  s1 s2 s3 
  *** Running CLI
  *** Starting CLI:
  mininet> 

Reviewing  the  new  network  with  the  dump,  net,  pingall,  iperf and  dpctl  dump-flows
commands. 

  mininet> dump
  <Host h1: h1-eth0:10.0.0.1 pid=1290> 
  <Host h2: h2-eth0:10.0.0.2 pid=1293> 
  <Host h3: h3-eth0:10.0.0.3 pid=1295> 
  <OVSSwitch s1: lo:127.0.0.1,s1-eth1:None,s1-eth2:None pid=1300> 
  <OVSSwitch s2: lo:127.0.0.1,s2-eth1:None,s2-eth2:None,s2-eth3:None pid=1303> 
  <OVSSwitch s3: lo:127.0.0.1,s3-eth1:None,s3-eth2:None pid=1306> 
  <Controller c0: 127.0.0.1:6633 pid=1282> 
  
  mininet> net
  h1 h1-eth0:s1-eth2
  h2 h2-eth0:s2-eth3
  h3 h3-eth0:s3-eth2
  s1 lo:  s1-eth1:s2-eth1 s1-eth2:h1-eth0
  s2 lo:  s2-eth1:s1-eth1 s2-eth2:s3-eth1 s2-eth3:h2-eth0
  s3 lo:  s3-eth1:s2-eth2 s3-eth2:h3-eth0
  c0
  
  mininet> pingall
  *** Ping: testing ping reachability
  h1 -> h2 h3 
  h2 -> h1 h3 
  h3 -> h1 h2 
  *** Results: 0% dropped (6/6 received)
    
  

Diarmuid O'Briain Free Technology Academy



Open Networks 241

mininet> iperf h1 h2
  *** Iperf: testing TCP bandwidth between h1 and h2
  *** Results: ['18.5 Gbits/sec', '18.5 Gbits/sec']
  
  mininet> iperf h1 h3
  *** Iperf: testing TCP bandwidth between h1 and h3
  *** Results: ['17.8 Gbits/sec', '17.8 Gbits/sec']
  
  mininet> iperf h2 h3
  *** Iperf: testing TCP bandwidth between h2 and h3
  *** Results: ['18.1 Gbits/sec', '18.1 Gbits/sec']
  
  mininet> dpctl dump-flows
  *** s1 
  ------------------------------------------------------------------------
  NXST_FLOW reply (xid=0x4):
  *** s2 
  ------------------------------------------------------------------------
  NXST_FLOW reply (xid=0x4):
  *** s3 
  ------------------------------------------------------------------------
  NXST_FLOW reply (xid=0x4):
  
  mininet> h1 ping h2
  PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
  64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=2.81 ms
  64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=2.82 ms
  64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.595 ms
  
  --- 10.0.0.2 ping statistics ---
  3 packets transmitted, 3 received, 0% packet loss, time 2003ms
  rtt min/avg/max/mdev = 0.595/2.078/2.826/1.048 ms
  
  mininet> dpctl dump-flows
  *** s1 

------------------------------------------------------------------------
NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=3.854s, table=0, n_packets=3, n_bytes=294, 
idle_timeout=60, idle_age=1, 
priority=65535,icmp,in_port=1,vlan_tci=0x0000,dl_src=b2:a6:82:06:f5:0b,dl_dst=da:
f0:ca:b8:ca:79,nw_src=10.0.0.2,nw_dst=10.0.0.1,nw_tos=0,icmp_type=0,icmp_code=0 
actions=output:2
 cookie=0x0, duration=2.856s, table=0, n_packets=2, n_bytes=196, idle_timeout=60,
idle_age=1, 
priority=65535,icmp,in_port=2,vlan_tci=0x0000,dl_src=da:f0:ca:b8:ca:79,dl_dst=b2:
a6:82:06:f5:0b,nw_src=10.0.0.1,nw_dst=10.0.0.2,nw_tos=0,icmp_type=8,icmp_code=0 
actions=output:1
*** s2 ------------------------------------------------------------------------
NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=2.859s, table=0, n_packets=2, n_bytes=196, idle_timeout=60,
idle_age=1, 
priority=65535,icmp,in_port=1,vlan_tci=0x0000,dl_src=da:f0:ca:b8:ca:79,dl_dst=b2:
a6:82:06:f5:0b,nw_src=10.0.0.1,nw_dst=10.0.0.2,nw_tos=0,icmp_type=8,icmp_code=0 
actions=output:3
 cookie=0x0, duration=3.86s, table=0, n_packets=3, n_bytes=294, idle_timeout=60, 
idle_age=1, 
priority=65535,icmp,in_port=3,vlan_tci=0x0000,dl_src=b2:a6:82:06:f5:0b,dl_dst=da:
f0:ca:b8:ca:79,nw_src=10.0.0.2,nw_dst=10.0.0.1,nw_tos=0,icmp_type=0,icmp_code=0 
actions=output:1
*** s3 ------------------------------------------------------------------------
NXST_FLOW reply (xid=0x4):

  

Free Technology Academy Diarmuid O'Briain



242 Open Networks

11.18 OpenDaylight
Project OpenDaylight is a Linux Foundation Collaborative Project The software combines
SDN components  including a  fully  pluggable  controller,  interfaces,  protocol  plug-ins  and
applications to create  a framework for SDN and Network Functions  Virtualisation (NFV)
solutions. The current release is  Helium. In this case OpenDaylight will be used as an SDN
Controller. 

Create  a  second  VirtualBox  VM  and  install  a  GNU/Linux  distribution  like  Debian
GNU/Linux,  Ubuntu  or  CentOS.  Create  a  user  called  opendaylight with  a  password
opendaylight with sudoer rights. Under the VM settings, set the network to Bridged Adapter
for the interface to the network, in this way the VM will get an IP address from the network
DHCP Server. 

11.18.1 Install OpenDaylight

Install the following software that OpenDaylight requires. 

• maven - Java softweare project management and comprehension tool. 

• git - Distributed revision control system. 

• openjdk-7-jre - OpenJDK Java runtime. 

• openjdk-7-jdk - OpenJDK Development Kit. 

  $ sudo apt-get update
  $ sudo apt-get install maven git openjdk-7-jre openjdk-7-jdk
  

Get the source code for the Project Daylight from:

   http://www.opendaylight.org/software/downloads

  $ wget 
https://nexus.opendaylight.org/content/groups/public/org/opendaylight/integ
ration/distribution-karaf/0.2.3-Helium-SR3/distribution-karaf-0.2.3-Helium-
SR3.tar.gz

  Resolving nexus.opendaylight.org (nexus.opendaylight.org)... 23.253.119.7
  Connecting to nexus.opendaylight.org (nexus.opendaylight.org)|23.253.119.7|:443...
  connected.
  HTTP request sent, awaiting response... 200 OK
  Length: 229105921 (218M) [application/x-gzip]
  Saving to: `distribution-karaf-0.2.3-Helium-SR3.tar.gz'
  
  51% [===================>                   ] 118,466,283  210K/s  eta 7m 14s
  

Diarmuid O'Briain Free Technology Academy



Open Networks 243

Build  the  OpenDaylight  Controller  and  for  simplicity  change  the  directory  name  to
opendaylight. 

  $ tar -xzvf distribution-karaf-0.2.3-Helium-SR3.tar.gz 
  $ mv distribution-karaf-0.2.3-Helium-SR3 opendaylight

Create JAVA_HOME. 

  $ cat << JAVARC >> ~/.bashrc
  
  > #JAVA_HOME for OpenDaylight
  > export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-amd64
  > JAVARC
  
  $ export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-amd64
  

11.18.2 Running OpenDaylight

Run OpenDaylight. 

  $ ~/opendaylight/bin/karaf
  
                                                                                             
      ________                       ________                .__  .__       .__     __       
      \_____  \ ______   ____   ____ \______ \ _____  ___.__.|  | |__| ____ |  |___/  |_     
       /   |   \\____ \_/ __ \ /    \ |    |  \\__  \<   |  ||  | |  |/ ___\|  |  \   __\    
      /    |    \  |_> >  ___/|   |  \|    `   \/ __ \\___  ||  |_|  / /_/  >   Y  \  |      
      \_______  /   __/ \___  >___|  /_______  (____  / ____||____/__\___  /|___|  /__|      
              \/|__|        \/     \/        \/     \/\/            /_____/      \/          
                                                                           
    Hit '<tab>' for a list of available commands
  and '[cmd] --help' for help on a specific command.
  Hit '<ctrl-d>' or type 'system:shutdown' or 'logout' to shutdown OpenDaylight.
  
  opendaylight-user@root>
  

11.18.3 OpenDaylight User Experience (DLUX)

On the karaf shell install DLUX. 

• odl-restconf - 

• odl-l2switch-switch - 

• odl-mdsal-apidocs - 

• odl-dlux-core - 

  opendaylight-user@root> feature:install odl-restconf odl-l2switch-switch 
  odl-mdsal-apidocs odl-dlux-core
  

Free Technology Academy Diarmuid O'Briain



244 Open Networks

To access the DLUX dashboard a local browser is required as it is only accessable from the
localhost. To access it remotely it is possible to use X11 forwarding. Install a web browser on
the remote machine and run it. Then link to //http://localhost:8181/index.html//. 

