
Programming & Data Analysis with ‘R’

Diarmuid O'Briain

2 Programming & Data Analysis with ‘R’

Copyright © 2018 Diarmuid Ó Briain

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License".

Document Outline

This document brings together a collection of diferent R experiences. It documents work
carried out during a week long training on “Statistical Data Analysis using R-software” that
took place from 24 - 28 September 2018 at the Directorate of Research and Graduate Training
(DRGT), Makerere University, Kampala, Uganda that was delivered by Associate Professor
Matthew Low and Dr. Matthew Hiron of the Swedish University of Agricultural Sciences (SLU)
to develop the programming aspect of R with a focus on the analysis of quantitative data sets. I
have included a section on qualitative data analysis as R has some tools in that area too.

The document explores the fundamentals of how to use R. Installing R, the structure of R,
vectors, matrices, arrays, lists, tables, data-frames as well as fow control and user-defned
functions. Working with quantitative data, linear models, predictions, probability distributions,
distribution models and generalised linear mixed models. Plotting data for visual output. Finally
both inductive and deductive approaches to the analysis of qualitative data is explored.

Diarmuid Ó Briain

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

https://www.slu.se/en/cv/matthew-low/
http://www.obriain.com/
https://www.slu.se/en/cv/matthew-hiron/

Programming & Data Analysis with ‘R’ 3

Table of Contents
1. INSTALLING R..9

2. INTRODUCTION...9

2.1 SIMPLE R SCRIPT...9
2.2 ANOTHER SIMPLE SCRIPT..10
2.3 START A NEW SCRIPT..10
2.4 RUNNING AN R SHELL..11
2.5 R ERRORS..11
2.6 COMMENTING...11
2.7 LISTING THE EXISTING OBJECTS IN R..13

3. R STRUCTURE...15

4. GETTING HELP WITH FUNCTIONS...17

4.1 ARGUMENTS OF A FUNCTION...17
4.2 HELP()...17
4.3 EXAMPLE()..17

5. R PACKAGES...19

5.1 THE COMPREHENSIVE R ARCHIVE NETWORK (CRAN)...19
5.2 INSTALLING PACKAGES IN R..19
5.3 CHECK INSTALLED PACKAGES...19

6. CITING R IN PAPERS AND PUBLICATIONS...23

6.1 CITE R..23
6.2 CITE INDIVIDUAL R PACKAGES...23

7. VECTORS, THE BASIC DATA STRUCTURE IN R...25

7.1 EXERCISE: GENERATE VECTORS...26
7.2 LENGTH() OF A VECTOR...27
7.3 VECTOR PRINCIPLES..27
7.4 BOOLEANS..32

8. BUILDING ON VECTORS, OTHER DATA STRUCTURES IN R...37

8.1 BASICS OF STRUCTURES...37
8.2 RECAP EXERCISES..45
8.3 OPERATORS AS FUNCTIONS..49

9. OUTPUT TO STANDARD OUT...51

9.1 PRINT() AND CAT()..51
9.2 SPRINTF()...51
9.3 PASTE() AND PASTE0() FUNCTIONS...52
9.4 NUMBERS...53
9.5 CHARACTER STRING..53

10. FLOW CONTROL & DATA FRAMES..55

10.1 IF & ELSE CONDITIONALS...55
10.2 IFELSE CONDITIONAL..55
10.3 LISTS..57
10.4 TABLE...62
10.5 FOR() AND WHILE()...62
10.6 DATA-FRAME..63
10.7 INDEXING DATA-FRAMES...65

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

4 Programming & Data Analysis with ‘R’

10.8 ADD A NEW COLUMN..66
10.9 SINGLE OR DOUBLE BRACKETS FOR INDEXING?...66
10.10 EXERCISE: DATA FRAME 1...68
10.11 CHANGING NAMES WITHIN THE DATA..68
10.12 READ FILES INTO R..68
10.13 ENGLISH / EUROPEAN..69
10.14 SET A WORKING DIRECTORY...69
10.15 CHECKS AFTER IMPORTING DATA-FRAME...69
10.16 REMOVING MISSING VALUES FROM A DATA SET...69
10.17 DATA.FRAME OBJECT CLASSES...71
10.18 SAVING TABLES & DATA FRAMES...71
10.19 SUBSET() FUNCTION..71
10.20 DATE AND TIME..72
10.21 LAPPLY()...74
10.22 USER-DEFINED FUNCTIONS...75
10.23 RECAP EXERCISES...77

11. LINEAR MODELS, PREDICTIONS AND PROBABILITY DISTRIBUTIONS...............................89

11.1 SOME TERMS...89
11.2 DEMONSTRATION...93
11.3 THE MEAN()..94
11.4 THE T-TEST..95
11.5 ANOVA, THE ANALYSIS OF VARIANCE...97
11.6 REGRESSION..99
11.7 MULTIPLE REGRESSION...101
11.8 ANCOVA, THE ANALYSIS OF COVARIANCE...103
11.9 LINEAR MODEL SUMMARY..105
11.10 EXERCISE: LINEAR MODELS..105
11.11 MODEL PREDICTIONS..113

12. DISTRIBUTION MODELS..115

12.1 STANDARD DEVIATION...115
12.2 EXPAND GRID - EXPAND.GRID()...118
12.3 NORMAL OR GAUSSIAN DISTRIBUTION...119
12.4 POISSON DISTRIBUTION...119
12.5 EXERCISE: LINEAR MODELLING 1...123
12.6 EXERCISE: LINEAR MODELLING 2...127

13. PLOTS..133

13.1 BEAUTIFY THE PLOT..134
13.2 BOXPLOTS...153
13.3 SAVING...155
13.4 EXERCISE 1: MAKING A MESS...156
13.5 EXERCISE 2: CREATE A BOXPLOT...158
13.6 MULTIPLE GRAPHS...160
13.7 EXERCISE 3A: SETTING GRAPH PARAMETERS..162
13.8 EXERCISE 3B: SETTING GRAPH PARAMETERS..163
13.9 EXERCISE 4A: PREDICTION PLOTS..166
13.10 EXERCISE 4B: PREDICTION PLOTS..168
13.11 EXERCISE 5: VISUALISING PLOT DATA..170
13.12 EXERCISE 6: PRETTY PLOT...172
13.13 EXERCISE 7: ICON AND COLOUR TABLE..174

14. GENERALISED LINEAR MIXED MODELS (GLMM)...176

15. QUALITATIVE DATA ANALYSIS WITH R...182

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 5

15.1 INTRODUCTION..182
15.2 QUALITATIVE CONTENT ANALYSIS..182
15.3 CODING..182
15.4 STARTING RQDA()...183
15.5 CODING..187
15.6 REVIEWING CODING...191
15.7 REVIEWING THE CODED BLOCKS...192
15.8 VISUALISING CATEGORIES...193
15.9 SUMMARY..195

16. BIBLIOGRAPHY...196

17. GNU FREE DOCUMENTATION LICENSE..197

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

6 Programming & Data Analysis with ‘R’

Illustration Index
 Illustration 1: R: Hello World..9
 Illustration 2: rnorm()..15
 Illustration 3: Array...39
 Illustration 4: Array 2..40
 Illustration 5: The mean...89
 Illustration 6: Linear regression model..90
 Illustration 7: Mean begging..94
 Illustration 8: Mean begging rate based on sex...96
 Illustration 9: ANOVA...98
 Illustration 10: Regression...100
 Illustration 11: Multiple Regression...102
 Illustration 12: Another multiple regression..103
 Illustration 13: ANCOVA..104
 Illustration 14: Richness/grainsize..108
 Illustration 15: owl: Predictions (male)..114
 Illustration 16: owl: Predictions (female)..114
 Illustration 17: Standard Deviation..117
 Illustration 18: Poisson distribution...120
 Illustration 19: Simple plot...133
 Illustration 20: Plot with lines...134
 Illustration 21: Plot with colour..135
 Illustration 22: Plot - model1..136
 Illustration 23: Plot layers...137
 Illustration 24: Plot layers 2...138
 Illustration 25: Box type...139
 Illustration 26: Plot - splitting arguments..140
 Illustration 27: Plot text...142
 Illustration 28: Plot text 2...143
 Illustration 29: Plot - points..144
 Illustration 30: Plot - symbols..145
 Illustration 31: Plot - lines...146
 Illustration 32: Plot - polygons...147
 Illustration 33: Plot - arrows...148
 Illustration 34: Plot - lines, curves...149
 Illustration 35: Plot - abline..150
 Illustration 36: Plot - identity..151
 Illustration 37: Plot - expression..152
 Illustration 38: Boxplot...153
 Illustration 39: Boxplot 2..154
 Illustration 40: Boxplot 3..155
 Illustration 41: Plot exercise - start..156
 Illustration 42: Plot - mess...157
 Illustration 43: Boxplot exercise..158
 Illustration 44: Boxplot answer..159
 Illustration 45: Multiple graphs..161
 Illustration 46: Exercise - setting graph parameters..162

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 7

 Illustration 47: Exercise - setting graph parameters 2..163
 Illustration 48: Exercise - setting graph parameters 3..165
 Illustration 49: Exercise - prediction plots..167
 Illustration 50: Exercise - prediction plots 2...169
 Illustration 51: Exercise - visualising plot data...171
 Illustration 52: Exercise - pretty plot...173
 Illustration 53: Exercise - useful table...175
 Illustration 54: Non-independence of residuals...176
 Illustration 55: Generalised Mixed Models...177
 Illustration 56: Plot - Fitting Linear Models...178
 Illustration 57: Plot - Fitting Generalised Linear Models...179
 Illustration 58: Plot - Linear Mixed-Efects Models..180
 Illustration 59: Plot - Fit Linear Mixed-Efects Models...181
 Illustration 60: Sources directory..183
 Illustration 61: RQDA() GUI...184
 Illustration 62: Project SQLite database..184
 Illustration 63: RQDA() interface...185
 Illustration 64: RQDA() fles...186
 Illustration 65: RQDA() fles 2..187
 Illustration 66: RQDA() Codes..188
 Illustration 67: RQDA() Codes 2...188
 Illustration 68: RQDA() Code Builder...189
 Illustration 69: RQDA() Exit...190
 Illustration 70: RQDA() Search commands and Log fles...191
 Illustration 71: Reviewing the coded blocks...192
 Illustration 72: Find the CID of a code..193
 Illustration 73: Plot selected code categories with d3...194
 Illustration 74: d3 plot...195

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

8 Programming & Data Analysis with ‘R’

Table of Abbreviations

AIC Akaike Information Criterion

ANCOVA Analysis of covariance

ANOVA Analysis of Variance

CO2 Oxygen

CRAN Comprehensive R Archive Network

CSS Cascading Style Sheets

CSV Comma Separated fle

DRGT Directorate of Research and Graduate Training

DV Dependent Variable

FUN Function

GLM Generalised Linear Model

GLMM Generalised Linear Mixed Model

GUI Graphical User Interface

HTML Hypertext Markup Language

IV Independent Variable

LMM Linear Mixed-efects Model

MANOVA Multivarite ANOVA

NLME Non-linear Mixed-Efects Model

p-test
Statistical method used to assess one or more hypotheses within a population
or a proportion within a population

R Open-source free statistical programming language used by scientists

REML Restricted (or Residual, or Reduced) Maximum Likelihood

RQDA R Qualitative Data Analysis

SD Standard Deviation

SE Standard Errors

SLU Swedish University of Agricultural Sciences

SQL Structured Query Language

Student t-test t-test introduced by William Sealy Gosset

SVG Scalable Vector Graphics

t-test Analysis of two populations means through the use of statistical examination

Tukey Tukey's Honest Signifcant Diference

Welch t-test Adaptation of Student's t-test

YAML YAML Ain't Markup Language

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 9

1. Installing R

This document is based on implementation on the GNU/Linux operating system. It
assumes a Debian GNU/Linux based distribution like Debian, Ubuntu, Linux Mint,
Elementary OS or a host of others. If the GNU/Linux operating system is RedHat or
Fedora based like CentOS then the yum package manager is used. Replace the sudo
apt-get install <package name> with sudo yum install <package name>. For other
operating systems like Apple macOS or https://cloud.r-project.org/bin/windows/
Microsoft please consult the relevant r-project links.

R can be used directly from the terminal shell and text editor tools like xed and kate
have built in highlight modes, typically under the Scientific sections of these programs.
Alternatively install an Integrated Development Environment (IDE) like Rstudio.

To operate with the terminal shell and text editors install the following base package.

 $ sudo apt-get install r-base

If Rstudio is required the also install the following packages.

 $ sudo apt-get install rstudio
 $ sudo apt-get install r-cran-rstudioapi

This document will proceed with the assumption of a terminal shell and a text editor.

2. Introduction

2.1 Simple R script
Starting out with a simple R script and redirect it into the R interpreter. Copy from cat to
EOM on its own and paste to a terminal shell, best to do this in a directory specifcally
for the purpose. This creates a fle called HelloWorld.R in the working directory.
Redirect the fle to the R interpreter.