  $ ssh -X opendaylight@192.168.25.111
  $ sudo apt-get install chromium
  

Diarmuid O'Briain Free Technology Academy



Open Networks 245

11.18.4 Start mininet network

Start  a  mininet  network  on  the  mininet  computer.  In  this  case  point  to  the  remote
OpenDaylight remote controller on port 6633, the standard OpenFlow port.  The following
python script is a variant of the previous script except the controller now points to the remote
Open Daylight controller. 

  
  ------------------------Custom-RemoteODL.py----------------------------
  
  #!/usr/bin/python
  
  """
  Custom topology example
  
  Three directly connected switches plus a host attached to each switch 
  with a remote ODL SDN Controller (c0):
  
               c0
   ODL         /|\    192.168.25.111
   .........../.|.\.................
   Mininet   /  |  \  192.168.25.83
            /   |   \
    h1 --- s1   |   s3 --- h3
            \   |   /
             \  |  /
              \ | /
               \|/
               s2 --- h2
  
  """
  from mininet.net import Mininet
  from mininet.node import Controller, RemoteController
  from mininet.cli import CLI
  from mininet.log import setLogLevel, info
  #from mininet.topo import Topo
  
  # OpenDayLight controller
  ODL_CONTROLLER_IP='192.168.25.111'
  ODL_CONTROLLER_PORT=6633
  
  # Define remote OpenDaylight Controller
  
  print 'OpenDaylight IP Addr:', ODL_CONTROLLER_IP
  print 'OpenDaylight Port:', ODL_CONTROLLER_PORT
  
  def customNet():
  
      "Create a customNet and add devices to it."
  
      net = Mininet( topo=None, build=False )
  
 

Free Technology Academy Diarmuid O'Briain



246 Open Networks

     # Add controller
      info( 'Adding controller\n' )
      net.addController( 'c0', 
                         controller=RemoteController, 
                         ip=ODL_CONTROLLER_IP, 
                         port=ODL_CONTROLLER_PORT 
                       )
  
      # Add hosts 
      info( 'Adding hosts\n' )
      h1 = net.addHost( 'h1' )
      h2 = net.addHost( 'h2' )
      h3 = net.addHost( 'h3' )
  
      # Add switches
      info( 'Adding switches\n' )
      s1 = net.addSwitch( 's1' )
      s2 = net.addSwitch( 's2' )
      s3 = net.addSwitch( 's3' )
  
      # Add links
      info( 'Adding switch links\n' )
      net.addLink( s1, s2 )
      net.addLink( s2, s3 )
  
      info( 'Adding host links\n' )
      net.addLink( h1, s1 )
      net.addLink( h2, s2 )
      net.addLink( h3, s3 )
  
      info( '*** Starting network ***\n')
      net.start()
  
      info( '*** Running CLI ***\n' )
      CLI( net )
  
      info( '*** Stopping network ***' )
      net.stop()
  
  if __name__ == '__main__':
      setLogLevel( 'info' )
      customNet()
  
  -----------------------------------------------------------------------
  

Diarmuid O'Briain Free Technology Academy



Open Networks 247

Run the script. 

  $ sudo ./Custom-RemoteODL.py
  OpenDaylight IP Addr: 192.168.25.111
  OpenDaylight Port: 6633
  Adding controller
  Adding hosts
  Adding switches
  Adding switch links
  Adding host links
  *** Starting network ***
  *** Configuring hosts
  h1 h2 h3 
  *** Starting controller
  c0 
  *** Starting 3 switches
  s1 s2 s3 
  *** Running CLI ***
  *** Starting CLI:
  

Review the topology. 

  mininet> dump
  <Host h1: h1-eth0:10.0.0.1 pid=10598> 
  <Host h2: h2-eth0:10.0.0.2 pid=10601> 
  <Host h3: h3-eth0:10.0.0.3 pid=10603> 
  <OVSSwitch s1: lo:127.0.0.1,s1-eth1:None,s1-eth2:None pid=10608> 
  <OVSSwitch s2: lo:127.0.0.1,s2-eth1:None,s2-eth2:None,s2-eth3:None pid=10611> 
  <OVSSwitch s3: lo:127.0.0.1,s3-eth1:None,s3-eth2:None pid=10614> 
  <RemoteController c0: 192.168.25.111:6633 pid=10591> 

  mininet> net
  h1 h1-eth0:s1-eth2
  h2 h2-eth0:s2-eth3
  h3 h3-eth0:s3-eth2
  s1 lo:  s1-eth1:s2-eth1 s1-eth2:h1-eth0
  s2 lo:  s2-eth1:s1-eth1 s2-eth2:s3-eth1 s2-eth3:h2-eth0
  s3 lo:  s3-eth1:s2-eth2 s3-eth2:h3-eth0
  c0
  

Test the topology. 

  mininet> pingall
  *** Ping: testing ping reachability
  h1 -> h2 h3 
  h2 -> h1 h3 
  h3 -> h1 h2 
  *** Results: 0% dropped (6/6 received)
  
  mininet> iperf h1 h3
  *** Iperf: testing TCP bandwidth between h1 and h3
  Waiting for iperf to start up...*** Results: ['227 Mbits/sec', '234 Mbits/sec']
  

Free Technology Academy Diarmuid O'Briain



248 Open Networks

Now look at the network in DLUX Topology dashboard. 

This  is  a  basic  introduction  to  mininet  and  SDN.  Further  work  in  this  area  should  be
undertaken. To do so will require a knowledge of the Python programming language. 

Diarmuid O'Briain Free Technology Academy



Open Networks 249

12. Networks Function Virtualisation (NFV)

At an SDN & OpenFlow World Congress in Darmstadt, Germany in October 2012 a group of
Tier 1 Service Providers launched an initiative called NFV. These operators could see that
Virtualisation and Cloud computing could evolve the way services are delivered on networks
by consolidation and virtualisation of network equipment on industry standard high volume
servers as can be seen in the NFV concept figure above. Functions could also be migrated to
centralised virtualised infrastructure while also offering the facility to push virtualisation of
functions right out to the end user premises. 

While SDN and NFV are complimentary to each-other they are not as yet inter-dependent and
can therefore be operated either together, or independently. Obviously moving functions that
were heretofore based on specialist hardware presents a number of challenges, such as; 

• the portability to a virtualised system and interoperability with existing infrastructure 

• the performance trade-off between standards based hardware and that of specialised,

function specific hardware. 
• the  interaction  of  the  Management  and  Network  Orchestration  (MANO)  of  the

distributed functions with the network. Using the benefits of automation to achieve the
transformational aspects of NFV. 

• the integration of functions into the overall NFV ecosystem and its coexistence with

legacy systems. 
• the new challenges in terms of security and stability have evolved as a result of cloud

computing and virtualisation. 

Free Technology Academy Diarmuid O'Briain



250 Open Networks

These challenges and newer security challenges will evolve from this new networking system.

The benefits of NFV however make the case for migration so compelling that it without doubt
will form the core of services to be offered by Service Providers into the future. Hardware-
based appliances have a specific life, which is getting shorter and shorter with the rapid pace
of development, and they need regular replacement. This complicates maintenance procedures
and customer support with no financial benefit to the Service Provider. 

NFV will transform the design of the network to implement these functions in software, many
of these will process centrally thereby allowing for their operation to be migrated and backed
up as needed. This will reduce equipment costs and reduce power consumption due to power
management features in standard servers and storage, while eliminating the need for specific
hardware. Services can be scaled up and down in a similar fashion to that provided by cloud
services today.  IT MANO mechanisms familiar  today in  cloud services  will  facilitate  the
automatic  installation  and  scaling  of  capacity  by  building  Virtual  Machines  (VM)  or
Containers to meet demand. In this way traffic patterns and service demand can be met in an
automated and managed fashion. As a result the Service Provider can increase the speed to
market of both existing NFVs but also decrease the time it takes to innovate new services and
deliver them on the virtualised infrastructure. 

Diarmuid O'Briain Free Technology Academy



Open Networks 251

The  graphic  on  the  previous  page  shows  the  overall  NFV  ecosystem.  The  underlying
infrastructure collectively called the Network Functions Virtualisation Infrastructure (NFVI)
consists  of three domains,  Network, Compute and Hypervisor/Virtualisation.  The  Network
Domain consists  of  islands  of  switches  with SDN Controllers  or  a  traditional  routed and
switched network we have today. The Compute Domain consists of the computing hardware
and  storage  necessary  to  support  the  upper  layers.  The final  domain  in  the  NFVI is  the
Hypervisor/Virtualisation Domain which is the virtualisation hypervisors and VMs. This can
be built using Hypervisors like Xen, VMWare or using Container technology like Docker.
These NFVI domains are managed by a Virtual Infrastructure Manager (VIM). 

A Virtual  Network Function Manager  (VNFM) controls the building of individual Virtual
Network Functions  (VNF) on the VMs.  MANO performs the overall  management  of  the
VIM, VNFM and Operations Support Systems (OSS) / Business Support System (BSS) and
allows the Service Provider to quickly deploy and scale VNF services as well as provide and
scale resources for VNFs. This system reduces administrator workloads and removes the need
for  manual  administration  type  tasks.  It  also  offers  APIs  and  other  tooling  extensions  to
integrate with existing environments. 

12.1 Providing NFV to the customer

The roll-out of ubiquitous high speed broadband offers the Service Provider the ability to
supply a Virtual Customer Premises Equipment (vCPE) to the customer upon which VNFs
can be offered. 

Free Technology Academy Diarmuid O'Briain



252 Open Networks

Current services that can be converted into NFV style services are: 

• Router 

• Session Border Controller (SBC) 

• Load Balancer 

• Network Address Translation (NAT) 

• Home Gateway (HG) 

• Application Acceleration 

• Traffic Management 

• Firewall 

• Deep Packet Inspection (DPI) 

• Bulk Encryption 

• Content Caching 

• Session Initiation Protocol Gateway (SIP-GW) 

This however is just  the beginning, these services already exist  on traditional deployment
mechanisms. The fact that virtualisation will now be available in the vCPE at the customer
premises means that a Service Provider can deploy new services not envisaged as yet and
deploy services on a trial basis, all without equipment changes. 

12.2 NFV Standards
After the initial White Paper from the Darmstadt-Germany Call for Action in 2012 it was
decided to form an Industry Specification Group (ISG) under ETSI. Phase 1 of this group was
to  drive  convergence  on  network  operator  requirements  for  NFV to  include  applicable
standards, where they already exist,  into industry services and products to simultaneously
develop new technical requirements with the goal of stimulating innovation and fostering an
open ecosystem of vendors (ETSI, 2012). They issues a progress White Paper in October 2013
and a final paper in October 2014 which drew attention to the second release of ETSI NFV
ISG documents that were subsequently published in Jan 2015. Dec 2014 was considered to be
the end of phase 1 and phase 2 was launched. This will see some reorganisation of the ISG
NFV working groups, to focus less on requirements and more on adoption. 

Diarmuid O'Briain Free Technology Academy



Open Networks 253

The key areas that will be addressed include: 

• Stability, Interoperability, Reliability, Availability, Maintainability 

• Intensified collaboration with other bodies 

• Testing and validation to encourage interoperability and solidify implementations 

• Definition of interfaces 

• Establishment of a vibrant NFV ecosystem 

• Performance and assurance considerations 

• Security 

12.3 OPNFV
The  Linux  Foundation  established  a  Collaborative  Project  called  'Open  Platform  NFV
(OPNFV)'  in  October  2014.  The  project  intent  is  to  provide  an  FOSS  platform  for  the
deployment NFV solutions that leverage’s investments from a community of developers and
solution providers. Considering many of the elements of the future platform already exist in 

The initial focus of the OPNFV will be the NFVI and VIM. In reality this means the OPNFV
will  focus  on building  interfaces  between existing  FOSS projects  like  those listed  below.
Creating these interfaces between what are essentially existing elements to create a functional
reference platform will be a major win for the technology and certainly contribute to the goals
of phase 2 of the ETSI NFV ISG. 

• Virtual Infrastructure Management: OpenStack, Apache CloudStack, etc. 

• Network Controller and Virtualization Infrastructure: OpenDaylight, etc. 

• Virtualization and hypervisors: KVM, Xen, libvirt, LXC, etc. 

• Virtual forwarder: Open vSwitch (OVS), Linux bridge, etc. 

• Data-plane interfaces and acceleration: Dataplane Development Kit (DPDK), Open

Dataplane (ODP), etc. 
• Operating System: Linux, etc. 

Free Technology Academy Diarmuid O'Briain



254 Open Networks

12.4 Conclusion
The networking industry did not change significantly during the last decade, innovation was
confined to  port  speed increase and the  migration to  an all-Ethernet  environment.  At  the
customer  end  the  roll-out  of  ubiquitous  broadband  is  progressing  steadily  and  Service
Providers have migrated from ATM core to all IP networks. Over the same period there was a
revolution in terms of computing with the roll-out of cloud based services driven by advances
in virtualisation. The innovation that brought about the cloud is about to enter networking and
telecommunications in the form of SDN and NFV. Initial penetration of SDN has started in
the Data Centres where the cost base of the traditional Ethernet switches and routers have
driven the adoption of the new technology. As phase 2 of the NFV ISG provides working
solutions over the next two years I predict that they will be adopted by the Service Providers
who  can  deliver  new  services,  cost  effectively.  This  will  provide  a  better  and  more
functionally rich service to their customers and particularly in the case of SMEs the ability to
offload existing functions to their provider rather than managing them within their own IT
departments. 

Diarmuid O'Briain Free Technology Academy



Open Networks 255

13. Abbreviations
 6over4     IPv6 Domains via IPv4

 ACK        ACKnowledge                                                                   

 AES        Advanced Encryption Standard                                                  

 AH         Authentication header

 AP         Access Point

 API        Application Programming Interface    

 ARP        Address Resolution Protocol

 AS         Autonomous System

 ASCII      American Standard Code for Information Interchange                            

 ASIC       Application Specific Integrated Circuit  

 ATM        Asynchronous Transfer Mode  

 BDR        Backup Designated Router

 BGP        Border Gateway Protocol  

 BGP4+      BGP4 plus

 bgpd       BGP Daemon

 BGPv4      Border Gateway Protocol version 4

 BID        Bridge ID

 BoS        Bottom of Stack  

 BPDU       Bridge Protocol Data Unit

 BSS        Basic Service Set                                                             

 BSS        Business Support System  

 CAT        Category

 CCMP       Counter Mode with Cipher Block Chaining Message Authentication Code Protocol  

 CDN        Content Distribution Network  

 CIDR       Classless Inter-Domain Routing

 CORE       Common Open Research Emulator

 COTS       Commercial-off-the-Shelf  

 CPU        Central Processing Unit  

 CSMA/CA    Carrier Sense Multiple Access/Collision Avoidance                             

 CSMA/CD    Carrier Sense Multiple Access/Collision Detection                             

 DHCP       Dynamic Host Configuration Protocol

 DHCPv6     DHCP version 6

 DiffServ   Differentiated Services  

 DNS        Domain Name Service

 DOCSIS     Data Over Cable Service Interface Specification

Free Technology Academy Diarmuid O'Briain



256 Open Networks

 DoD        Department of Defence

 DPDK       Data Plane Development Kit  

 DPI        Deep Packet Inspection  

 DR         Designated Router

 DSCP       DiffServ Code Point  

 DSL        Digital Subscriber Line 

 DSSS       Direct Sequence Spread Spectrum                                               

 EAP        Extensible Authentication Protocol                                            

 EAP-TLS    EAP – Transport Layer Security                                                

 ECN        Explicit Congestion Notification  

 EGP        External Gateway Protocol

 EIGRP      Enhanced Interior Gateway Routing Protocol

 EIRP       Effective Isotropic Radiated Power                                            

 ESP        Encapsulation security payload

 ESS        Extended Service Set                                                          

 ETSI       European Telecommunications Standards Institute  

 EUI        Extended Unique Identifier

 FCAPS      Fault, Configuration, Accounting, Performance, and Security Management  