 $ cat << EOM >> HelloWorld.R
 ## run this code in R
 ## Hello World script
 plot(x=1, y=1, typ="n", xlab="", ylab="", bty="n", xaxt="n", yaxt="n", ylim=c(-1,2))
 text(x=1, y=1,"'R' is a language for statistical analysis", cex=2, col="red")
 text(x=1, y=0.5, "R: Hello World", cex=3, col="blue")
 EOM

 $ R < test.R

A fle called Rplots.pdf is generated in the working directory.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 1: R: Hello World

file:///home/dobriain/Dropbox/FOSS/R/Diarmuid_Notes/Windows
file:///home/dobriain/Dropbox/FOSS/R/Diarmuid_Notes/Windows
https://cloud.r-project.org/bin/macosx/

10 Programming & Data Analysis with ‘R’

2.2 Another simple script
Some basic maths in another script.

 $ cat << EOM >> Introduction.R
 # R introduction
 1+3
 4*7
 a=3
 a+7
 EOM

 $ R < Introduction.R --vanilla

 R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
 Copyright (C) 2018 The R Foundation for Statistical Computing
 Platform: x86_64-pc-linux-gnu (64-bit)

 R is free software and comes with ABSOLUTELY NO WARRANTY.
 You are welcome to redistribute it under certain conditions.
 Type 'license()' or 'licence()' for distribution details.

 Natural language support but running in an English locale

 R is a collaborative project with many contributors.
 Type 'contributors()' for more information and
 'citation()' on how to cite R or R packages in publications.

 Type 'demo()' for some demos, 'help()' for on-line help, or
 'help.start()' for an HTML browser interface to help.
 Type 'q()' to quit R.

 > # R introduction
 > 1+3
 [1] 4

 > 4*7
 [1] 28

 > a=3
 > a+7
 [1] 10

2.3 Start a new script
In both of these cases the script was redirected to the R interpreter. It is also possible to
make the script executable and allow it fnd the interpreter by the inclusion of a shebang
(#!) line on the frst line referring the operating system to the to the path of the R
interpreter. Make the fle executable and run it.

 $ cat << EOM >> vi my_first_script.R
 #!/usr/bin/Rscript
 # R introduction

 1 + 3
 4 * 7
 a = 3
 a + 7
 EOM

 $ chmod +x my_first_script.R
 $./my_first_script.R
 [1] 4
 [1] 28
 [1] 10

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 11

2.4 Running an R shell
An R shell can be ran to execute a small number of commands. Many of the examples
in this document are executed in this way.

 $ R

 R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
 Copyright (C) 2018 The R Foundation for Statistical Computing
 Platform: x86_64-pc-linux-gnu (64-bit)

 R is free software and comes with ABSOLUTELY NO WARRANTY.
 You are welcome to redistribute it under certain conditions.
 Type 'license()' or 'licence()' for distribution details.

 Natural language support but running in an English locale

 R is a collaborative project with many contributors.
 Type 'contributors()' for more information and
 'citation()' on how to cite R or R packages in publications.

 Type 'demo()' for some demos, 'help()' for on-line help, or
 'help.start()' for an HTML browser interface to help.
 Type 'q()' to quit R.

 >

To run R without the message each time add the --quiet option.

 $ R --quiet
 >

2.5 R errors
Consider the example below. As b has not been defned R has no way of carrying out
the instruction and will therefore throw back an error as demonstrated.

 $ R --quiet
 > b + 7
 Error: object 'b' not found

2.6 Commenting
Annotate code as you write, it makes it easier to read later. The annotations are
preceded with a # symbol. The Rscript interpreter will ignore the annotations.

 $ cat << EOM >> vi my_first_annotate.R
 #!/usr/bin/Rscript
 a = list(c(1,2,3,4), # A vector
 "Some", # Add characters
 "Words", # Add a second set of characters
 c(5,6,7,8) # A second vector
)

 ## Exercise
 str (a) # Output the structure of 'a'
 m = lapply(a[1], mean) # Apply the mean function to 1st list in 'a'
 n = lapply(a[4], max) # Apply the max function to 4st list in 'a'
 a$means = c(m,n) # Add a new item to the list
 print(a)
 EOM

 $ chmod +x my_first_annotate.R

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

12 Programming & Data Analysis with ‘R’

 $./my_first_annotate.R
 List of 4
 $: num [1:4] 1 2 3 4
 $: chr "Some"
 $: chr "Words"
 $: num [1:4] 5 6 7 8
 [[1]]
 [1] 1 2 3 4

 [[2]]
 [1] "Some"

 [[3]]
 [1] "Words"

 [[4]]
 [1] 5 6 7 8

 $means
 $means[[1]]
 [1] 2.5

 $means[[2]]
 [1] 8

2.6.1 Multiline commenting

Many programming languages ofer the ability to do multiline commenting. This is useful
if there are some lines in the script that you want the script to skip without the need to
put # before each line in the block. In this case use the structure below around the
block. In this case the test is always FALSE and therefore the lines are skipped.

 if (FALSE){

 Lines to be ignored.

 }

To demonstrate. Watch what happens if this structure is added to the script. The lines
between ‘if(FALSE){’ and ‘}’ are bypassed by the R interpreter.

 $ cat << EOM >> multiline_comment.R
 #!/usr/bin/Rscript

 a = list(c(1,2,3,4), # A vector
 "Some", # Add characters
 "Words", # Add a second set of characters
 c(5,6,7,8) # A second vector
)

 ## Exercise
 str (a) # Output the structure of 'a'
 if(FALSE){
 m = lapply(a[1], mean) # Apply the mean function to 1st list in 'a'
 n = lapply(a[4], max) # Apply the max function to 4st list in 'a'
 a$means = c(m,n) # Add a new item to the list
 }
 print(a)
 EOM

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 13

 $ R < my_first_annotate.R
 List of 4
 $: num [1:4] 1 2 3 4
 $: chr "Some"
 $: chr "Words"
 $: num [1:4] 5 6 7 8
 [[1]]
 [1] 1 2 3 4

 [[2]]
 [1] "Some"

 [[3]]
 [1] "Words"

 [[4]]
 [1] 5 6 7 8

So what happened?

2.7 Listing the existing objects in R
ls(): Returns a vector of character strings giving the names of the objects in the
specifed environment.

objects(): Same as ls().

 > ls()
 [1] "df" "model1" "model2" "model3" "model4" "realmodel"
 [7] "v" "v1" "v2" "v3" "v4" "x"

2.7.1 Clearing the existing objects in R

rm(): Removes objects specifed successively as character strings, or in a character
vector list, or through a combination of both.

remove(): Same as rm().

To clear the environment of objects, supply a list of objects to the rm() or remove()
functions.

 > ls()
 [1] "df" "model1" "model2" "model3" "model4" "realmodel"
 [7] "v" "v1" "v2" "v3" "v4" "x"

 > rm(list=ls())

 > ls()
 character(0)

or alternatively:

 > objects()
 [1] "df" "model1" "model2" "model3" "model4" "realmodel"
 [7] "v" "v1" "v2" "v3" "v4" "x"

 > remove(list=objects())

 > objects()
 character(0)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

14 Programming & Data Analysis with ‘R’

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 15

3. R structure

rnorm(): random generation for the normal distribution.

rnorm(5,mean=0,sd=1)

Note: rnorm(n, mean = , sd =) is used to generate n normal random numbers with
arguments mean and standard deviation.

 > rnorm(5,mean=0,sd=1)
 [1] 1.3136807 -1.2612950 0.9052489 0.8711972 -1.7449344

 > plot(rnorm(5,mean=0,sd=1))

function(function(object))

Note: The R abs() method is one of the R mathematics functions, which is used to
return the absolute positive value of an individual number, or an expression.

 > abs(rnorm(5,mean=0,sd=1))
 [1] 0.07609716 0.57743538 1.10299258 0.42479172 1.41277626

function(function(function(object)))

 > mean(abs(rnorm(100,mean=0,sd=1)))
 [1] 0.8621388

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 2: rnorm()

16 Programming & Data Analysis with ‘R’

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 17

4. Getting help with functions

There are a number of helpful tools in R to get more information.

• args(): - Lists the arguments of a function give as an argument.
• help(), ?: - Get the man page for the function given as an argument.
• example(): - Get examples of how the function given as an argument can be

used.

4.1 Arguments of a function
To understand a new function and one needs the available arguments within the
function.

function(arguments)

 > args(rnorm)
 function (n, mean = 0, sd = 1)
 NULL

• n - User specifed, i.e. number of numbers
• mean - By default the mean = 0
• sd - Default standard deviation = 1

4.2 help()
 > help() or
 persp package:graphics R Documentation

 Perspective Plots

 Description:

 This function draws perspective plots of a surface over the x-y
 plane. ‘persp’ is a generic function.

 Usage:

 persp(x, ...)

4.3 example()
Example function gives examples of the function given to it as an argument.

 > example(mean)

 mean> x <- c(0:10, 50)

 mean> xm <- mean(x)

 mean> c(xm, mean(x, trim = 0.10))
 [1] 8.75 5.50

More information can be found online at:

quick-r

inside-r

r-graph gallery

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

https://www.r-graph-gallery.com/
http://www.inside-r.org/packages
http://www.statmethods.net/

18 Programming & Data Analysis with ‘R’

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 19

5. R packages

5.1 The Comprehensive R Archive Network (CRAN)
The CRAN is a resource of packages that can be added to R.

The Comprehensive R Archive Network website

5.2 Installing Packages in R
To install packages an internet connection is necessary.

 > install.packages("lme4")

Once the package is downloaded it is there but the package must be loaded to use it.

 > library(lme4)

In a script that has a dependency on a package it is helpful to have a line at the top of
the fle that causes the package to be installed if the package is not already installed. In
the example, if the package lme4 is not installed then R will install it frst before
continuing with the script. If it is installed then the line is ignored. The library(‘lme4’) line
loads the library such that the functions within the package lme4 become available
within the program.

 > if(!require(lme4)){install.packages("lme4")}

 > library(lme4)

5.3 Check installed packages
Check packages already installed with the ip command.

 > ip
 Package LibPath Version Priority
 base "base" "/usr/lib/R/library" "3.4.4" "base"
 boot "boot" "/usr/lib/R/library" "1.3-20" "recommended"
 class "class" "/usr/lib/R/library" "7.3-14" "recommended"
 cluster "cluster" "/usr/lib/R/library" "2.0.6" "recommended"
 codetools "codetools" "/usr/lib/R/library" "0.2-15" "recommended"
 compiler "compiler" "/usr/lib/R/library" "3.4.4" "base"
 datasets "datasets" "/usr/lib/R/library" "3.4.4" "base"
 foreign "foreign" "/usr/lib/R/library" "0.8-70" "recommended"
 graphics "graphics" "/usr/lib/R/library" "3.4.4" "base"
 grDevices "grDevices" "/usr/lib/R/library" "3.4.4" "base"
 grid "grid" "/usr/lib/R/library" "3.4.4" "base"
 KernSmooth "KernSmooth" "/usr/lib/R/library" "2.23-15" "recommended"
 lattice "lattice" "/usr/lib/R/library" "0.20-35" "recommended"
 MASS "MASS" "/usr/lib/R/library" "7.3-49" "recommended"
 Matrix "Matrix" "/usr/lib/R/library" "1.2-12" "recommended"
 methods "methods" "/usr/lib/R/library" "3.4.4" "base"
 mgcv "mgcv" "/usr/lib/R/library" "1.8-23" "recommended"
 nlme "nlme" "/usr/lib/R/library" "3.1-131" "recommended"
 nnet "nnet" "/usr/lib/R/library" "7.3-12" "recommended"
 parallel "parallel" "/usr/lib/R/library" "3.4.4" "base"
 rpart "rpart" "/usr/lib/R/library" "4.1-13" "recommended"
 spatial "spatial" "/usr/lib/R/library" "7.3-11" "recommended"
 splines "splines" "/usr/lib/R/library" "3.4.4" "base"
 stats "stats" "/usr/lib/R/library" "3.4.4" "base"
 stats4 "stats4" "/usr/lib/R/library" "3.4.4" "base"
 survival "survival" "/usr/lib/R/library" "2.41-3" "recommended"
 tcltk "tcltk" "/usr/lib/R/library" "3.4.4" "base"

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

https://cran.r-project.org/

20 Programming & Data Analysis with ‘R’

 tools "tools" "/usr/lib/R/library" "3.4.4" "base"
 utils "utils" "/usr/lib/R/library" "3.4.4" "base"
 Depends
 base NA
 boot "R (>= 3.0.0), graphics, stats"
 class "R (>= 3.0.0), stats, utils"
 cluster "R (>= 3.0.1)"
 codetools "R (>= 2.1)"
 compiler NA
 datasets NA
 foreign "R (>= 3.0.0)"
 graphics NA
 grDevices NA
 grid NA
 KernSmooth "R (>= 2.5.0), stats"
 lattice "R (>= 3.0.0)"
 MASS "R (>= 3.1.0), grDevices, graphics, stats, utils"
 Matrix "R (>= 3.0.1)"
 methods NA
 mgcv "R (>= 2.14.0), nlme (>= 3.1-64)"
 nlme "R (>= 3.0.2)"
 nnet "R (>= 2.14.0), stats, utils"
 parallel NA
 rpart "R (>= 2.15.0), graphics, stats, grDevices"
 spatial "R (>= 3.0.0), graphics, stats, utils"
 splines NA
 stats NA
 stats4 NA
 survival "R (>= 2.13.0)"
 tcltk NA
 tools NA
 utils NA
 Imports LinkingTo
 base NA NA
 boot NA NA
 class "MASS" NA
 cluster "graphics, grDevices, stats, utils" NA
 codetools NA NA
 compiler NA NA
 datasets NA NA
 foreign "methods, utils, stats" NA
 graphics "grDevices" NA
 grDevices NA NA
 grid "grDevices, utils" NA
 KernSmooth NA NA
 lattice "grid, grDevices, graphics, stats, utils" NA
 MASS "methods" NA
 Matrix "methods, graphics, grid, stats, utils, lattice" NA
 methods "utils, stats" NA
 mgcv "methods, stats, graphics, Matrix" NA
 nlme "graphics, stats, utils, lattice" NA
 nnet NA NA
 parallel "tools, compiler" NA
 rpart NA NA
 spatial NA NA
 splines "graphics, stats" NA
 stats "utils, grDevices, graphics" NA
 stats4 "graphics, methods, stats" NA
 survival "graphics, Matrix, methods, splines, stats, utils" NA
 tcltk "utils" NA
 tools NA NA
 utils NA NA
 Suggests
 base "methods"
 boot "MASS, survival"
 class NA
 cluster "MASS"