 FCC        Federal Communications Commission                                             

 FCS        Frame Check Sequence

 FE         FastEthernet 

 FHSS       Frequency Hopping Spread Spectrum                                             

 FOSS       Free and Open Source Software  

 FTP        File Transfer Protocol

 FWA        Fixed Wireless Access                                                         

 GbE        Gigabit Ethernet

 GHz        Gigahertz                                                                     

 GPL        GNU General Public License

 GRE        Generic Routing Encapsulation

 GTK        Group Temporal Key                                                            

 GUI        Graphical User Interface                                                    

 HDMI       High-Definition Multimedia Interface

 HG         Home Gateway  

 HTTP       Hypertext Transfer Protocol                                                   

 HV         Hypervisor  

 I/O        Input/Output  

 IBSS       Independent Basic Service Set                                                 

 ICANN      Internet Corporation for Assigned Names and Numbers 

Diarmuid O'Briain Free Technology Academy



Open Networks 257

 ICMP       Internet Control Message Protocol  

 ICMPv6     ICMP version 6

 ID         Identifier  

 IDS        Intrusion Detection System  

 IEEE       Institute of Electrical and Electronics Engineers

 IETF       Internet Engineering Task Force

 IGMP       Internet Group Membership Protocol

 IGP        Interior Gateway Protocol

 IGRP       Interior Gateway Routing Protocol

 IMAP       Interim Mail Access Protocol 

 IP         Internet Protocol  

 IPng       IP Next Generation

 IPS        Intrusion Prevention System  

 IPSec/SSL  IP Security/ Secure Sockets Layer  

 IPv4       Internet Protocol version 4

 IPv6       Internet Protocol version 6

 IS-IS      Intermediate System to Intermediate System

 ISATAP     Intra-Site Automatic Tunnel Addressing Protocol

 ISG        Industry Specification Group  

 ISP        Internet Service Providers

 ISSU       In Service Software Upgrade  

 IT         Information Technology  

 IV         Initialisation Vector                                                           

 LAN        Local Area Network

 LB         Load Balancer  

 LDAP       Lightweight Directory Access Protocol

 LDM        Link Discovery Module  

 LED        Light Emitting Diode

 LLDP       Link Layer Discovery Protocol  

 LSA        Link State Advertisement

 LSDB       Link State Database

 LTE        Long Term Evolution

 M2M        Machine-to-Machine communications  

 MAC        Medium Access Control

 MAN        Metropolitan Area Networks                                                    

 MANO       Management and Network Orchestration   

 MD5        Message Digest 5

 MIC        Message Integrity Check                                                       

Free Technology Academy Diarmuid O'Briain



258 Open Networks

 MIMO       Multiple In, Multiple Out                                                     

 MMF        Multi-Mode Fibre

 MNDP       MikroTik Neighbour Discovery Protocol 

 MPLS       Multi-Protocol Label Switching

 MU-MIMO    Multi-user MIMO                                                               

 NACK       No ACK                                                                        

 NAT        Network Address Translation  

 NAT-PT     Network Address Translation/Protocol Translation

 ND         Neighbour Discovery  

 NDP        Neighbour Discovery Protocol

 NF         Network Function  

 NFS        Network File System

 NFV        Network Functions Virtualisation   

 NFVI       Network Functions Virtualisation Infrastructure  

 NIC        Network Interface Controller  

 NIC        Network Interface Card

 NIS        Network Information Service

 Nonce      Random, arbitrary number used one time only                                   

 NSD        Network Service Descriptors   

 NSSA       Not So Stubby Area

 ODP        Open Data Plane  

 OFDM       Orthogonal Frequency-Division Multiplexing

 ONF        Open Networking Foundation  

 opdfd      OSPF Daemon

 OpenFlow   Specifications developed by the Open Networking Foundation  

 OPNFV      Open Platform NFV  

 OS         Operating System

 OSI        Open Standards Interconnect

 OSPF       Open Shortest Path First

 ospf6d     OSPF IPv6 Daemon (OSPFv3)

 ospfd      OSPF Daemon (OSPFv2)

 OSPFv2     Open Shortest Path First version 2

 OSPFv3     Open Shortest Path First version 3

 OSS        Operations Support System  

 PBB        Provider Backbone Bridge  

 PBKDF2     Password-Based Key Derivation Function version 2                              

 PCP        Priority Code Point   

 PDH        Plesiochronous Digital Hierarchy

Diarmuid O'Briain Free Technology Academy



Open Networks 259

 PMK        Pairwise Master Key                                                           

 PON        Passive Optical Network

 POP3       Post Office Protocol version 3

 PSK        Pre Shared Key                                                                

 PTK        Pairwise Transient Key                                                        

 Q-in-Q     Queue in Queue (also QinQ)

 QAM        Quadrature Amplitude Modulation                                               

 QoS        Quality of Service  

 RA         Router Advertisement

 RADIUS     Remote Access Dialin User Service 

 RARP       Reverse ARP

 RC4        Rivest Cipher 4                                                               

 RFC        Request For Comment

 RIP        Routing Internet Protocol 

 RIPE       European IP Research

 RIPng      RIP Next Generation

 RIPv2      RIP version 2

 RPC        Remote Procedure Call

 RS         Router Solicitation

 RSN        Robust Security Network                                                       

 RSTP       Rapid Spanning Tree Protocol

 SA         Smart Antenna                                                                 

 SBC        Session Border Controller  

 SCTP       Stream Control Transmission Protocol  

 SD         Secure Digital flash memory cards

 SDH        Synchronous Digital Hierarchy

 SDN        Software Defined Network  

 SFTP       Secure FTP

 SIIT       state-less IP/ICMP Translation Algorithm

 SIP        Session Initiation Protocol  

 SIP-GW     SIP Gateway  

 SLA        Service Level Agreement  

 SLAAC      StateLess Address Auto Configuration

 SMF        Single-Mode Fibre

 SNMP       Simple Network Management Protocol

 SONET      Synchronous Optical Networking

 SPF        Shortest Path First

 SPT        Shortest Path Tree

Free Technology Academy Diarmuid O'Briain



260 Open Networks

 SSH        Secure Shell

 SSID       Service Set IDentifier

 STA        Spanning Tree Algorithm

 STP        Spanning Tree Protocol

 SVN        SubVersioN

 TC         Traffic Class  

 TCP        Transmission Control Protocol  

 TCP/IP     Transmission Control Protocol/Internet Protocol

 TKIP       Temporal Key Integrity Protocol                                               

 TSSG       Telecommunications Systems & Software Group

 UCA        User Customer Address  

 UDP        User Datagram Protocol

 vCPE       Virtual Customer Premises Equipment  

 VGA        Video Graphics Array

 VID        VLAN ID

 VLAN       Virtual Local Area Network  

 VLD        Virtual Link Descriptors   

 VM         Virtual Machine  

 VMWare     Proprietary Hypervisor  

 VNA        Virtualised Network Appliance  

 VNF        Virtual Network Function   

 VNFD       VNF Descriptors   

 VNFFGD     VNF Forwarding Graph Descriptors   

 VRE        Virtual Routing Engine  

 WAN        Wide Area Network  

 WAP        Wireless Access Point                                                         

 WEP        Wireless Encryption Protocol                                                  

 WiFi       Wireless Fidelity

 WLAN       Wireless Local Area Network                                                   

 WPA        Wi-Fi Protected Access          

 WPA2       Wi-Fi Protected Access version 2

 Xen        Proprietary Hypervisor  

 YP         Yellow Pages

 zebra      Quagga kernel interface

ACELP Algebraic Code Excited Linear Prediction

ADPCM Adaptive Differential PCM

API Application Program Interface

ATA Analogue Telephone Adaptors

Diarmuid O'Briain Free Technology Academy



Open Networks 261

BT British Telecom

CODEC COder/DECoder

CPL Call Processing Language

CS-ACELP Conjugate Structure ACELP

DID Direct Inward Dialling

E1 2.048 Mb/s link with 30 64 kb/s bearer, 64 kb/s signalling and framing timeslots.

E3 34 Mb/s mutiplexed frame of 16 E1s

H.323 Call control for packet-based multimedia communications systems

HTTP Hypertext Transfer Protocol  

IAD Integrated Access Device

IETF Internet Engineering Task Force

IPT IP Telephony

ITU International Telecommunication Union 

ITU-T Telecommunication Standardisation Sector

LD-CELP Low Delay Code Excited Linear Prediction

MG Media Gateway

MGC Media Gateway Controller

MGCP Media Gateway Control Protocol

MOS Mean Opinion Score

MPLS Multi-protocol Label Switching

OneAPI Services API for multimedia where subscriber ID us used to authenticate

PABX Private Automatic Branch eXchange

PAMS Perceptual Analysis/Measurement System

PBX Private Branch eXchange

PCM Pulse Code Modulation

PSQM Perceptual Speech Quality Measurement

PSTN Public Switched Telephony Networks

RTP Real-Time Transport Protocol

RTSP Real Time Streaming Protocol 

SAP Session Announcement Protocol

SDP Session Description Protocol

SG Signalling Gateway

SGCP Simple Gateway Control Protocol

SIGTRAN Signalling Transport

SIP Session Initiation Protocol

SS7 Signalling System No. 7 

SSP Service Switching Point 

STCP Stream Control Transmission Protocol

Free Technology Academy Diarmuid O'Briain



262 Open Networks

STM1 155.52 Mbit/s Synchronous Transport Module 1 

UA User Agent

UAC UA Client

UAS UA Server

URI Uniform Resource Identifier 

VoIP Voice over Internet Protocol

WFQ Weighted Fair Queuing

XML eXtendable Markup Language

Diarmuid O'Briain Free Technology Academy



Open Networks 263

14. Bibliography
(2012). Network Functions Virtualisation - An Introduction, Benefits, Enablers, Challenges & Call for Action 
(White Paper). Darmstadt-Germany. 22-24 Oct 2012. Available: 
http://portal.etsi.org/NFV/NFV_White_Paper.pdf [28 Mar 2015].

Project Mininet. (2015). Available: http://mininet.org [accessed: 31 Mar 2015].

Simon, D., Aboba, B., Hurst, R. (2008). RFC 5216. The EAP-TLS Authentication Protocol. Available: 
http://tools.ietf.org/html/rfc5216 [accessed: 12 Apr 2014].  

(2013). Network Functions Virtualisation (NFV) - Network Operator Perspectives on Industry Progress (Update 
white paper). Frankfurt-Germany. 15-17 Oct 2013. Available: http://portal.etsi.org/NFV/NFV_White_Paper2.pdf
[accessed: 28 Mar 2015].

(2014). Network Functions Virtualisation (NFV) - Network Operator Perspectives on Industry Progress (Update 
white paper). Frankfurt-Germany. 14-17 Oct 2014. Available: 
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf [accessed: 28 Mar 2015].

Aboba, B., Blunk, L., Vollbrecht, J. Carlson, J., Levkowetz, H. (2004). RFC 3748. Extensible Authentication 
Protocol (EAP). Available: http://tools.ietf.org/html/rfc3748 [accessed: 8 Mar 2015]. 

Andreasen, F. and Foster, B. (2003). RFC 3435. Media Gateway Control Protocol (MGCP) Version 1.0. 
Available: Available: http://tools.ietf.org/rfc/rfc3435.txt [accessed 09 Apr 2015].

Aoun, C., Davies, E. (2007). RFC 4966 - Reasons to Move the NAT-PT to Historic Status. Available: 
http://tools.ietf.org/html/rfc4966 [accessed: 8 Mar 2015]. 

Arango, M. Dugan, A., Elliott, I., Huitema, C. and Pickett, S. (1999). RFC 2705. Media Gateway Control 
Protocol (MGCP) Version 1.0. Available: http://tools.ietf.org/rfc/rfc2705.txt [accessed 09 Apr 2015].

Bates, T., Rekhter, Y., Chandra, R., Katz, D. (2000). RFC 2858 - Multiprotocol Extensions for BGP-4. Available:
http://tools.ietf.org/html/rfc2858 [accessed: 23 Mar 2014].

Cisco. (2006). Understanding Rapid Spanning Tree Protocol (802.1w). Available: 
http://www.cisco.com/c/en/us/support/docs/lan-switching/spanning-tree-protocol/24062-146.html [accessed: 3 
Aug 2014]. 

Coltun, R., Ferguson, D., Moy, J. and Lindem, A. (2008). RFC5340. OSPF for IPv6. Standards Track. Available: 
http://tools.ietf.org/html/rfc5340 [accessed: 10 Mar 2015].  

Deering, S., Hinden, R. (1998). RFC 2460 -  Internet Protocol, Version 6 (IPv6) Specification. Available: 
https://tools.ietf.org/rfc/rfc2460.txt [accessed: 8 Mar 2015]. 

Dell Inc. (2013). Software-Defined Networking (SDN) Deployment Guide v1.0. 28 Feb 2013. Available: 
https://www.force10networks.com/CSPortal20/KnowledgeBase/DOCUMENTATION/InstallGuidesQuickrefs/S
DN/SDN_Deployment_1.0_28-Feb-2013.pdf [accessed: 29 Mar 2015]

Docker Project. (2015). Available: https://www.docker.com [accessed: 29 Mar 2015].

Free Technology Academy Diarmuid O'Briain



264 Open Networks

Droms, R. (1997). Dynamic Host Configuration Protocol. Available: http://www.ietf.org/rfc/rfc2131.txt 
[accessed: 31 Feb 2014].

Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., Carney, M. (2003). Dynamic Host Configuration Protocol
for IPv6 (DHCPv6). Available: http://www.ietf.org/rfc/rfc3315.txt [accessed: 23 Mar 2014].

ETSI NFV (2015). http://www.etsi.org/technologies-clusters/technologies/nfv [accessed: 29 Mar 2015].

Faughnan, L. (2013). Software Defined Networking. 1 May 2013. Available: http://www.techcentral.ie/software-
defined-networking [accessed: 28 Mar 2015].

Fredrich, T. (2013). RESTful Service Best Practices - Recommendations for Creating Web Services. Pearson 
eCollege.

Giraud, J.P. (2012). WPA support in Debian. https://wiki.debian.org/WPA [accessed: 24 May 2014]. 

Greene, N., Ramalho, M., Rosen, B. (2000). RFC 2805: Media Gateway Control Protocol Architecture and 
Requirements. Available: https://www.ietf.org/rfc/rfc2805.txt [accessed 14 Apr 2015].

Groves, C., Pantaleo, M., Anderson, T., Taylor, T. (2003). RFC 3525: Gateway Control Protocol Version 1. 
Available: https://www.ietf.org/rfc/rfc3525.txt [accessed 14 Apr 2015].

Handley, M., Jacobson, V., Perkins, C. (2006). RFC 4566:  SDP: Session Description Protocol. Available: 
https://www.ietf.org/rfc/rfc4566.txt [accessed 14 Apr 2015].

Handley, M., Schulzrinne, H., Schooler, E and Rosenberg, J. (1999). RFC 2543. SIP: Session Initiation Protocol. 
Available: http://tools.ietf.org/rfc/rfc2543.txt [accessed 09 Apr 2015].

Hertzog, R., Mas, R. (2013). The Debian Administrator's Handbook. Chapter 10. Network Infrastructure. ISBN 
9791091414029. Available: http://debian-handbook.info/browse/stable/network-infrastructure.html [accessed: 15
May 2014]. 

Hertzog, R., Mas, R. (2013). The Debian Administrator's Handbook. Chapter 10. Network Infrastructure. ISBN 
9791091414029. Available: http://debian-handbook.info/browse/stable/network-infrastructure.html [accessed: 16
May 2014]. 

Hinden, R., Deering, S. (2006). RFC 4291 - IPv6 Addressing Architecture. Available: 
http://tools.ietf.org/html/rfc4291 [accessed: 8 Mar 2015]. 

Hinden, R., Haberman, B. (2005). RFC 4193 - Unique Local IPv6 Unicast Addresses. Available: RFC 4193 
http://tools.ietf.org/html/rfc4193 [accessed: 8 Mar 2015]. 

IEEE. (1997). 802.11-1997. Wireless Local Area Networks.

IEEE. (1997). IEEE 802.11 - Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications.

IEEE. (1998). 802.1D-1998 - Standard for Local Area Network MAC (Media Access Control) Bridges.

Diarmuid O'Briain Free Technology Academy



Open Networks 265

IEEE. (1999). 802.11a-1999. 54 Mbit/s, 5 GHz WiFi standard.

IEEE. (1999). 802.11b-1999. Enhancements to 802.11 to support 5.5 and 11 Mbit/s

IEEE. (1999). IEEE 802.11a - High-speed Physical Layer in the 5 GHz band.

IEEE. (1999). IEEE 802.11b - Higher Speed Physical Layer Extension in the 2.4 GHz band.

IEEE. (2001). 802.1X - Port Based Network Access Control.

IEEE. (2003). 802.11g-2003. 54 Mbit/s, 2.4 GHz standard.

IEEE. (2003). IEEE 802.11g - Further Higher Data Rate Extension in the 2.4 GHz Band.

IEEE. (2004). 802.11i-2004 - WLAN MAC and Physical Layer (PHY) specifications, MAC Security 
Enhancements.

IEEE. (2004). 802.11i: WiFi Enhanced security.

IEEE. (2004). 802.1D-2004 - Standard for Local and metropolitan area networks: Media Access Control (MAC) 
Bridges.

IEEE. (2004). 802.1W-2004 - Rapid Reconfiguration of Spanning Tree (incorporated into 802.1D-2004).

IEEE. (2005). 802.1ad-2005 - Standard for Local and Metropolitan Area Networks - Virtual Bridged Local Area 
Networks - Amendment 4: Provider Bridges.

IEEE. (2007). 802.11-2007. Rollup of previous standards.

IEEE. (2009). 802.11n-2009. Higher throughput improvements using Multiple Input, Multiple Output (MIMO) 
antennas. 

IEEE. (2009). IEEE 802.11n - Information technology — Local and metropolitan area networks.

IEEE. (2011). 802.1Q-2011 - Standard for Local and metropolitan area networks - Media Access Control (MAC)
Bridges and Virtual Bridged Local Area Networks.

IEEE. (2012). 802.11-2012. Rollup of previous standards.

IEEE. (2013). 802.11ac-2013 - Very High Throughput with improved modulation scheme, wider channels and 
multi user MIMO.

IEEE. (2013). IEEE 802.11ac - Telecommunications and information exchange between systems — Local and 
metropolitan area networks.  

Ishiguro, K. et al. (2013). Quagga. A routing software package for TCP/IP networks. Available: 
http://www.nongnu.org/quagga/docs/quagga.pdf [accessed: 3 Aug 2014].

Free Technology Academy Diarmuid O'Briain



266 Open Networks

ITU-T. (2010). 05/1998 Q.931: ISDN user-network interface layer 3 specification for basic call control. Geneva, 
ITU-T.

ITU-T. (2010). 12/2009 H.323: Packet-based multimedia communications systems. Geneva, ITU-T.

ITU-T. (2013). 03/2013 H.248: Gateway control protocol: Version 3. Geneva, ITU-T.

Khetrapal, G., Sharma, S.K. (2013). Demystifying Routing Services in SDN. Aricent Group. Available: 
http://www.aricent.com/sites/default/files/pdfs/Aricent-Demystifying-Routing-Services-SDN-Whitepaper.pdf 
[accessed: 29 Mar 2015].