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 21

 codetools NA
 compiler NA
 datasets NA
 foreign NA
 graphics NA
 grDevices "KernSmooth"
 grid "lattice"
 KernSmooth "MASS"
 lattice "KernSmooth, MASS, latticeExtra"
 MASS "lattice, nlme, nnet, survival"
 Matrix "expm, MASS"
 methods "codetools"
 mgcv "splines, parallel, survival, MASS"
 nlme "Hmisc, MASS"
 nnet "MASS"
 parallel "methods"
 rpart "survival"
 spatial "MASS"
 splines "Matrix, methods"
 stats "MASS, Matrix, SuppDists, methods, stats4"
 stats4 NA
 survival NA
 tcltk NA
 tools "codetools, methods, xml2, curl"
 utils "methods, XML"
 Enhances License
 base NA "Part of R 3.4.4"
 boot NA "Unlimited"
 class NA "GPL-2 | GPL-3"
 cluster NA "GPL (>= 2)"
 codetools NA "GPL"
 compiler NA "Part of R 3.4.4"
 datasets NA "Part of R 3.4.4"
 foreign NA "GPL (>= 2)"
 graphics NA "Part of R 3.4.4"
 grDevices NA "Part of R 3.4.4"
 grid NA "Part of R 3.4.4"
 KernSmooth NA "Unlimited"
 lattice "chron" "GPL (>= 2)"
 MASS NA "GPL-2 | GPL-3"
 Matrix "MatrixModels, graph, SparseM, sfsmisc" "GPL (>= 2) | file LICENCE"
 methods NA "Part of R 3.4.4"
 mgcv NA "GPL (>= 2)"
 nlme NA "GPL (>= 2) | file LICENCE"
 nnet NA "GPL-2 | GPL-3"
 parallel "snow, nws, Rmpi" "Part of R 3.4.4"
 rpart NA "GPL-2 | GPL-3"
 spatial NA "GPL-2 | GPL-3"
 splines NA "Part of R 3.4.4"
 stats NA "Part of R 3.4.4"
 stats4 NA "Part of R 3.4.4"
 survival NA "LGPL (>= 2)"
 tcltk NA "Part of R 3.4.4"
 tools NA "Part of R 3.4.4"
 utils NA "Part of R 3.4.4"
 License_is_FOSS License_restricts_use OS_type MD5sum
 base NA NA NA NA
 boot NA NA NA NA
 class NA NA NA NA
 cluster NA NA NA NA
 codetools NA NA NA NA
 compiler NA NA NA NA
 datasets NA NA NA NA
 foreign NA NA NA NA
 graphics NA NA NA NA
 grDevices NA NA NA NA
 grid NA NA NA NA

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

22 Programming & Data Analysis with ‘R’

 KernSmooth NA NA NA NA
 lattice NA NA NA NA
 MASS NA NA NA NA
 Matrix NA NA NA NA
 methods NA NA NA NA
 mgcv NA NA NA NA
 nlme NA NA NA NA
 nnet NA NA NA NA
 parallel NA NA NA NA
 rpart NA NA NA NA
 spatial NA NA NA NA
 splines NA NA NA NA
 stats NA NA NA NA
 stats4 NA NA NA NA
 survival NA NA NA NA
 tcltk NA NA NA NA
 tools NA NA NA NA
 utils NA NA NA NA
 NeedsCompilation Built
 base NA "3.4.4"
 boot "no" "3.4.2"
 class "yes" "3.4.2"
 cluster "yes" "3.4.2"
 codetools "no" "3.4.2"
 compiler NA "3.4.4"
 datasets NA "3.4.4"
 foreign "yes" "3.4.4"
 graphics "yes" "3.4.4"
 grDevices "yes" "3.4.4"
 grid "yes" "3.4.4"
 KernSmooth "yes" "3.4.2"
 lattice "yes" "3.4.2"
 MASS "yes" "3.4.3"
 Matrix "yes" "3.4.2"
 methods "yes" "3.4.4"
 mgcv "yes" "3.4.3"
 nlme "yes" "3.4.2"
 nnet "yes" "3.4.2"
 parallel "yes" "3.4.4"
 rpart "yes" "3.4.3"
 spatial "yes" "3.4.2"
 splines "yes" "3.4.4"
 stats "yes" "3.4.4"
 stats4 NA "3.4.4"
 survival "yes" "3.4.2"
 tcltk "yes" "3.4.4"
 tools "yes" "3.4.4"
 utils "yes" "3.4.4"

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 23

6. Citing R in papers and publications

Credit where credit is due, when using R or any of its packages it is important to credit
the work of the developers. R has a built-in function citation() to get the BibTex entry for
reference management software or simply take the reference directly from the terminal
as text.

6.1 Cite R
 > citation()
 R Core Team (2018). R: A language and environment for statistical
 computing. R Foundation for Statistical Computing, Vienna, Austria.
 URL https://www.R-project.org/.

 A BibTeX entry for LaTeX users is

 @Manual{,
 title = {R: A Language and Environment for Statistical Computing},
 author = {{R Core Team}},
 organization = {R Foundation for Statistical Computing},
 address = {Vienna, Austria},
 year = {2018},
 url = {https://www.R-project.org/},
 }

 We have invested a lot of time and effort in creating R, please cite it
 when using it for data analysis. See also ‘citation("pkgname")’ for
 citing R packages.

6.2 Cite individual R packages
 > citation(package = "lme4")

 To cite lme4 in publications use:

 Douglas Bates, Martin Maechler, Ben Bolker, Steve Walker (2015).
 Fitting Linear Mixed-Effects Models Using lme4. Journal of
 Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

 A BibTeX entry for LaTeX users is

 @Article{,
 title = {Fitting Linear Mixed-Effects Models Using {lme4}},
 author = {Douglas Bates and Martin M{\"a}chler and Ben Bolker and Steve Walker},
 journal = {Journal of Statistical Software},
 year = {2015},
 volume = {67},
 number = {1},
 pages = {1--48},
 doi = {10.18637/jss.v067.i01},
 }

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

24 Programming & Data Analysis with ‘R’

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 25

7. Vectors, the basic data structure in R

The vector is the basic data structure in R. It contains element of the same type. The
data types can be logical, integer, double, character, complex or raw. It is considered
the fundamental data type in R.

• logical - TRUE and FALSE are reserved words denoting logical constants,
whereas T and F are global variables whose initial values set to these.

• integer - Whole number (not a fraction) that can be positive, negative, or zero.
• double - Creates a double-precision vector of the specifed length. The

elements of the vector are all equal to 0. It is identical to numeric.
• character - Type of indexing is useful when dealing with named vectors.
• complex - The vector can be specifed either by giving its length, its real and

imaginary parts, or modulus and argument.
• raw - Type is intended to hold raw bytes. It is possible to extract sub-sequences

of bytes, and to replace elements.

 > x = 3

 > y = 5

 > meatballs = 7

 > meatballs + x - y
 [1] 5

 > 4 + 3
 [1] 7

 > a = 4 + 3
 > a
 [1] 7

The vector is the fundamental data type in R.

e.g. [1] 1 2 3 4 5 6 7

Numbers being put together in a vector must be done in one of these four ways.

 > x = c(1,2,3,4,5,6,7) # concatenate
 > y = 1:7 # colon operator
 > z = seq(1,7,1) # sequence, 1 to 7 in intervals of 2 i.e. 1 3 5 7
 > m = rep(1:7,2) # repeat i.e. 1,2,3,4,5,6,7,1,2,3,4,5,6,7

Now consider each.

 > x = c(1,2,3,4,5,6,7)
 > y = 1:7
 > z = seq(1,7,1)
 > m = rep(1:7,2)

 > x
 [1] 1 2 3 4 5 6 7
 > y
 [1] 1 2 3 4 5 6 7
 > z
 [1] 1 2 3 4 5 6 7
 > m
 [1] 1 2 3 4 5 6 7

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

26 Programming & Data Analysis with ‘R’

Try some variations.

 > d = seq(1,12,3)
 > d
 [1] 1 4 7 10

 > e = rep(1:4,3)
 > e
 [1] 1 2 3 4 1 2 3 4 1 2 3 4

 > f = rep(d,4)
 > f
 [1] 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10

Note:

• c(...): - Combines or concatenates its arguments.
• seq(from, to, by=): - Generate regular sequences.
• rep(x, ...): - replicates the values in ‘x’.

Combining these.

 > x = 1:7

 > y = seq(1,7,2)

 > z = c(x,y)

 > z
 [1] 1 2 3 4 5 6 7 1 3 5 7

Any time more than one number must be given to R, then it MUST be created using one
of these functions.

7.1 Exercise: Generate vectors
 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0 4.3 4.6 4.9

 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

 14 12 10 8 6 4 2 0

 5 7 6 10 4 3 17

 1 2 3 4 1 2 3 4 1 2 3 4

 1 2 3 4 1 2 3 4 1 2 3 4 85

 2.00 2.17 2.34 2.51 2.68 2.85 3.02 3.19 3.36 3.53 3.70 3.87 4.04 4.21 4.38 4.55 4.72
 4.89 5.06 5.23 5.40 5.57 5.74 5.91 6.08

 "bird" "cat" "ferret"

 5 5 12 12 13 13 20 20

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0 4.3 4.6 4.9

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 27

Answer:

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 > a = 5:23

 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0 4.3 4.6 4.9
 > c = seq(1,4.9,0.3)

 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
 > c = rep(7, 18)

 14 12 10 8 6 4 2 0
 > c = seq(14,0,-2)

 5 7 6 10 4 3 17
 > c = c(5,7,6,10,4,3,17)

 1 2 3 4 1 2 3 4 1 2 3 4
 > rep(1:4,3)

 1 2 3 4 1 2 3 4 1 2 3 4 85
 > c = c(rep(1:4,3), 85)

 2.00 2.17 2.34 2.51 2.68 2.85 3.02 3.19 3.36 3.53 3.70 3.87 4.04 4.21 4.38 4.55 4.72
 4.89 5.06 5.23 5.40 5.57 5.74 5.91 6.08
 > c = seq(2,length.out=25,by=0.17)

 "bird" "cat" "ferret"
 > c = c("bird","cat","ferret")

 5 5 12 12 13 13 20 20
 > c = rep(c(5,12,13,20),each=2)

7.2 Length() of a vector
The length of a vector can be obtained by the length() function.

 > c = (seq(1, 1000, 0.34))
 > length(c)
 [1] 2939

 > c = length(seq(1, 1000, 0.34))
 > c
 [1] 2939

7.3 Vector principles
3 vector principles central to R programming.

1. Recycling
2. Vectorisation
3. Filtering [indexing]

7.3.1 Recycling

When applying an operation to two vectors that requires them to be the same length, R
automatically recycles or repeats the shorter vector until it is the same length as the
longer one.

 > x = c(1,2,3)
 > y = c(3,4,5)
 > z = 15
 > a = c(8,9)
 > b = c(10,20)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

28 Programming & Data Analysis with ‘R’

Looking at x+y, 1+3=4, 2+4=6 and 3+5=8.

 > x+y
 [1] 4 6 8

Now looking at x+a, 1+8=9, 2+9=11 and 3+?. As a has ran out of elements the frst
element is recycled again so 3+8=11. The following warning message is received.

 > x+a
 [1] 9 11 11
 Warning message:
 In x + a : longer object length is not a multiple of shorter object length

Now looking at y*b, 3*10=30, 4*20=80 and as a has ran out of elements the frst is
recycled again so 5*10=50 and a warning message is received.

 > y*b
 [1] 30 80 50
 Warning message:
 In y * b : longer object length is not a multiple of shorter object length

And fnally y*z, 3*15=45 and as there are no more elements in z, 15 must be recycled
and the fnal calculations are 4*15=60 and 5*15=75.

 > y*z
 [1] 45 60 75
 Warning message:
 In y * b : longer object length is not a multiple of shorter object length

The last example above is something that happens all the time, where all the elements
in y = c(3,4,5) are multiplied by the single element in b=15.

• 3 x 15 = 45
• 4 x (15 recycled) = 60
• 5 x (15 recycled) = 75

7.3.2 Vectorisation

Scalars are vectors, therefore most functions that you can apply to a single value, you
can apply to a vector of values.

 > sqrt(16)
 [1] 4

 > x = c(3,6,9,12,15)
 > sqrt(x)
 [1] 1.732051 2.449490 3.000000 3.464102 3.872983

 > sqrt(x/2)
 [1] 1.224745 1.732051 2.121320 2.449490 2.738613

 > x^2
 [1] 9 36 81 144 225

 > x/3
 [1] 1 2 3 4 5

Note here the modulus.

 > x %% 4 # modulus (x mod y) 5%%2 is 1
 [1] 3 2 1 0 3

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 29

Breaking this down further.

 > 3 %% 4
 [1] 3
 > 6 %% 4
 [1] 2
 > 9 %% 4
 [1] 1
 > 12 %% 4
 [1] 0
 > 15 %% 4
 [1] 3

Looking at a diferent modulus example, 4 and 5 are continuously recycled until all the
elements of x are calculated.