Lennox, J., Schulzrinne, H., Rosenberg, J. (2001). RFC 3050: Common Gateway Interface for SIP. Available: 
https://www.ietf.org/rfc/rfc3050.txt [accessed 14 Apr 2015].

Linux Foundation. (2014). OPNFV - An open platform to accelerate NFV. 30 Oct 2014. Available: 
https://www.opnfv.org//sites/opnfv/files/pages/files/opnfv_whitepaper_103014.pdf [accessed: 28 Mar 2015].

Linux Foundation. (2014). OPNFV - An open platform to accelerate NFV. 30 Oct 2014. 
https://www.opnfv.org//sites/opnfv/files/pages/files/opnfv_whitepaper_103014.pdf [28 Mar 2015].

LitePoint. (2013). IEEE 802.11ac: What Does it Mean for Test? Available: 
http://litepoint.com/whitepaper/80211ac_Whitepaper.pdf [accessed: 12 Apr 2014].  

Mahy, R. (2004). RFC 3680:  A Session Initiation Protocol (SIP) Event Package for Registrations. Available: 
https://www.ietf.org/rfc/rfc3680.txt [accessed 14 Apr 2015].

Mahy, R. (2004). RFC 3842: A Message Summary and Message Waiting Indication Event Package for the 
Session Initiation Protocol (SIP). Available: https://www.ietf.org/rfc/rfc3842.txt [accessed 14 Apr 2015].

Malinen, J. (2013). Linux WPA/WPA2/IEEE 802.1X Supplicant. Available: http://w1.fi/wpa_supplicant/ 
[accessed: 24 May 2014].  

Marques, P., Dupont, F. (1999). RFC 2545 - Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain 
Routing. Available: http://tools.ietf.org/html/rfc2545 [accessed: 23 Mar 2014].

Moy, J. (1991). RFC1247. Open Shortest Path First Version 2. Draft Standard. Available: 
http://tools.ietf.org/html/rfc1247 [accessed: 31 Feb 2014].

Moy, J. (1994). RFC1583. Open Shortest Path First Version 2. Standards Track. Available: 
http://tools.ietf.org/html/rfc1583 [accessed: 31 Feb 2014].

Moy, J. (1997). RFC2178. Open Shortest Path First Version 2. Standards Track. Available: 
http://tools.ietf.org/html/rfc2178 [accessed: 22 Mar 2014].

Moy, J. (1998). RFC2328. Open Shortest Path First Version 2. Standards Track. Available: 
http://tools.ietf.org/html/rfc2328 [accessed: 22 Mar 2014].

Nessjøen, H. (2007). Open source MAC Telnet server and client based on MNDP. Available: 
https://github.com/haakonnessjoen/MAC-Telnet [accessed: 8 Mar 2015].  

Diarmuid O'Briain Free Technology Academy



Open Networks 267

Niemi, A., Willis, D. (2010). RFC 5839: An Extension to Session Initiation Protocol (SIP) Events for 
Conditional Event Notification. Available: https://www.ietf.org/rfc/rfc5839.txt [accessed 14 Apr 2015].

NIST. (2001). FIPS PUB 197 - Advanced Encryption Standard (AES).

Olivé, E. P. (2010). Open Networks. First Edition. Unoversitat Oberta de Catalunya, Free Technology Academy.

Open Networking Foundation (2012). Software-Defined Networking: The New Norm for Networks (White 
paper). 13 April 2012. Available: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/white-

papers/wp-sdn-newnorm.pdf [accessed: 28 Mar 2015].

Open Networking Foundation (2013). What is the ONF. Available: 
https://www.opennetworking.org/images/stories/downloads/about/onf-what-why.pdf [accessed: 28 Mar 2015].

Open Networking Foundation (2015). Software-Defined Networking (SDN) Definition. [online] 
https://www.opennetworking.org/sdn-resources/sdn-definition [accessed: 28 Mar 2015].

Open Networking Foundation. (2014). OpenFlow Switch Specification v1.5. 19 Dec 2014. Available: 
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-switch-v1.5.0.noipr.pdf [accessed: 29 Mar 2015].

OpenSSH Project. (2015). Available: https://openssh.com [accessed: 31 Jul 2014].

OpenVPN Project. (2015). Available: https://openvpn.net [accessed: 31 Jul 2014].

OPNFV. (2015). Available: http://opnfv.org [accessed: 28 Mar 2015].

OPNFV. (2015). OPNFV - An open platform to accelerate NFV. 30 Oct 2014. Linux Foundation. Available: 
https://www.opnfv.org/sites/opnfv/files/pages/files/opnfv_whitepaper_103014.pdf [accessed: 28 Mar 2015].

Oracle VirtualBox. (2015). https://www.virtualbox.org  [accessed: 29 Mar 2015].

Project Floodlight. (2015). Available: http://www.projectfloodlight.org/floodlight/ [accessed: 28 Mar 2015].

RealVNC Software. (2014). Available: https://www.realvnc.com/ [accessed: 31 Jul 2014].

Rosen, R. (2014). Linux Kernel Networking: Implementation and Theory. Apress. ISBN-13: 978-1430261964.

Rosenberg, J. (2004). RFC 3856: A Presence Event Package for the Session Initiation Protocol (SIP). Available: 
https://www.ietf.org/rfc/rfc3856.txt [accessed 14 Apr 2015].

Rosenberg, J., Schulzrinne, H. Camarillo, G., Johnston, A., Peterson, J., Sparks, R. and Handley, M. (2002). RFC
3261. SIP: Session Initiation Protocol. Available: http://tools.ietf.org/rfc/rfc3261.txt [accessed 09 Apr 2015].

Rosenberg, J., Schulzrinne, H., Camarillo, G. (2005). RFC 4168: The Stream Control Transmission Protocol 
(SCTP) as a Transport for the Session Initiation Protocol (SIP). Available: https://www.ietf.org/rfc/

rfc2805.txt [accessed 14 Apr 2015].

Free Technology Academy Diarmuid O'Briain



268 Open Networks

Schulzrinne, H. and Casner, S. (2003). RFC 2551. RTP Profile for Audio and Video Conferences with Minimal 
Control. Available: https://www.ietf.org/rfc/rfc3551.txt [accessed 09 Apr 2015].

Schulzrinne, H. Casner, S., Frederick, R. and Jacobson, V. (1996). RFC 1889. RTP: A Transport Protocol for 
Real-Time Applications. Available: http://tools.ietf.org/rfc/rfc1889.txt [accessed 09 Apr 2015].

Schulzrinne, H. Casner, S., Frederick, R. and Jacobson, V. (2003). RFC 3550. RTP: A Transport Protocol for 
Real-Time Applications. Available: http://tools.ietf.org/rfc/rfc3550.txt [accessed 09 Apr 2015].

Schulzrinne, H., Rao, A., Lanphier, R. (1998). RFC 2326: Real Time Streaming Protocol (RTSP). Available: 
https://www.ietf.org/rfc/rfc2326.txt [accessed 14 Apr 2015].

Schulzrinne, H., Rao, A., Lanphier, R. (1998). RFC 2326: Real Time Streaming Protocol (RTSP). Available: 
https://www.ietf.org/rfc/rfc2326.txt [accessed 14 Apr 2015].

Simmons, G. (2013). Bridging Network Connections. Available: 
https://wiki.debian.org/BridgeNetworkConnections [accessed: 24 May 2014].  

Smith, A. (2010). iproute2: Life after ifconfig. Available: http://andys.org.uk/bits/2010/02/24/iproute2-life-after-
ifconfig/ [accessed: 24 Mar 2014].  

Thompson, S., Huitema, C., Ksinant, V., Souissi, M. (2003). RFC 3596 - DNS Extensions to Support IP Version 
6. Available: http://tools.ietf.org/html/rfc3596 [accessed: 8 Mar 2015]. 

Thompson, S., Narten, T., Jinmei, T. (2007). RFC 4862 - IPv6 Stateless Address Autoconfiguration. Available: 
http://www.ietf.org/rfc/rfc4862.txt [accessed: 10 Mar 2015].  

TightVNC Software. (2014). Available: http://www.tightvnc.com [accessed: 31 Jul 2014].

US Naval Research Laboratory (2015). Common Open Research Emulator (CORE) 4.7 Documentation. 
Available: http://downloads.pf.itd.nrl.navy.mil/docs/core/core-html/ [accessed: 20 Apr 2015]. 

Van Styn, H. (2011). VLAN Support in Linux. Linux Journal. ([accessed: 3/8/2014). Available: 
http://www.linuxjournal.com/article/10821 [accessed: 22 Apr 2014]. 

VMWare Inc. (2015). Available: http://www.vmware.com [accessed: 29 Mar 2015].

Xen Project. (2015). Available: http://www.xenproject.org [accessed: 29 Mar 2015].

  

Diarmuid O'Briain Free Technology Academy

http://downloads.pf.itd.nrl.navy.mil/docs/core/core-html/


Open Networks 269

15. GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <http://fsf.org/> 

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it,  with or without modifying it,  either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein.  The "Document",  below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as "you". You accept the
license  if  you  copy,  modify  or  distribute  the  work  in  a  way  requiring  permission  under
copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document's overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a

Free Technology Academy Diarmuid O'Briain

http://fsf.org/


270 Open Networks

Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical  connection  with  the  subject  or  with  related  matters,  or  of  legal,  commercial,
philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent"  copy of the Document means a  machine-readable copy,  represented in  a
format whose specification is available to the general public, that is suitable for revising the
document  straightforwardly  with  generic  text  editors  or  (for  images  composed of  pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suitable
for  input  to  text  formatters.  A copy made in  an otherwise  Transparent  file  format  whose
markup,  or  absence  of  markup,  has  been  arranged  to  thwart  or  discourage  subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for  which  the  DTD  and/or  processing  tools  are  not  generally  available,  and  the
machine-generated HTML, PostScript or PDF produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title Page" means the text near
the most prominent appearance of the work's title, preceding the beginning of the body of the
text.

The "publisher" means any person or entity that distributes copies of the Document to the
public.

A section  "Entitled XYZ" means a  named subunit  of  the  Document whose title  either  is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another

Diarmuid O'Briain Free Technology Academy



Open Networks 271

language.  (Here  XYZ  stands  for  a  specific  section  name  mentioned  below,  such  as
"Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a section "Entitled
XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You  may  copy  and  distribute  the  Document  in  any  medium,  either  commercially  or
noncommercially,  provided that this  License,  the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures to
obstruct  or  control  the  reading  or  further  copying  of  the  copies  you  make  or  distribute.
However,  you may accept  compensation in exchange for copies.  If  you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document,  numbering  more  than  100,  and  the  Document's  license  notice  requires  Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible. You
may add other material on the covers in addition. Copying with changes limited to the covers,
as long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state  in  or  with  each  Opaque  copy a  computer-network  location  from which  the  general
network-using  public  has  access  to  download  using  public-standard  network  protocols  a

Free Technology Academy Diarmuid O'Briain



272 Open Networks

complete Transparent copy of the Document,  free of added material.  If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity,  to  ensure that  this  Transparent  copy will  remain thus  accessible  at  the stated
location until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies,  to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License,  with  the  Modified  Version  filling  the  role  of  the  Document,  thus  licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any, be
listed  in  the  History  section  of  the  Document).  You  may  use  the  same  title  as  a
previous version if the original publisher of that version gives permission. 

• B. List on the Title Page, as authors, one or more persons or entities responsible for

authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement. 

• C. State on the Title page the name of the publisher of the Modified Version, as the

publisher. 

• D. Preserve all the copyright notices of the Document. 

• E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices. 

• F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below. 

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover

Texts given in the Document's license notice. 

• H. Include an unaltered copy of this License. 

• I.  Preserve the section Entitled "History",  Preserve its  Title,  and add to it  an item

stating at least the title, year, new authors, and publisher of the Modified Version as

Diarmuid O'Briain Free Technology Academy



Open Networks 273

given on the Title Page. If there is no section Entitled "History" in the Document,
create one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence. 

• J. Preserve the network location, if any, given in the Document for public access to a

Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission. 

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title

of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein. 

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in

their titles. Section numbers or the equivalent are not considered part of the section
titles. 

• M. Delete any section Entitled "Endorsements". Such a section may not be included in

the Modified Version. 

• N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in

title with any Invariant Section. 
• O. Preserve any Warranty Disclaimers. 

If  the  Modified  Version  includes  new front-matter  sections  or  appendices  that  qualify  as
Secondary Sections and contain no material copied from the Document,  you may at your
option designate some or all of these sections as invariant. To do this, add their titles to the list
of Invariant Sections in the Modified Version's license notice. These titles must be distinct
from any other section titles.

You  may  add  a  section  Entitled  "Endorsements",  provided  it  contains  nothing  but
endorsements of your Modified Version by various parties—for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition of
a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already includes a cover text
for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

Free Technology Academy Diarmuid O'Briain



274 Open Networks

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in  section 4 above for  modified versions,  provided that  you include in  the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all  as  Invariant  Sections of your combined work in its  license notice,  and that  you
preserve all their Warranty Disclaimers.

The  combined  work  need  only  contain  one  copy  of  this  License,  and  multiple  identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents,  make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single  copy  that  is  included in  the  collection,  provided  that  you follow the  rules  of  this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this  License,  provided you insert  a copy of this License into the extracted document,  and
follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation  of  the  Document  or  its  derivatives  with  other  separate  and  independent
documents or works, in or on a volume of a storage or distribution medium, is called an
"aggregate" if the copyright resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit. When the Document is
included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document's Cover Texts may

Diarmuid O'Briain Free Technology Academy



Open Networks 275

be  placed  on  covers  that  bracket  the  Document  within  the  aggregate,  or  the  electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document  under  the  terms  of  section  4.  Replacing  Invariant  Sections  with  translations
requires special permission from their copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History",
the requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You  may  not  copy,  modify,  sublicense,  or  distribute  the  Document  except  as  expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However,  if  you  cease  all  violation  of  this  License,  then  your  license  from a  particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to notify
you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover,  your license from a particular copyright holder is reinstated permanently if  the
copyright holder notifies you of the violation by some reasonable means, this is the first time
you have received notice of  violation of this  License (for  any work)  from that  copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have  received  copies  or  rights  from  you  under  this  License.  If  your  rights  have  been
terminated and not  permanently reinstated,  receipt  of  a  copy of  some or  all  of  the  same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The  Free  Software  Foundation  may  publish  new,  revised  versions  of  the  GNU  Free
Documentation License from time to time. Such new versions will be similar in spirit to the

Free Technology Academy Diarmuid O'Briain



276 Open Networks

present  version,  but  may  differ  in  detail  to  address  new  problems  or  concerns.  See
http://www.gnu.org/copyleft/.

Each  version  of  the  License  is  given  a  distinguishing  version  number.  If  the  Document
specifies that a particular numbered version of this License "or any later version" applies to it,
you have the option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used, that proxy's public
statement of acceptance of a version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

"Massive  Multiauthor  Collaboration  Site"  (or  "MMC Site")  means  any  World  Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A
"Massive Multiauthor  Collaboration" (or  "MMC") contained in  the  site  means any set  of
copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative  Commons  Corporation,  a  not-for-profit  corporation  with  a  principal  place  of
business  in  San  Francisco,  California,  as  well  as  future  copyleft  versions  of  that  license
published by that same organization.

"Incorporate"  means to  publish or  republish  a  Document,  in  whole or  in  part,  as  part  of
another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA
on  the  same  site  at  any  time  before  August  1,  2009,  provided  the  MMC is  eligible  for
relicensing.

Diarmuid O'Briain Free Technology Academy

http://www.gnu.org/copyleft/

	1. Networking Device
	1.1 Introduction
	1.1.1 Minibian
	1.1.2 Add SWAP partition
	1.1.3 Update and upgrade
	1.1.4 Set-up users
	1.1.5 Set-up locale
	1.1.6 Set-up hostname

	1.2 mactelnet
	1.2.1 Install mactelnet on GNU/Linux
	1.2.2 Create user
	1.2.3 Set default IP address
	1.2.4 Running a server on your GNU/Linux Server
	1.2.5 Accessing the server
	1.2.6 mactelnet frames

	1.3 Additional Interface
	1.3.1 DHCP request on new interface
	1.3.2 Default gateway to eth2
	1.3.3 Test routing


	2. Network Simulation
	2.1 Getting started
	2.2 Operating the CORE environment

	3. Networking
	3.1 Introduction to Network Administration
	3.2 Introduction to TCP/IP (TCP/IP suite)
	3.2.1 Services on TCP/IP
	3.2.2 What is TCP/IP?