 > x %% c(4,5)
 [1] 3 1 1 2 3
 Warning message:
 In x%%c(4, 5) :
 longer object length is not a multiple of shorter object length

Exercise: write code to produce this vector

 1 4 9 16 25 36 49 64 81 100

 > a = seq(1,10,1)
 > a^2
 [1] 1 4 9 16 25 36 49 64 81 100

 > seq(1,10,1)^2
 [1] 1 4 9 16 25 36 49 64 81 100

 > (1:10)^2
 [1] 1 4 9 16 25 36 49 64 81 100

Note the importance of the brackets. Leaving out the brackets gives a completely
diferent answer.

 > 1:10^2
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
 [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
 [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
 [91] 91 92 93 94 95 96 97 98 99 100

7.3.3 Filtering [Indexing] of vectors

vector1[vector2]

The elements of vector2 select the elements of vector1 via the [] brackets.

 > y = c(10,1,16,3,8,5,13,55,34,13)

Access the third element of the concatenation y.

 > y[3]
 [1] 16

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

30 Programming & Data Analysis with ‘R’

Now access the frst four elements of the concatenation y.

 > y[1:4]
 [1] 10 1 16 3

So what happens for y[3,4,6,8]?

 > y[3,4,6,8]
 Error in y[3, 4, 6, 8] : incorrect number of dimensions

Well [3,4,6,8] is not a vector. Remember that a vector must be developed as
concatenation, via a colon operator, a sequence or a repeat. So rewrite as:

 > y[c(3,4,6,8)]
 [1] 16 3 5 55

So what happened?, remember y = c(10,1,16,3,8,5,13,55,34,13). The second vector
selects elements from the frst vector. 3 selects the third element of y which is 16, 4
selects the forth element 3, etc..

Exercise (a)
Extract the 3rd, 4th and 7th numbers in this vector.

 y = c(1,1,2,3,5,8,13,21,34,55)

 > y = c(1,1,2,3,5,8,13,21,34,55)

 > x = c(3,4,7)
 > y[x]
 [1] 2 3 13

 > y[c(3,4,7)]
 [1] 2 3 13

Exercise (b)
Extract the frst 6 numbers of the vector.

 > y = c(1,1,2,3,5,8,13,21,34,55)

 > x = 1:6
 > y[x]
 [1] 1 1 2 3 5 8

 > y[1:6]
 [1] 1 1 2 3 5 8

Exercise (c)
Extract the fnal number of this vector by using the length() function.

 > y = c(1,1,2,3,5,8,13,21,34,55)

 > y[length(y)]
 [1] 55

Another way to achieve the same result is to:

 > max(y)
 [1] 55

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 31

7.3.4 Other Filtering [Indexing] examples
 > y = c(7,8,3,2,4,5,6,3,4,5)

 > min(y) # Returns the smallest element
 [1] 2

 > max(y) # Returns the largest element
 [1] 8

 > y[2:4] # Returns elements 2 - 4
 [1] 8 3 2

 > y[3:6] # Returns elements 3 - 6
 [1] 3 2 4 5

7.3.5 Ordering elements in a vector

The order() function returns a permutation which rearranges its frst argument into
ascending or descending order, breaking ties by further arguments. As can be seen
from the example below it returns the positions of the elements in y based on the
sequential size starting with position 2 which is 1, then position 4 for the next lowest
number 3, etc..

 > y = c(10,1,16,3,8,5,13,55,34,13)
 > order(y)
 [1] 2 4 6 5 1 7 10 3 9 8

If the actual ordered list of the elements instead of the relevant element positions is
required then use the following.

 > y[order(y)]
 [1] 1 3 5 8 10 13 13 16 34 55

Reversing the order. The rev() function provides a reversed version of its argument or
alternatively negate the y in the order function.

 > y[rev(order(y))]
 [1] 55 34 16 13 13 10 8 5 3 1

 > y[order(-y)]
 [1] 55 34 16 13 13 10 8 5 3 1

7.3.6 Extracting elements from a vector

How do I extract numbers from a vector?

• Write down the name of the vector.
• Put square brackets after it.
• Put something inside the square brackets.

 > y = c(10,1,16,3,8,5,13,55,34,13)

 > y[5]
 [1] 8

 > y[7]
 [1] 13

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

32 Programming & Data Analysis with ‘R’

What if one wants to extract certain numbers?

All numbers > 7.

 > y = c(10,1,16,3,8,5,13,55,34,13)

 > y[y < 7]
 [1] 1 3 5

All the numbers from 1 to 6.

 > y[c(1,2,3,4,5,6)]
 [1] 10 1 16 3 8 5

 > y[1:6]
 [1] 10 1 16 3 8 5

Only numbers equal to 3.

 > y = c(10,1,16,3,8,5,13,55,34,13)

 > y[y = 3]
 [1] 16

Using negatives to eliminate numbers from a list.

 > y = c(10,1,16,3,8,5,13,55,34,13)

 > y[c(-2,-2)]
 [1] 10 16 3 8 5 13 55 34 13

 > y[-1:-4]
 [1] 8 5 13 55 34 13

7.4 Booleans
Returns True or False (1 or 0).

 > y = c(1,1,2,3,5,8,13,21,34,55)

 > y == 3
 [1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

 > y <= 13
 [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

 > y >= 8
 [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

 > y > 8
 [1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

 > y != 8
 [1] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE

 > y^2 < 8
 [1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 33

7.4.1 Exercise

What happens for: mean(y==3)?

Note: Generic function for the (trimmed) arithmetic mean.

Well the mean of y, in other words sum(5)/length(5).

 > mean(y)
 [1] 14.3

 > sum(y)/length(y)
 [1] 14.3

‘==’ means exactly equal to. Remember the output of y == 3?

 > y == 3
 [1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

So that is 0,0,0,1,0,0,0,0,0,0.

 > sum(c(0,0,0,1,0,0,0,0,0,0)/10)
 [1] 0.1

It is the mean of the booleans returned from the logic y==3 statement or a single one in
10 elements.

 > mean(y==3)
 [1] 0.1

Now put the logic boolean statements inside the square brackets.

• T (TRUE) = include
• F (FALSE) = exclude

 > y = c(1,1,2,3,5,8,13,21,34,55)

 > y[y <= 10]
 [1] 1 1 2 3 5 8

 > y[y == 3]
 [1] 3

 > y[y <=10]
 [1] 1 1 2 3 5 8

 > y[y >= 9]
 [1] 13 21 34 55

 > y[y > 9]
 [1] 13 21 34 55

 > y[y != 8]
 [1] 1 1 2 3 5 13 21 34 55

 > y[y^2 < 10]
 [1] 1 1 2 3

or map True (T) and False (F) to the values in the vector.

 > a = c(1,3,5,7,9)

 > a[c(T,F,F,T,F)]
 [1] 1 7

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

34 Programming & Data Analysis with ‘R’

In this case there are not enough boolean statements so they are recycled such that it is
the same as: a[c(T,F,T,F,T)].

 > a[c(T,F)]
 [1] 1 5 9

 > a[c(T,F,T,F,T)]
 [1] 1 5 9

7.4.2 Combining Booleans (and (&), or (|))

 > x = c(3,6,9,12,15)

Both conditions must be True.

 > x > 3 & x < 10
 [1] FALSE TRUE TRUE FALSE FALSE

Either condition is True.

 > x == 12 | x < 5
 [1] TRUE FALSE FALSE TRUE FALSE

7.4.3 Boolean operators

== equals

< is less than

> is greater than

<= less than or equal to

>= greater than or equal to

!= is not equal to

& and

| or

Exercise 1
For the vector f = c(1,2,3,6,10,15,21,25,29,30)

1. Find all numbers equal to 15.
2. Find all numbers greater than 9
3. Find all numbers not equal to 10
4. Find 6th to 10th vector elements
5. Find all except the fnal element
6. Find all numbers that are multiples of 5
7. Find all numbers less than or equal to 15
8. Find all numbers between 7 and 24

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 35

Answer:

 # Find all numbers equal to 15.
 > f[f==15]
 [1] 15

 # Find all numbers greater than 9.
 > f[f > 9]
 [1] 10 15 21 25 29 30

 # Find all numbers not equal to 10.
 > f[f != 10]
 [1] 1 2 3 6 15 21 25 29 30

 # Find 6th to 10th vector elements.
 > f[f = 6:10]
 [1] 15 21 25 29 30

 # Find all except the final element.
 > f[-length(f)]
 [1] 1 2 3 6 10 15 21 25 29

 # Find all numbers that are multiples of 5.
 > f[(f %% 5) == 0]
 [1] 10 15 25 30

 # Find all numbers less than or equal to 15.
 > f[f <= 15]
 [1] 1 2 3 6 10 15

 # Find all numbers between 7 and 24.
 > f[(f > 7) & (f < 24)]
 [1] 10 15 21

Exercise 2
For the vector f = c(1,2,3,6,10,15,21,25,29,30)

1. Find all numbers greater than 9
2. Find all numbers not equal to 10
3. Find 6th to 10th vector elements
4. Find all except the fnal element
5. Find all numbers that are multiples of 5
6. Find all numbers less than or equal to 15
7. Find all numbers between 7 and 24

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

36 Programming & Data Analysis with ‘R’

Answer:

 > f = c(1,2,3,6,10,15,21,25,29,30)

 # Find all numbers greater than 9
 > f[f > 9]
 [1] 10 15 21 25 29 30

 # Find all numbers not equal to 10
 > f[f != 9]
 [1] 1 2 3 6 10 15 21 25 29 30

 # Find 6th to 10th vector elements
 > f[6:10]
 [1] 15 21 25 29 30

 # Find all except the final element
 > f[-length(f)]
 [1] 1 2 3 6 10 15 21 25 29

 # Find all numbers that are multiples of 5
 > f[f %% 5 == 0]
 [1] 10 15 25 30

 # Find all numbers less than or equal to 15
 > f[f <= 15]
 [1] 1 2 3 6 10 15

 # Find all numbers between 7 and 24
 > f[(f > 7) & (f < 16)]
 [1] 10 15

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 37

8. Building on Vectors, other data structures in R

8.1 Basics of structures
vector[row]

matrix[row,column]

array[row,column,level]

8.1.1 Vectors

• The vector is the fundamental data type in R, scalars and matrices are just
special types of vectors and that all things that apply to vectors, apply to these.

8.1.2 Matrix

• A matrix is a collection of data elements arranged in a two-dimensional
rectangular layout. The following is an example of a matrix with 2 rows and 3
columns.

• The elements must be of the same type.

• Here is an example.

 > a.matrix = matrix(c(2, 4, 3, 1, 5, 7), # the data elements
 nrow=2, # number of rows
 ncol=3, # number of columns
)

 > a.matrix
 [,1] [,2] [,3]
 [1,] 2 3 5
 [2,] 4 1 7

 > a.matrix = matrix(c(2, 4, 3, 1, 5, 7), # the data elements
 nrow=2, # number of rows
 ncol=3, # number of columns
 byrow = TRUE # fill matrix by rows
)

 > a.matrix
 [,1] [,2] [,3]
 [1,] 2 4 3
 [2,] 1 5 7

• Indexing Matrices

matrix.name[Row,Column]

• So to access row 2 and column 3 - matrix.name[2,3] or to access all elements in
row 2 - matrix.name[2,] or all the elements in column 3 - matrix.name[,3].

 > a.matrix[2,3]
 [1] 7

 > a.matrix[2,]
 [1] 1 5 7

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

38 Programming & Data Analysis with ‘R’

 > a.matrix[,3]
 [1] 3 7

 > a.matrix[1:2,2:3]
 [,1] [,2]
 [1,] 4 3
 [2,] 5 7

 > a.matrix[-2,]
 [1] 2 4 3

 > a.matrix[,-2]
 [,1] [,2]
 [1,] 2 3
 [2,] 1 7

• How about fnding all the rows where column 3 is greater than 6?

 > a.matrix [a.matrix[,3] > 6,]
 [1] 1 5 7

Apply boolean questions to matrix
For a matrix of four rows and three columns with the data 1,5,9,2,6,10,3,7,11,4,8,12 get
the output of the following R commands.

• z.matrix == 3
• z.matrix[,3] <= 10
• z.matrix != 3
• any(z.matrix[1,] == 3)
• any(z.matrix > 15)
• all(z.matrix == 3)
• all(z.matrix < 20)
• complete.cases(z.matrix)

 > z.matrix = matrix(c(1,5,9,2,6,10,3,7,11,4,8,12),
 nrow=4,
 ncol=3,
 byrow=TRUE
)

 > z.matrix
 [,1] [,2] [,3]
 [1,] 1 5 9
 [2,] 2 6 10
 [3,] 3 7 11
 [4,] 4 8 12

 > z.matrix == 3
 [,1] [,2] [,3]
 [1,] FALSE FALSE FALSE
 [2,] FALSE FALSE FALSE
 [3,] TRUE FALSE FALSE
 [4,] FALSE FALSE FALSE

 > z.matrix[,3] <= 10
 [1] TRUE TRUE FALSE FALSE

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 39

 > z.matrix != 3
 [,1] [,2] [,3]
 [1,] TRUE TRUE TRUE
 [2,] TRUE TRUE TRUE
 [3,] FALSE TRUE TRUE
 [4,] TRUE TRUE TRUE

 > any(z.matrix[1,] == 3)
 [1] FALSE

 > any(z.matrix > 15)
 [1] FALSE

 > all(z.matrix == 3)
 [1] FALSE

 > all(z.matrix < 20)
 [1] TRUE

 > complete.cases(z.matrix)
 [1] TRUE TRUE TRUE TRUE

8.1.3 Array

Arrays are the R data objects which can store data in more than two dimensions. An
array is created using the array() function. It takes vectors as input and uses the values
in the dim (dimensions) parameter to create an array. The dim parameters defne
matrices of three rows, four columns and two deep, i.e. two matrices.

array[row,column,level]

Here is an example.