	3.3 Physical network devices (hardware)
	3.3.1 Copper
	3.3.2 Fibre Optic
	3.3.3 Wireless

	3.4 GNU/Linux interface
	3.5 TCP/IP Concepts

	4. Switching
	4.1 Bridging and Switching
	4.1.1 Why use Bridges
	4.1.2 Switches
	Why Switching
	When is switching used

	4.1.3 Transparent Bridging
	Address Resolution
	Broadcast Storm


	4.2 Spanning Tree Protocol
	4.2.1 Configuration of a Bridge interface on GNU/Linux
	Install bridge-utils

	4.2.2 Create a bridge and add interfaces
	Review bridge


	4.3 Virtual LANs (VLANs)
	4.3.1 Removing the Physical Boundaries
	4.3.2 IEEE 802.1P/Q
	IEEE 802.1Q
	IEEE 802.1ad


	4.4 Provider tagging
	4.5 VLANs on GNU/Linux
	4.5.1 IEEE 802.1ad support on GNU/Linux
	4.5.2 IEEE 802.1ad support on GNU/Linux as a switch

	4.6 GNU/Linux as a Service Provider bridge

	5. Internet Protocol
	5.1 GNU/Linux IP networking (iproute2)
	5.1.1 iproute2 ip command
	5.1.2 Network Manager (network-manager)
	5.1.3 Check there is no configuration in /etc/network/interfaces

	5.2 Network interfaces
	5.2.1 Bring up the eth0 interface
	5.2.2 Add IP Address to the eth0 interface
	5.2.3 Confirm IP Address is configured
	5.2.4 Add an IPv4 Default gateway
	5.2.5 Add a static route
	5.2.6 Confirm that the route has taken

	5.3 Monitoring
	5.4 Internet Protocol v6
	5.4.1 Features of IPv6
	5.4.2 IPv6 Address Architecture
	IPv6 Network Notation
	IPv6 Prefix Terminology
	Mask
	Size
	Description
	128
	1 IPv6 Address
	A network interface
	Special Prefix's
	Depreciated Prefix's

	5.4.3 IPv6 Address Scope
	5.4.4 IPv6 Addressing Model
	5.4.5 Loopback Address
	5.4.6 IPv6 Packet Structure
	IPv6 Option headers

	5.4.7 Applications for IPv6
	DHCP for IPv6 (DHCPv6)
	DNS Extensions to Support IP Version 6 (DNSv6)
	ICMPv6 for IPv6

	5.4.8 IPv6 EUI-64 host
	5.4.9 IPv6 link-local
	5.4.10 IPv6 Stateless Address Auto-configuration (SLAAC)
	SLAAC Process
	Duplicate Address Detection (DAD)
	Obtaining a Global scope prefix

	5.4.11 IPv6 transition mechanisms
	Dual Stack
	Proxying and translation
	Tunnelling

	5.4.12 IPv6 Interior Gateway Routing
	RIPng
	OSPFv3

	5.4.13 IPv6 Exterior Gateway Routing
	BGP4+

	5.4.14 IPv6 Configuration
	Add a new IPv6 address
	Testing the link to the remote router
	IPv6 Monitor



	6. Routing
	6.1 Introduction to Routing
	6.1.1 Standard Routing Model
	6.1.2 Routing Tables

	6.2 Open Shortest Path First (OSPF)
	6.2.1 OSPF Overview
	6.2.2 Benefits of Using OSPF versus Distance Vector protocols
	6.2.3 OSPF Concepts
	Overview
	Reliable Flooding
	Shortest Path First Algorithm
	Adjacency
	Network Types
	Designated Router
	Authentication

	6.2.4 SPF Algorithm
	Hello Protocol
	DR/BDR Election
	Adjacencies
	Router Link State Advertisements (Type 1)
	Network Link State Advertisements (Type 2)
	Other Link State Advertisements
	OSPF Timers
	OSPF Shortest Path Tree


	6.3 Quagga Introduction
	6.4 Install Quagga
	6.5 Configure the Quagga configuration files
	6.5.1 debian.conf
	6.5.2 vtysh.conf - the VTY terminal conf file

	6.6 zebra.conf - the routing daemon conf file
	6.6.1 The OSPFv2 (IPv4) daemon conf file
	6.6.2 The OSPFv3 (IPv6) daemon conf file

	6.7 Restart the Quagga service
	6.8 Accessing the Quagga router for configuration
	6.8.1 Access TCP Ports
	6.8.2 Accessing the zebra daemon

	6.9 Configuring zebra daemon - the routing daemon
	6.10 Configuring the OSPFv2 daemon
	6.11 Configure the OSPFv3 (for IPv6) daemon
	6.12 Quagga Summary

	7. Wireless LANs
	7.1 Introduction to WiFi
	7.1.1 Spectrum
	2.4 GHz
	5 GHz
	MIMO Antenna’s

	7.1.2 IEEE 802.11 WLAN Summary
	7.1.3 IEEE 802.11 MAC (Media Access Control)
	ACKing
	MAC level retransmission
	Fragmentation

	7.1.4 WiFi Elements
	Wireless Access Point (AP)
	Service Set IDentifier (SSID)
	Disabling SSID Broadcasting

	7.1.5 WiFi Security
	Methods of counteracting security risks
	Wireless Encryption Protocol (WEP)
	WiFi Protected Access (WPA)
	Security with an Authentication Server
	IEEE 802.11i WPA2


	7.2 Configuration of a WiFi network on GNU/Linux
	7.2.1 Install the wireless-tools package
	7.2.2 Using WPA2
	7.2.3 WPA Supplicant


	8. Virtual Private Networks (VPN)
	8.1 IPv4 OpenVPN tunnel
	8.1.1 Server set-up
	8.1.2 Client set-up
	8.1.3 Run the OpenVPN Server
	8.1.4 Connect with the OpenVPN client

	8.2 IPv6 OpenVPN tunnel
	8.2.1 OpenVPN Server - tap
	8.2.2 OpenVPN Client - tap

	8.3 SSH VPN
	8.3.1 Set-up VNC Server ran as localhost only

	8.4 VNC on the client side
	8.5 SSH connection and VNC connection

	9. IP Telephony
	9.1 Audio Streams
	9.2 Real-Time Transport Protocol
	9.3 Delay
	9.3.1 Network Delay
	9.3.2 CODEC Latency
	9.3.3 Jitter
	Jitter Buffer Depth

	9.3.4 Packet Loss
	9.3.5 Voice Compression

	9.4 CODEC
	Standard
	MOS
	End to end delay
	Bit rate (kb/s)
	Compression algorithm
	Voice quality
	CODEC Latency
	9.4.1 RTP Audio & Video Payloads

	9.5 Other Voice Quality Factors
	9.5.1 Silence Suppression
	9.5.2 Echo

	9.6 Voice Quality Measurements
	9.6.1 P.800 MOS
	9.6.2 P.861 PSQM

	9.7 The SIP Protocol and Server Functions
	9.7.1 Session Description Protocol
	9.7.2 SIP Redirect (Proxy) Server
	9.7.3 SIP Registrar
	9.7.4 Location Server
	9.7.5 User Agent Client (UAC)
	9.7.6 User Agent Server
	9.7.7 SIP UA and Server Roles
	9.7.8 SIP Multimedia Protocol Stack
	9.7.9 SIP Commands and Responses
	SIP Headers Used in Requests and Responses
	SIP Responses and Error Codes

	9.7.10 SIP Registration
	9.7.11 SIP Call Setup
	9.7.12 SIP Call Terminate

	9.8 IPT and the PSTN
	9.8.1 Softswitch
	9.8.2 Call Agent
	9.8.3 Media Gateway

	9.9 MG Controllers
	9.9.1 Signalling Gateway

	9.10 Services
	9.11 FOSS Implementations
	9.12 Test network
	9.12.1 Asterisk Server
	SIP Channel configuration – sip.conf
	SIP Dialplan – extensions.conf

	9.12.2 SIP Softphone Client
	9.12.3 SIP Phone
	9.12.4 Configuring voice-mail
	General
	Default
	Dialplan


	9.13 Testing the configuration
	9.13.1 Registration test - IP Phone
	9.13.2 Registration test - Softphone
	9.13.3 Voice call test
	9.13.4 Hangup test

	9.14 Asterisk GUI
	9.14.1 Install Asterisk-gui
	9.14.2 Asterisk configuration files
	9.14.3 Connect to the Asterisk Server GUI

	9.15 Conclusion

	10. IP Services
	10.1 Configuration of inetd or xinetd
	10.2 Other network services
	10.2.1 Additional configuration: protocols and networks
	10.2.2 Security aspects
	10.2.3 IP Options
	10.2.4 Commands for solving problems with the network

	10.3 DHCP Configuration
	10.3.1 DHCP Server

	10.4 IP Masquerade

	11. Software Defined Networking (SDN)
	11.1 Introduction
	11.2 Software Defined Networking
	11.3 SDN operation
	11.3.1 Flow Tables
	11.3.2 Group Tables
	11.3.3 Meter Tables

	11.4 SDN Controllers
	11.5 SDN Applications
	11.5.1 SDN Routing Service

	11.6 Link Discovery Module
	11.7 Topology Manager
	11.8 Virtual Routing Engine (VRE)
	11.9 Using Mininet to experment with SDN
	11.10 Set-up a guest VM with the mininet image
	11.10.1 Add rights to wireshark for user

	11.11 Confirm Wireshark works over SSH
	11.12 Build a mininet test network
	11.12.1 Exiting mininet

	11.13 Configuring hosts
	11.14 Configuring links
	11.15 Reviewing OpenFlow traffic
	11.16 Webserver test
	11.17 Custom Topologies
	11.17.1 Create custom topology

	11.18 OpenDaylight
	11.18.1 Install OpenDaylight
	11.18.2 Running OpenDaylight
	11.18.3 OpenDaylight User Experience (DLUX)
	11.18.4 Start mininet network


	12. Networks Function Virtualisation (NFV)
	12.1 Providing NFV to the customer
	12.2 NFV Standards
	12.3 OPNFV
	12.4 Conclusion

	13. Abbreviations
	14. Bibliography
	15. GNU Free Documentation License
	0. PREAMBLE
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	11. RELICENSING