 > v1 = c(5,9,3)
 > v2 = c(10,11,12,13,14,15)
 > v3 = c(21,23,24,26,27,28,29)
 > v4 = c(32,34,35,37,31,34,45,46)
 > p = array(c(v1,v2,v3,v4),dim = c(3,4,2))

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 3: Array

40 Programming & Data Analysis with ‘R’

 > p

 , , 1

 [,1] [,2] [,3] [,4]
 [1,] 5 10 13 21
 [2,] 9 11 14 23
 [3,] 3 12 15 24

 , , 2

 [,1] [,2] [,3] [,4]
 [1,] 26 29 35 34
 [2,] 27 32 37 45
 [3,] 28 34 31 46

• Here is another example.

 > v1 = c(5,9,3)
 > v2 = c(10,11,12,13,14,15)
 > p = array(c(v1,v2),dim = c(3,3,2))
 > p
 , , 1

 [,1] [,2] [,3]
 [1,] 5 10 13
 [2,] 9 11 14
 [3,] 3 12 15

 , , 2

 [,1] [,2] [,3]
 [1,] 5 10 13
 [2,] 9 11 14
 [3,] 3 12 15

Names can be given to the rows, columns and matrices in the array by using the
dimnames parameter.

Here is example.

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 4: Array 2

Programming & Data Analysis with ‘R’ 41

> v1 = c(5,9,3)

> v2 = c(10,11,12,13,14,15)

> column.names = c("COL1","COL2","COL3")

> row.names = c("ROW1","ROW2","ROW3")

> matrix.names = c("Matrix1","Matrix2")

> p = array(c(v1,v2),dim = c(3,3,2),dimnames =
list(row.names,column.names,matrix.names))

> p
, , Matrix1

 COL1 COL2 COL3
ROW1 5 10 13
ROW2 9 11 14
ROW3 3 12 15

, , Matrix2

 COL1 COL2 COL3
ROW1 5 10 13
ROW2 9 11 14
ROW3 3 12 15

Exercise (a): Matrix

 [,1] [,2] [,3] [,4] [,5]
 [1,] 1 3 5 7 9
 [2,] 11 13 15 17 19
 [3,] 21 23 25 27 29
 [4,] 31 33 35 37 39

Create a matrix like the one above, containing the sequence of odd numbers starting at
1 and counting up to fll the matrix.

Answer:

 > new.matrix = matrix(seq(1,length.out=20,by=2),
 nrow=4,ncol=5,
 byrow=TRUE
)

 > new.matrix
 [,1] [,2] [,3] [,4] [,5]
 [1,] 1 3 5 7 9
 [2,] 11 13 15 17 19
 [3,] 21 23 25 27 29
 [4,] 31 33 35 37 39

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

42 Programming & Data Analysis with ‘R’

Exercise (b): Matrix
1. Create a matrix (called d1) with 6 rows and 4 columns (byrow=F) using the

sequence of odd numbers starting at 1.
2. Extract the number from the 3rd column, 4th row and assign it to the variable

name g1.
3. Extract the 6th row
4. Extract columns 2 & 4 from d1 and call the new matrix d2
5. Create a new matrix (d3), by doing something to d1, that contains the sequence

of EVEN numbers starting at 2
6. Change d3 element 3rd row, 2nd column so that it equals 500. Look at d3.

Change 3rd row, 2nd column to Harry. Look at d3 again. Has anything
changed? Why? Change Harry back to 500. Now what has happened?

> d1 = matrix(seq(1,length.out=24,by=2),
 nrow=6,ncol=4,
 byrow=FALSE
)

> d1
 [,1] [,2] [,3] [,4]
[1,] 1 13 25 37
[2,] 3 15 27 39
[3,] 5 17 29 41
[4,] 7 19 31 43
[5,] 9 21 33 45
[6,] 11 23 35 47

> g1 = d1[4,3]

> g1
[1] 31

> d1[6,]
[1] 11 23 35 47

> c(d1[,2], d1[,4])
[1] 13 15 17 19 21 23 37 39 41 43 45 4

> d2 = matrix(c(d1[,2], d1[,4]),
 nrow=6,ncol=2,
 byrow=FALSE
)

> d3 = d1 + 1

> d3
 [,1] [,2] [,3] [,4]
[1,] 2 14 26 38
[2,] 4 16 28 40
[3,] 6 18 30 42
[4,] 8 20 32 44
[5,] 10 22 34 46
[6,] 12 24 36 48

> d3[3,2] = 500

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 43

> d3
 [,1] [,2] [,3] [,4]
[1,] 2 14 26 38
[2,] 4 16 28 40
[3,] 6 500 30 42
[4,] 8 20 32 44
[5,] 10 22 34 46
[6,] 12 24 36 48

> d3[3,2] = 'Harry'

> d3
 [,1] [,2] [,3] [,4]
[1,] "2" "14" "26" "38"
[2,] "4" "16" "28" "40"
[3,] "6" "Harry" "30" "42"
[4,] "8" "20" "32" "44"
[5,] "10" "22" "34" "46"
[6,] "12" "24" "36" "48"

All values became strings because in a matrix all values must be of the same
type.

 > d3[3,2] = 500

 > d3
 [,1] [,2] [,3] [,4]
 [1,] "2" "14" "26" "38"
 [2,] "4" "16" "28" "40"
 [3,] "6" "500" "30" "42"
 [4,] "8" "20" "32" "44"
 [5,] "10" "22" "34" "46"
 [6,] "12" "24" "36" "48"

 String type has been maintained.

Exercise (c): Matrix filtering

 > chick = matrix(c(seq(1,5,1),
 c(10,15,12,13,15,8,11,9,12,13)),
 nrow=5,ncol=3,byrow=FALSE
)

 > colnames(chick) = c('Individual','Weight','Age')

 > chick
 Individual Weight Age
 [1,] 1 10 8
 [2,] 2 15 11
 [3,] 3 12 9
 [4,] 4 13 12
 [5,] 5 15 13

From the chick matrix:

1. All rows where weight is less than 15g.
2. Using the mean() function, calculate the mean age of chicks >10g in weight.
3. Add an extra column (2,5,3,5,6) to the chick matrix using the cbind() function.

cbind(): - Take a sequence of vector, matrix or data-frame arguments and combine by
columns or rows, respectively.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

44 Programming & Data Analysis with ‘R’

 > chick[chick[,2] < 15,]
 Individual Weight Age
 [1,] 1 10 8
 [2,] 3 12 9
 [3,] 4 13 12

 > mean(chick[chick[,2] > 10,'Age'])
 [1] 11.25

 > chick = cbind(chick,c(2,5,3,5,6))

 > chick
 Individual Weight Age
 [1,] 1 10 8 2
 [2,] 2 15 11 5
 [3,] 3 12 9 3
 [4,] 4 13 12 5
 [5,] 5 15 13 6

8.1.4 The 'apply' family of functions

apply(): returns a vector or array or list of values obtained by applying a function to
margins of an array or matrix.

apply(X, MARGIN, FUN, ...)

• X: an array, including a matrix.

• MARGIN: 1 = rows, 2 = columns, c(1,2) = both.

• FUN: the function.

 > v1 = c(5,9,3)
 > v2 = c(10,11,12,13,14,15,16,17,18)
 > v3 = c(21,23,24,26,27,28,29,30)
 > p = matrix(c(v1,v2,v3), nrow = 4, ncol = 5)

 > p
 [,1] [,2] [,3] [,4] [,5]
 [1,] 5 11 15 21 27
 [2,] 9 12 16 23 28
 [3,] 3 13 17 24 29
 [4,] 10 14 18 26 30

 # Sum of each column
 > apply(p, 2, sum)
 [1] 27 50 66 94 114

 # Get the mean of each row
 > apply(p, 1, mean)
 [1] 15.8 17.6 17.2 19.6

 > apply(p, c(1,2), mean)
 [,1] [,2] [,3] [,4] [,5]
 [1,] 5 11 15 21 27
 [2,] 9 12 16 23 28
 [3,] 3 13 17 24 29
 [4,] 10 14 18 26 30

While it is possible to supply a vector c(1,2) to the MARGIN argument it makes little
sense with a matrix. However with an array it operates between the matrices within the
array.

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 45

 > v1 = c(5,9,3)

 > v2 = c(10,11,12,13,14,15)

 > v3 = c(21,23,24,26,27,28,29)

 > v4 = c(32,34,35,37,31,34,45,46)

 > a = array(c(v1,v2,v3,v4),dim = c(3,4,2))

 > a
 , , 1

 [,1] [,2] [,3] [,4]
 [1,] 5 10 13 21
 [2,] 9 11 14 23
 [3,] 3 12 15 24

 , , 2

 [,1] [,2] [,3] [,4]
 [1,] 26 29 35 34
 [2,] 27 32 37 45
 [3,] 28 34 31 46

 > apply(a, c(1,2), mean)
 [,1] [,2] [,3] [,4]
 [1,] 15.5 19.5 24.0 27.5
 [2,] 18.0 21.5 25.5 34.0
 [3,] 15.5 23.0 23.0 35.0

Other apply() functions
Other apply() functions exists, some of which are described later.

• lapply(): For lists and data-frames.
• sapply(): A simplifed wrapper function for lapply().
• sapply(): The multivariate apply which can vectorise arguments to a function

that is not usually accepting vectors as arguments.

In short, mapply() applies a function to multiple list or multiple vector arguments.

8.2 Recap exercises
1. Create the following vectors:

 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

 3

 20 13 16 17 18 20

 100 97 94 91 88 85 82 79 76 73 70 67 64 61

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

 1 3 5 7 9 11 13 15 17 19

 "bird" "fish" "cricket"

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

46 Programming & Data Analysis with ‘R’

• Answer

 > seq(3, 48, 3)
 [1] 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

 > rep(3,25)
 [1] 3

 > c(20,13,16,17,18,20)
 [1] 20 13 16 17 18 20

 > seq(100, 61, -3)
 [1] 100 97 94 91 88 85 82 79 76 73 70 67 64 61

 > seq(1, 20, 1)
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 > seq(13, 29, 1)
 [1] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

 > seq(1, 19, 2)
 [1] 1 3 5 7 9 11 13 15 17 19

 > c('bird','fish','cricket')
 [1] "bird" "fish" "cricket"

2. From the following vector

 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

• Multiply each element by 10.
• Take the square root of each element.
• Add three to each element.
• Standardise each element to the mean of the vector. (i.e. divide each

element by the vector’s mean).
• Multiply every second element by the vector’s length.

• Answer

 > d = seq(3, 48, 3)
 > d
 [1] 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

 > d * 10
 [1] 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480

 > sqrt(d)
 [1] 1.732051 2.449490 3.000000 3.464102 3.872983 4.242641 4.582576

 [8] 4.898979 5.196152 5.477226 5.744563 6.000000 6.244998 6.480741
 [15] 6.708204 6.928203

 > d + 3
 [1] 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51

 > d/(mean(d))

[1] 0.1176471 0.2352941 0.3529412 0.4705882 0.5882353 0.7058824
[7] 0.8235294 0.9411765 1.0588235 1.1764706 1.2941176 1.4117647
[15] 1.5294118 1.6470588 1.7647059 1.8823529

 > d * c(1, length(d))

[1] 3 96 9 192 15 288 21 384 27 480 33 576 39 672 45 768

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 47

3. Using vector indexing extract the following vectors from the a vector where:

 a = c(5, 1, 6, 10, 2, 7, 13, 12, 8)

 5 1 6

 5 5 5 13 5 5 1 6 10 2 7 13 12

1 2 5 7 8 10 12 13

 numbers less than 10

 numbers equal to 7

 all even numbers

• Answer

 > a[1:3]
 [1] 5 1 6

 > c(rep(a[1],3),a[7],a[1])
 [1] 5 5 5 13 5

 > a[1:length(a) - 1]
 [1] 5 1 6 10 2 7 13 12

 > c(a[2],a[5],a[1],a[3],a[6],a[9],a[4],a[8],a[7])
 [1] 1 2 5 6 7 8 10 12 13

 > a[a < 10]
 [1] 5 1 6 2 7 8

 > a[a == 7]
 [1] 7

 > a[a %% 2 == 0]
 [1] 6 10 2 12 8

4. Create the following matrix

 [,1] [,2] [,3] [,4]
 [1,] 2 4 6 8
 [2,] 10 12 14 16
 [3,] 18 20 22 24
 [4,] 26 28 30 32
 [5,] 34 36 38 40
 [6,] 42 44 46 48

• Extract the 3rd column.
• Extract the 5th row.
• Create a new matrix from the frst three rows and last two columns.
• Extract all numbers greater than 25.
• Extract all numbers greater than 35 from row fve.
• Extract all numbers greater than 35 from column four.
• Extract all numbers between 10 & 30 from column one.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

48 Programming & Data Analysis with ‘R’

• Answer

 > x.matrix = matrix(c(seq(2,48,2)),
 nrow=6,ncol=4,byrow=TRUE
)

 > x.matrix
 [,1] [,2] [,3] [,4]
 [1,] 2 4 6 8
 [2,] 10 12 14 16
 [3,] 18 20 22 24
 [4,] 26 28 30 32
 [5,] 34 36 38 40
 [6,] 42 44 46 48

 > x.matrix[,3]
 [1] 6 14 22 30 38 46

 > x.matrix[5,]
 [1] 34 36 38 40

 > x.matrix[1:3,3:4]
 [,1] [,2]
 [1,] 6 8
 [2,] 14 16
 [3,] 22 24

 > x.matrix[c(x.matrix[]) > 25]
 [1] 26 34 42 28 36 44 30 38 46 32 40 48

 > x.matrix[5,][x.matrix[5,] > 35]
 [1] 36 38 40

 > x.matrix[,4][x.matrix[,4] > 35]
 [1] 40 48

 > x.matrix[,1][x.matrix[,1] > 10 & x.matrix[,1] < 30]
 [1] 18 26

5. Create the following matrix

 individual weight age
 [1,] 1 4 13
 [2,] 2 7 15
 [3,] 3 2 12
 [4,] 4 9 14
 [5,] 5 2 20

• Give the columns the names above: use colnames().
• Extract which individuals are older than fve years old.
• What is the mean weight of all individuals.
• What is the mean weight of individuals older than fve.
• Add a new row - i.e. c(6, 5, 15) - using rbind() function.

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 49

• Answer

 > y.matrix = matrix(c(seq(1,5,1),c(4,7,2,9,2,13,15,12,14,20)),
 nrow=5,ncol=3,byrow=FALSE
)

 > colnames(y.matrix) = c('individual','weight','age')

 > y.matrix
 individual weight age
 [1,] 1 4 13
 [2,] 2 7 15
 [3,] 3 2 12
 [4,] 4 9 14
 [5,] 5 2 20

 > y.matrix[y.matrix[,3] > 5,'individual']
 [1] 1 2 3 4 5

 or

 > y.matrix[y.matrix[,3] > 5,1]
 [1] 1 2 3 4 5

 > mean(y.matrix[y.matrix[,1],2])
 [1] 4.8

 > mean(y.matrix[y.matrix[,3] > 5,2])
 [1] 4.8

 > y.matrix = rbind(y.matrix, c(6,5,15))

 > y.matrix
 individual weight age
 [1,] 1 4 13
 [2,] 2 7 15
 [3,] 3 2 12
 [4,] 4 9 14
 [5,] 5 2 20
 [6,] 6 5 15

8.3 Operators as functions
Operators can be used like functions. Place the values to supply to the operator
function and the result will return as expected.

 > '+'(1,2)
 [1] 3

 > '='(x,2)
 > x
 [1] 2

 > '<-'(y,3)

 > y
 [1] 3

Even arguments can be used as functions.

 > '^'(y,2)
 [1] 9

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

50 Programming & Data Analysis with ‘R’

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 51

9. Output to standard out

9.1 print() and cat()
print(): prints its argument.

cat(): Concatenate and print. This function outputs the objects, concatenating the
representations.

cat() performs much less conversion than print().

 > string = 'My string'

 > numbers = 1:12

 > t_date = date()

 > chain = c(string, numbers, t_date)

 > cat(chain)
 My string 1 2 3 4 5 6 7 8 9 10 11 12 Tue Sep 18 13:00:07 2018

 > print(chain)
 [1] "My string" "1"
 [3] "2" "3"
 [5] "4" "5"
 [7] "6" "7"
 [9] "8" "9"
 [11] "10" "11"
 [13] "12" "Tue Sep 18 13:00:07 2018"

 > cat(string, numbers, t_date)
 My string 1 2 3 4 5 6 7 8 9 10 11 12 Tue Sep 18 13:00:07 2018

 > print(string, numbers, t_date)
 Error in print.default(string, numbers, t_date) :
 invalid 'quote' argument

 > print(c(string, numbers, t_date))
 [1] "My string" "1"
 [3] "2" "3"
 [5] "4" "5"
 [7] "6" "7"
 [9] "8" "9"
 [11] "10" "11"
 [13] "12" "Tue Sep 18 13:00:07 2018"

9.2 sprintf()
A wrapper for the C function sprintf, that returns a character vector containing a
formatted combination of text and variable values. The format string is a character
string, beginning and ending in its initial shift state, if any. The format string is
composed of zero or more directives: ordinary characters (not %), which are copied
verbatim to the output stream; and conversion specifcations, each of which results in
fetching zero or more subsequent arguments. Each conversion specifcation is
introduced by the character %, and ends with a conversion specifer. In between there
may be zero or more fags, an optional minimum field width, an optional precision and
an optional length modifier.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

52 Programming & Data Analysis with ‘R’

Notation Description

%s a string

%d an integer

%0xd an integer padded with x leading zeros

%f decimal notation with six decimals

%.xf foating point number with x digits after decimal point

%e compact scientifc notation, e in the exponent

%E compact scientifc notation, E in the exponent

%g compact decimal or scientifc notation (with e)

9.3 paste() and paste0() functions
paste(): Concatenates vectors after converting to character with a single space as a
separator.
paste0(): Concatenates vectors after converting to character with no separator.

• sep: The element which separates every term. It should be specifed with
character string format.

• collapse: The element which separates every result. It should be specifed with
character string format and it is optional.

The diference between paste() and paste0() is that the argument sep by default is " "
(paste) and "" in (paste0).

 > string = 'My string'

 > numbers = 1:12

 > t_date = date()

 > chain = c(string, numbers, t_date)

 > p_string = paste(string, numbers, t_date)

 > chain
 [1] "My string" "1"
 [3] "2" "3"
 [5] "4" "5"
 [7] "6" "7"
 [9] "8" "9"
 [11] "10" "11"
 [13] "12" "Tue Sep 18 13:00:07 2018"

 > p_chain
 [1] "My string 1 Tue Sep 18 13:00:07 2018"
 [2] "My string 2 Tue Sep 18 13:00:07 2018"
 [3] "My string 3 Tue Sep 18 13:00:07 2018"
 [4] "My string 4 Tue Sep 18 13:00:07 2018"
 [5] "My string 5 Tue Sep 18 13:00:07 2018"
 [6] "My string 6 Tue Sep 18 13:00:07 2018"
 [7] "My string 7 Tue Sep 18 13:00:07 2018"
 [8] "My string 8 Tue Sep 18 13:00:07 2018"
 [9] "My string 9 Tue Sep 18 13:00:07 2018"
 [10] "My string 10 Tue Sep 18 13:00:07 2018"
 [11] "My string 11 Tue Sep 18 13:00:07 2018"
 [12] "My string 12 Tue Sep 18 13:00:07 2018"

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 53

9.4 Numbers
Double precision value, in fixed point decimal notation.

 > number = 1234567.894567

 > number1 = sprintf("%.2f", number)

 > print(number1)
 [1] "1234567.89"

 > number1 = sprintf("%e", number)

 > print(number1)
 [1] "1234567.89"

 # Exponential output
 > number2 = sprintf("%e", number)

 > print(number2)
 [1] "1.234568e+06"

 # Scientific notation
 > number3 = sprintf("%a", number)

 > print(number3)
 [1] "0x1.2d687e50257c9p+20"

Note that with integers, if an non-integer is given R will give an error. Either give the
input as an integer. Optionally print using the foating point number with zero digits after
the decimal point to get an integer from a non integer input.

 # Integer
 > number4 = sprintf("%d", number)
 Error in sprintf("%d", 1234567.894567) :
 invalid format '%d'; use format %f, %e, %g or %a for numeric objects

 > number1 = sprintf("%d", 1234567)
 > print(number1)
 [1] "1234567"

 > number5 = sprintf("%.0f", number)
 > print(number5)
 [1] "1234568"

9.5 Character string
 > word = "R programming"

 > word1 = sprintf("%s is fun.", word)

 > print(word1)
 [1] "R programming is fun."

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

54 Programming & Data Analysis with ‘R’

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 55

10. Flow control & Data frames

10.1 if & else conditionals
Used to create fexibility in programming.

Write an if() statement that tells if a number (x) is positive
(the console returns the word positive).

 > x = 5
 > y = -4

 > if (x > 0) print('positive') else print('negative')
 [1] "positive"

 > if (y > 0) print('positive') else print('negative')
 [1] "negative"

 > if (x > 0){
 print('positive')
 }else{
 print('negative')
 }
 [1] "positive"

 > if (y > 0){
 print('positive')
 }else{
 print('negative')
 }
 [1] "negative"

• if & if else are not vectorised, they only take single values.

10.2 ifelse conditional
ifelse(boolean condition,output if TRUE,output if FALSE)

 > ifelse((x > 0),'positive','negative')
 [1] "positive"

 > ifelse((y > 0),'positive','negative')
 [1] "negative"

ifelse is a vectorised function.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

56 Programming & Data Analysis with ‘R’

10.2.1 Exercise: ifelse

age = c(3,5,7,4,9,3,5,4,8,6)

• Create a new variable (age.cat) where ages four and below are 0 and above
four are 1.

 > age = c(3,5,7,4,9,3,5,4,8,6)

 > age.cat = ifelse((age < 5),0,1)

 > age.cat
 [1] 0 1 1 0 1 0 1 0 1 1

• Create a new variable (age.limit) where ages six and above are included in a
single age category of 6.

 > age.limit = ifelse((age < 6),age,6)

 > age.limit
 [1] 3 5 6 4 6 3 5 4 6 6

• Create a new variable (age.3cat) where ages are in three categories 1=(1 to 4),
2=(5 to 6), and 3=(7 to 9)

 > age.3cat = ifelse(
 (age < 5),
 print ('1'),
 ifelse(
 (age > 4 & age < 7),
 print ('2'),
 ifelse(
 (age > 6),
 print ('3'),"NA"
)
)
)
 [1] "1"
 [1] "2"
 [1] "3"

 > age.3cat
 [1] "1" "2" "3" "1" "3" "1" "2" "1" "3" "2"

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 57

10.3 Lists
• Lists are the R objects which contain elements of diferent types like − numbers,

strings, vectors and another list inside it. A list can also contain a matrix or a
function as its elements. List is created using list() function.

• Here is an example.

 > list_data = list("Orange", "Green", c(43,13,61), TRUE, 42.18, 218.2)

 > list_data
 [[1]]
 [1] "Orange"

 [[2]]
 [1] "Green"

 [[3]]
 [1] 43 13 61

 [[4]]
 [1] TRUE

 [[5]]
 [1] 42.18

 [[6]]
 [1] 218.2

• Accessing elements in the list. Here accessing the forth element in the list.

 > list_data[4]
 [[1]]
 [1] TRUE

• The R List can combine objects of any mode into a single object.

 > w = list(site=5,species=c(2,3,4,5,6,7,8,9),
 names=c('Captain Kirk','Richard Dawkins')
)

• Use unclass() to view the list.

 > unclass(w)
 $site
 [1] 5

 $species
 [1] 2 3 4 5 6 7 8 9

 $names
 [1] "Captain Kirk" "Richard Dawkins"

• Here are the various tools to extract from the list. These tools all index the
second sub-vector of the list.

 > w$site
 [1] 5

 > w$species
 [1] 2 3 4 5 6 7 8 9

 > w[['species']]
 [1] 2 3 4 5 6 7 8 9

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

58 Programming & Data Analysis with ‘R’

 > w[[1]]
 [1] 5

 > w[3]
 $names
 [1] "Captain Kirk" "Richard Dawkins"

• Adding to the list.

 > w$shopping.list = c('milk','eggs')

 > w
 $site
 [1] 5

 $species
 [1] 2 3 4 5 6 7 8 9

 $names
 [1] "Captain Kirk" "Richard Dawkins"

 $shopping.list
 [1] "milk" "eggs"

To remove shopping.list from our list w.

 > w$shopping.list = NULL

 > w
 $site
 [1] 5

 $species
 [1] 2 3 4 5 6 7 8 9

 $names
 [1] "Captain Kirk" "Richard Dawkins"

Most statistical outputs (objects) are contained within an R list.

lm(): - is used to ft linear models.
mtcars: - is a stored dataset.

 > data(mtcars)

 > a = lm(mpg~wt, data=mtcars)

 > summary(a)

 Call:
 lm(formula = mpg ~ wt, data = mtcars)

 Residuals:
 Min 1Q Median 3Q Max
 -4.5432 -2.3647 -0.1252 1.4096 6.8727

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
 wt -5.3445 0.5591 -9.559 1.29e-10 ***

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 3.046 on 30 degrees of freedom
 Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
 F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 59

 > unclass(a)
 $coefficients
 (Intercept) wt
 37.285126 -5.344472

 $residuals
 Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive
 -2.2826106 -0.9197704 -2.0859521 1.2973499
 Hornet Sportabout Valiant Duster 360 Merc 240D
 -0.2001440 -0.6932545 -3.9053627 4.1637381
 Merc 230 Merc 280 Merc 280C Merc 450SE
 2.3499593 0.2998560 -1.1001440 0.8668731
 Merc 450SL Merc 450SLC Cadillac Fleetwood Lincoln Continental
 -0.0502472 -1.8830236 1.1733496 2.1032876
 Chrysler Imperial Fiat 128 Honda Civic Toyota Corolla
 5.9810744 6.8727113 1.7461954 6.4219792
 Toyota Corona Dodge Challenger AMC Javelin Camaro Z28
 -2.6110037 -2.9725862 -3.7268663 -3.4623553
 Pontiac Firebird Fiat X1-9 Porsche 914-2 Lotus Europa
 2.4643670 0.3564263 0.1520430 1.2010593
 Ford Pantera L Ferrari Dino Maserati Bora Volvo 142E
 -4.5431513 -2.7809399 -3.2053627 -1.0274952

 $effects
 (Intercept) wt
 -113.6497374 -29.1157217 -1.6613339 1.6313943 0.1111305 -0.3840041

 -3.6072442 4.5003125 2.6905817 0.6111305 -0.7888695 1.1143917

 0.2316793 -1.6061571 1.3014525 2.2137818 6.0995633 7.3094734

 2.2421594 6.8956792 -2.2010595 -2.6694078 -3.4150859 -3.1915608

 2.7346556 0.8200064 0.5948771 1.7073457 -4.2045529 -2.4018616

 -2.9072442 -0.6494289

 $rank
 [1] 2

 $fitted.values
 Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive
 23.282611 21.919770 24.885952 20.102650
 Hornet Sportabout Valiant Duster 360 Merc 240D
 18.900144 18.793255 18.205363 20.236262
 Merc 230 Merc 280 Merc 280C Merc 450SE
 20.450041 18.900144 18.900144 15.533127
 Merc 450SL Merc 450SLC Cadillac Fleetwood Lincoln Continental
 17.350247 17.083024 9.226650 8.296712
 Chrysler Imperial Fiat 128 Honda Civic Toyota Corolla
 8.718926 25.527289 28.653805 27.478021
 Toyota Corona Dodge Challenger AMC Javelin Camaro Z28
 24.111004 18.472586 18.926866 16.762355
 Pontiac Firebird Fiat X1-9 Porsche 914-2 Lotus Europa
 16.735633 26.943574 25.847957 29.198941
 Ford Pantera L Ferrari Dino Maserati Bora Volvo 142E
 20.343151 22.480940 18.205363 22.427495

 $assign
 [1] 0 1

 $qr
 $qr
 (Intercept) wt
 Mazda RX4 -5.6568542 -18.199514334
 Mazda RX4 Wag 0.1767767 5.447820482
 Datsun 710 0.1767767 0.148230003

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

60 Programming & Data Analysis with ‘R’

 Hornet 4 Drive 0.1767767 -0.016055881
 Hornet Sportabout 0.1767767 -0.057356801
 Valiant 0.1767767 -0.061027994
 Duster 360 0.1767767 -0.081219555
 Merc 240D 0.1767767 -0.011466889
 Merc 230 0.1767767 -0.004124504
 Merc 280 0.1767767 -0.057356801
 Merc 280C 0.1767767 -0.057356801
 Merc 450SE 0.1767767 -0.172999378
 Merc 450SL 0.1767767 -0.110589098
 Merc 450SLC 0.1767767 -0.119767081
 Cadillac Fleetwood 0.1767767 -0.389599760
 Lincoln Continental 0.1767767 -0.421539139
 Chrysler Imperial 0.1767767 -0.407037927
 Fiat 128 0.1767767 0.170257160
 Honda Civic 0.1767767 0.277639553
 Toyota Corolla 0.1767767 0.237256431
 Toyota Corona 0.1767767 0.121613854
 Dodge Challenger 0.1767767 -0.072041573
 AMC Javelin 0.1767767 -0.056439003
 Camaro Z28 0.1767767 -0.130780659
 Pontiac Firebird 0.1767767 -0.131698458
 Fiat X1-9 0.1767767 0.218900467
 Porsche 914-2 0.1767767 0.181270739
 Lotus Europa 0.1767767 0.296362637
 Ford Pantera L 0.1767767 -0.007795696
 Ferrari Dino 0.1767767 0.065628162
 Maserati Bora 0.1767767 -0.081219555
 Volvo 142E 0.1767767 0.063792566
 attr(,"assign")
 [1] 0 1

 $qraux
 [1] 1.176777 1.046354

 $pivot
 [1] 1 2

 $tol
 [1] 1e-07

 $rank
 [1] 2

 attr(,"class")
 [1] "qr"

 $df.residual
 [1] 30

 $xlevels
 named list()

 $call
 lm(formula = mpg ~ wt, data = mtcars)

 $terms
 mpg ~ wt
 attr(,"variables")
 list(mpg, wt)
 attr(,"factors")
 wt
 mpg 0
 wt 1
 attr(,"term.labels")
 [1] "wt"
 attr(,"order")

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 61

 [1] 1
 attr(,"intercept")
 [1] 1
 attr(,"response")
 [1] 1
 attr(,".Environment")
 <environment: R_GlobalEnv>
 attr(,"predvars")
 list(mpg, wt)
 attr(,"dataClasses")
 mpg wt
 "numeric" "numeric"

 $model
 mpg wt
 Mazda RX4 21.0 2.620
 Mazda RX4 Wag 21.0 2.875
 Datsun 710 22.8 2.320
 Hornet 4 Drive 21.4 3.215
 Hornet Sportabout 18.7 3.440
 Valiant 18.1 3.460
 Duster 360 14.3 3.570
 Merc 240D 24.4 3.190
 Merc 230 22.8 3.150
 Merc 280 19.2 3.440
 Merc 280C 17.8 3.440
 Merc 450SE 16.4 4.070
 Merc 450SL 17.3 3.730
 Merc 450SLC 15.2 3.780
 Cadillac Fleetwood 10.4 5.250
 Lincoln Continental 10.4 5.424
 Chrysler Imperial 14.7 5.345
 Fiat 128 32.4 2.200
 Honda Civic 30.4 1.615
 Toyota Corolla 33.9 1.835
 Toyota Corona 21.5 2.465
 Dodge Challenger 15.5 3.520
 AMC Javelin 15.2 3.435
 Camaro Z28 13.3 3.840
 Pontiac Firebird 19.2 3.845
 Fiat X1-9 27.3 1.935
 Porsche 914-2 26.0 2.140
 Lotus Europa 30.4 1.513
 Ford Pantera L 15.8 3.170
 Ferrari Dino 19.7 2.770
 Maserati Bora 15.0 3.570
 Volvo 142E 21.4 2.780

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

62 Programming & Data Analysis with ‘R’

10.4 Table
• Tables return the number of each element in a vector. The vector contains one

a, three b and one c.

 > vector = c("a", "a", "b", "b", "b", "c")

 > table(vector)
 vector
 a b c
 2 3 1

 > z = table(vector)

 > z[2]
 b
 3

10.5 for() and while()
for(): is used to repeat a set of instructions, and it is used when you know in advance
the values that the loop variable will have each time it goes through the loop.

while(): is be used to repeat a set of instructions, and it is often used when you do not
know in advance how often the instructions will be executed.

 > for (element in seq(0:10)){
 print(element);
 }
 [1] 1
 [1] 2
 [1] 3
 [1] 4
 [1] 5
 [1] 6
 [1] 7
 [1] 8
 [1] 9
 [1] 10
 [1] 11

 > numbers = c(1,2,4,8,16,32,64)

 > for (loop in numbers){
 cat("Loop number: ",loop,"\n");
 }
 Loop number: 1
 Loop number: 2
 Loop number: 4
 Loop number: 8
 Loop number: 16
 Loop number: 32
 Loop number: 64

 > cars = list('Ford', 'Saab', 'Toyota', 'Nissan', 'Volvo', 'Renault')

 > position = 1

 > for (loop in cars){
 cat("Car number: ",position, ':', loop,"\n");
 position = position + 1;
 }
 Car number: 1 : Ford
 Car number: 2 : Saab
 Car number: 3 : Toyota

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 63

 Car number: 4 : Nissan
 Car number: 5 : Volvo
 Car number: 6 : Renault

 > position = 1

 > while(position < 5){
 print (cars[position]);
 position = position + 1;
 }
 [[1]]
 [1] "Ford"

 [[1]]
 [1] "Saab"

 [[1]]
 [1] "Toyota"

 [[1]]
 [1] "Nissan"

10.6 Data-frame
A data frame is a table or a two-dimensional array-like structure in which each column
contains values of one variable and each row contains one set of values from each
column. A spreadsheet if you will. There MUST be the same number of values in each
row and column. Cells cannot be empty and must al least have a logical constant which
contains the missing value indicator NA.

Following are the characteristics of a data frame.

• The column names should be non-empty.
• The row names should be unique.
• The data stored in a data frame can be of numeric, factor or character type.
• Each column should contain same number of data items.

Here is an example.

> employee.data = data.frame(employee_id = c (1:5),
 employee_name = c("Áine","Dónal","Siobhán","Sinéad","Donnacha"),
 salary = c(623.3,515.2,611.0,729.0,843.25),
 start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
 "2015-03-27")),
 stringsAsFactors = FALSE
)

• Print the data frame.

 > employee.data
 employee_id employee_name salary start_date
 1 1 Áine 623.30 2012-01-01
 2 2 Dónal 515.20 2013-09-23
 3 3 Siobhán 611.00 2014-11-15
 4 4 Sinéad 729.00 2014-05-11
 5 5 Donnacha 843.25 2015-03-27

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

64 Programming & Data Analysis with ‘R’

• Access elements from the frame.

 > data.frame(employee.data$employee_name,employee.data$start_date)
 employee.data.employee_name employee.data.start_date
 1 Áine 2012-01-01
 2 Dónal 2013-09-23
 3 Siobhán 2014-11-15
 4 Sinéad 2014-05-11
 5 Donnacha 2015-03-27

 > employee.data[1:2]
 employee_id employee_name
 1 1 Áine
 2 2 Dónal
 3 3 Siobhán
 4 4 Sinéad
 5 5 Donnacha

• Extract frst two rows.

 > employee.data[1:2,]
 employee_id employee_name salary start_date
 1 1 Áine 623.3 2012-01-01
 2 2 Dónal 515.2 2013-09-23

• Consider the following R dataframe.

 > individual = c("a1", "a2", "a3", "a4")

 > age = c(15,13,16,12)

 > weight.class = c("high", "high", "low", "high")

 > df = data.frame(individual, age, weight.class)

 > df
 individual age weight.class
 1 a1 15 high
 2 a2 13 high
 3 a3 16 low
 4 a4 12 high

• Use class() or str() to look at how each variable is classifed.

 > class(individual)
 [1] "character"

 > class(age)
 [1] "numeric"

 > class(weight.class)
 [1] "character"

 > class(df)
 [1] "data.frame"

 > str(individual)
 chr [1:4] "a1" "a2" "a3" "a4"

 > str(age)
 num [1:4] 15 13 16 12

 > str(weight.class)
 chr [1:4] "high" "high" "low" "high"

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 65

 > str(df)
 'data.frame': 4 obs. of 3 variables:
 $ individual : Factor w/ 4 levels "a1","a2","a3",..: 1 2 3 4
 $ age : num 15 13 16 12
 $ weight.class: Factor w/ 2 levels "high","low": 1 1 2 1

10.7 Indexing Data-frames
read.csv(): Imports data from a Comma Separated File (CSV) fle.

head() and tail(): Return the frst or last parts of a vector, matrix, table, data frame or
function.

For demonstration purposes, import the bird_egg.csv fle.

 > bird_egg = read.csv('Datasets/bird_egg.csv', header=TRUE)

 > head(bird_egg)
 individual year clutch age eggs dist_food fail_fledge
 1 rm/bg 101 3 2 4 149 1
 2 wm/rb 97 3 1 3 63 0
 3 rb/bkm 107 3 2 4 NA 0
 4 bbk/bkm 108 3 7 3 NA 0
 5 wbk/ym 106 3 2 3 NA 1
 6 o/ym 103 3 2 4 164 0

 > tail(bird_egg)
 individual year clutch age eggs dist_food fail_fledge
 825 rr/jm 108 1 2 5 NA 1
 826 vm/bv 109 1 1 4 NA 1
 827 m/wy2 108 1 3 5 NA 1
 828 hm/y 109 1 2 4 NA 1
 829 /hm 108 1 1 4 NA 0
 830 wm/yr 106 1 4 4 NA 1

Reviewing the column for year is (Note: head() function used to limit the output to a
useable output):

 > head(bird_egg$year)
 [1] 101 97 107 108 106 103

 > head(bird_egg[,2])
 [1] 101 97 107 108 106 103

The frst fve rows of age is either of these (Note: head() function used to limit the output
to a useable output):

 > bird_egg$age[1:5]
 [1] 2 1 2 7 2

 > bird_egg[1:5,4]
 [1] 2 1 2 7 2

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

http://www.obriain.com/training/R/datasets/bird_egg.csv

66 Programming & Data Analysis with ‘R’

10.8 Add a new column
Add a column of squared values (e.g. age two) to bird_egg?. It is a simple matter of
naming it and assign values to it.

 > bird_egg$age.square = bird_egg$age^2

 > head(bird_egg)
 individual year clutch age eggs dist_food fail_fledge age.square
 1 rm/bg 101 3 2 4 149 1 4
 2 wm/rb 97 3 1 3 63 0 1
 3 rb/bkm 107 3 2 4 NA 0 4
 4 bbk/bkm 108 3 7 3 NA 0 49
 5 wbk/ym 106 3 2 3 NA 1 4
 6 o/ym 103 3 2 4 164 0 4

It is also possible to add to the data frame based on an ifelse() decision rule.

This example:

• Adds new column to the bird_egg data.frame and calls it egg.factor.
• Creates a 2-level categorical variable for number of eggs.

> bird_egg$eggs.factor = ifelse(bird_egg$eggs > 3, 'few', 'many')

> head(bird_egg)
individual year clutch age eggs dist_food fail_fledge age.square eggs.factor
1 rm/bg 101 3 2 4 149 1 4 few
2 wm/rb 97 3 1 3 63 0 1 many
3 rb/bkm 107 3 2 4 NA 0 4 few
4 bbk/bkm 108 3 7 3 NA 0 49 many
5 wbk/ym 106 3 2 3 NA 1 4 many
6 o/ym 103 3 2 4 164 0 4 few

10.9 Single or double brackets for indexing?
Single and double square brackets. As is demonstrated below the single brackets
extract a list whereas double brackets extract in a numeric vector style format.

 > a = seq(1, 10, length.out = 10)
 > b = seq(1, 10, length.out = 10)
 > c = seq(1.75, 3.2, length.out = 10)
 > d = seq(0.43, 1.6, length.out = 10)

 > a = data.frame(w = a, x = b, y = c, z = d)

 > m = a[1]
 > n = a[[2]]
 > o = a[3]
 > p = a[[4]]

 > class(m)
 [1] "data.frame"

 > class(n)
 [1] "numeric"

 > class(o)
 [1] "data.frame"

 > class(p)
 [1] "numeric"

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 67

 > typeof(m)
 [1] "list"

 > typeof(n)
 [1] "double"

 > typeof(o)
 [1] "list"

 > typeof(p)
 [1] "double"

 > m
 w
 1 1
 2 2
 3 3
 4 4
 5 5
 6 6
 7 7
 8 8
 9 9
 10 10

 > n
 [1] 1 2 3 4 5 6 7 8 9 10

 > o
 y
 1 1.750000
 2 1.911111
 3 2.072222
 4 2.233333
 5 2.394444
 6 2.555556
 7 2.716667
 8 2.877778
 9 3.038889
 10 3.200000

 > p
 [1] 0.43 0.56 0.69 0.82 0.95 1.08 1.21 1.34 1.47 1.60

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

68 Programming & Data Analysis with ‘R’

10.10 Exercise: Data frame 1
Create a new third variable in the data frame (called age.cat) which is a categorical
variable based on age where all individuals four or less are young and those greater
than four are considered old.

• Answer:

 > individual = 1:10
 > age = c(3,5,7,4,9,3,5,4,8,6)
 > age.df = data.frame (individual, age)

 > age.df$age.cat = ifelse(age.df$age < 5, 'young', 'old')

 > age.df
 individual age age.cat
 1 1 3 young
 2 2 5 old
 3 3 7 old
 4 4 4 young
 5 5 9 old
 6 6 3 young
 7 7 5 old
 8 8 4 young
 9 9 8 old
 10 10 6 old

10.11 Changing names within the data
It is often necessary to adjust the names within the data. Follow the example below.

 > names(age.df)
 [1] "Individual" "age" "age.cat"

 > names(age.df)[3] = "age2"

 > age.df
 Individual age age2
 1 1 3 young
 2 2 5 old
 3 3 7 old
 4 4 4 young
 5 5 9 old
 6 6 3 young
 7 7 5 old
 8 8 4 young
 9 9 8 old
 10 10 6 old

10.12 Read fles into R
read.csv() and read.csv2():

• read.csv and read.csv2 are identical to read.table except for the defaults. They
are intended for reading comma separated value fles (.csv) or (read.csv2) the
variant used in countries that use a comma as decimal point and a semicolon as
feld separator.

read.table():
• Reads a fle in table format and creates a data frame from it, with cases

corresponding to lines and variables to felds in the fle.
read.delim(): - This is a wrapper function for read.table() with default argument values
that are convenient when reading in tab-separated data.

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 69

10.13 English / European
Many European computer settings are diferent to the original .csv delimited fle settings
because the comma is used to denote fractions of numbers (decimals).

• 3.14 (English setting)
• 3,14 (European setting)

Thus European computers use semi-colons in their comma separated fles and
commas for decimals. This causes great confusion to R if import it the wrong way Open
your csv fle in a text editor and check how it looks.

• Use read.csv() for English settings
• Use read.csv2() for European settings

10.14 Set a working directory
Set a working directory or set fle pathway to read in data fles.

• setwd(): - Is used to set the working directory to dir.
• get.wd(): - Check what the working directory is set to.
• fle.choose(): - Choose a File Interactively.

 > setwd('~/course_datasets')

 > ind = read.csv('individual.csv')

 > head(ind)
 individual trait
 1 a 3
 2 a 4
 3 g 2
 4 g 6
 5 g 5
 6 g 4

10.15 Checks after importing Data-frame
The frst steps after importing data.frame are:

1. Check it looks like it should - use head() & tail().
2. Use summary() to get an overview of the data.
3. Use str() to check the structure of each variable.
4. Fix variable classes if necessary with as.factor() or as.character(), as.numeric()

or as.Date() functions.
5. Get the names of each variable using names() (tip: paste names in to your code

for future reference).
6. Create the datasets you want to use for analysis by using data.frame indexing &

fltering.

10.16 Removing missing values from a data set
Complete cases is a logical (boolean) function that returns TRUE for each observation
(vectors) or row (data frame) that is complete (i.e. has no missing value / NA) for a
data.frame called data.

 > complete.data = data[complete.cases(data),]

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

70 Programming & Data Analysis with ‘R’

10.16.1 Example:

Use the dataset bird_egg.csv.

 > df = read.csv('bird_egg.csv')

 > head(df)
 individual year clutch age eggs dist_food fail_fledge
 1 rm/bg 101 3 2 4 149 1
 2 wm/rb 97 3 1 3 63 0
 3 rb/bkm 107 3 2 4 NA 0
 4 bbk/bkm 108 3 7 3 NA 0
 5 wbk/ym 106 3 2 3 NA 1
 6 o/ym 103 3 2 4 164 0

 > summary(df)
 individual year clutch age eggs
 rm/bg : 21 Min. : 97.0 Min. :1.000 Min. : 1.000 Min. :1.000
 bm/bw : 20 1st Qu.:102.0 1st Qu.:1.000 1st Qu.: 1.000 1st Qu.:4.000
 m/ro : 19 Median :105.0 Median :1.000 Median : 2.000 Median :4.000
 bb/m : 17 Mean :104.7 Mean :1.396 Mean : 2.667 Mean :4.032
 bb/rm : 16 3rd Qu.:107.0 3rd Qu.:2.000 3rd Qu.: 4.000 3rd Qu.:5.000
 g/m : 15 Max. :109.0 Max. :3.000 Max. :10.000 Max. :6.000
 (Other):722 NA's :1 NA's :5
 dist_food fail_fledge
 Min. : 8.00 Min. :0.0000
 1st Qu.: 10.00 1st Qu.:0.0000
 Median : 70.00 Median :1.0000
 Mean : 90.69 Mean :0.6679
 3rd Qu.:135.00 3rd Qu.:1.0000
 Max. :434.00 Max. :1.0000
 NA's :481 NA's :2

 > str(df)
 'data.frame': 830 obs. of 7 variables:
 $ individual : Factor w/ 252 levels "","/gm","/hm",..: 162 214 152 11 204 130 234
238 55 214 ...
 $ year : int 101 97 107 108 106 103 97 97 100 98 ...
 $ clutch : int 3 3 3 3 3 3 3 3 3 3 ...
 $ age : int 2 1 2 7 2 2 4 1 2 2 ...
 $ eggs : int 4 3 4 3 3 4 3 3 2 3 ...
 $ dist_food : int 149 63 NA NA NA 164 18 191 112 12 ...
 $ fail_fledge: int 1 0 0 0 1 0 0 0 0 0 ...

 > df$year = as.factor(df$year)

 > df$fail_fledge = as.factor(df$fail_fledge)

 > df$clutch = as.factor(df$clutch)

 > str(df)
 'data.frame': 830 obs. of 7 variables:
 $ individual : Factor w/ 252 levels "","/gm","/hm",..: 162 214 152 11 204 130 234
238 55 214 ...
 $ year : Factor w/ 13 levels "97","98","99",..: 5 1 11 12 10 7 1 1 4 2 ...
 $ clutch : Factor w/ 3 levels "1","2","3": 3 3 3 3 3 3 3 3 3 3 ...
 $ age : int 2 1 2 7 2 2 4 1 2 2 ...
 $ eggs : int 4 3 4 3 3 4 3 3 2 3 ...
 $ dist_food : int 149 63 NA NA NA 164 18 191 112 12 ...
 $ fail_fledge: Factor w/ 2 levels "0","1": 2 1 1 1 2 1 1 1 1 1 ...

 > names(df)
 [1] "individual" "year" "clutch" "age" "eggs"
 [6] "dist_food" "fail_fledge"

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

http://www.obriain.com/training/R/datasets/bird_egg.csv

Programming & Data Analysis with ‘R’ 71

10.17 Data.frame object classes

Integer as.integer()

Numeric as.numeric()

Character as.character()

Factor as.factor()

Date as.Date()

Logical as.logical()

Examples to change object class.

 > df$clutch = as.factor(df$clutch)

 > df$individual = as.character(df$individual)

as.matrix() and as.data.frame() can be used for 2-dimensional objects.

10.18 Saving tables & Data Frames
write.table(): - prints its required argument ‘x’ (after converting it to a data frame if it is
not one nor a matrix) to a fle or connection.
write.csv(): - Does the same as write.table() except in comma delimited format.

These will save the data-frame or matrix to a fle in the current working directory (use
get.wd() to check where that is and set.wd() to change it.)

 > write.csv(df.egg, "bird_egg2.csv")

10.19 subset() function
It is regular that a subset of a frame is necessary. The subset() function handles this
event.

10.19.1 Columns subset
 > names(df.egg)
 [1] "individual" "year" "clutch" "age" "eggs"
 [6] "dist_food" "fail_fledge"

 > df.sub1 = subset(df.egg, select = c(individual, clutch, age, eggs))

 > head(df.sub1)
 individual clutch age eggs
 1 rm/bg 3 2 4
 2 wm/rb 3 1 3
 3 rb/bkm 3 2 4
 4 bbk/bkm 3 7 3
 5 wbk/ym 3 2 3
 6 o/ym 3 2 4

Obviously the same could be achieved by indexing.

 > df.sub2 = df.egg[, c(1,3,4,5)]

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

72 Programming & Data Analysis with ‘R’

 > head(df.sub2)
 character factors age eggs
 1 rm/bg 3 2 4
 2 wm/rb 3 1 3
 3 rb/bkm 3 2 4
 4 bbk/bkm 3 7 3
 5 wbk/ym 3 2 3
 6 o/ym 3 2 4

10.20 Date and time
Date and time for timestamps or dates and time within datasets can be useful. First
looking at getting the time and date from the system with the date() function. The
example demonstrates getting the date and time plus formatting them using the format
types documented in the table below.

 > t = Sys.time()

 > print(t)
 [1] "2018-09-28 10:45:41 EAT"

 > str(t)
 POSIXct[1:1], format: "2018-09-28 10:45:41

 > t.short = format(x = t, format = '%d %b %Y')

 > print(t.short)
 [1] "28 Sep 2018"

 > str(t.short)
 chr "28 Sep 2018"

Strings of data that are in character or other formats can be converted to a date format.
First ensure the data is in character format, then apply the as.Date() function to change
to a date format.

 > c.date = 'Fri 02 Sep 2018 - 11:02:12'

 > c.date = as.character('Fri 02 Sep 2018 - 11:02:12') # Must be 'chr' format

 > str(c.date)
 chr "Fri 02 Sep 2018 - 11:02:12"

 > c.date = as.Date(t, format = '%a %d %b %Y - %X')

 > print(c.date)
 [1] "2018-09-28"

 > str(c.date)
 Date[1:1], format: "2018-09-28"

 > c.date.short = format(x = c.date, format = '%d %b %Y')

 > print(c.date.short)
 [1] "28 Sep 2018"

 > str(c.date.short)
 chr "28 Sep 2018"

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 73

For more granularity with time there is a specifc time() function that creates the vector
of times at which a time series was sampled.

Format types

%a Locale's abbreviated weekday name.

%A Locale's full weekday name.

%b Locale's abbreviated month name.

%B Locale's full month name.

%c Locale's appropriate date and time representation.

%C Century (a year divided by 100 and truncated to an integer) as a decimal
number [00,99].

%d Day of the month as a decimal number [01,31].

%D Date in the format mm/dd/yy.

%e Day of the month as a decimal number [1,31] in a two-digit feld with leading
space character fll.

%h A synonym for %b.

%H Hour (24-hour clock) as a decimal number [00,23].

%I Hour (12-hour clock) as a decimal number [01,12].

%j Day of the year as a decimal number [001,366].

%m Month as a decimal number [01,12].

%M inute as a decimal number [00,59].

%n A <newline>.

%p Locale's equivalent of either AM or PM.

%r 12-hour clock time [01,12] using the AM/PM notation; in the POSIX locale, this
shall be equivalent to %I : %M : %S %p.

%S Seconds as a decimal number [00,60].

%t A <tab>.

%T 24-hour clock time [00,23] in the format HH:MM:SS.

%u Weekday as a decimal number [1,7] (1=Monday).

%U
Week of the year (Sunday as the frst day of the week) as a decimal number
[00,53]. All days in a new year preceding the frst Sunday shall be considered to
be in week 0.

%V

Week of the year (Monday as the frst day of the week) as a decimal number
[01,53]. If the week containing January 1 has four or more days in the new year,
then it shall be considered week 1; otherwise, it shall be the last week of the
previous year, and the next week shall be week 1.

%w Weekday as a decimal number [0,6] (0=Sunday).

%W
Week of the year (Monday as the frst day of the week) as a decimal number
[00,53]. All days in a new year preceding the frst Monday shall be considered to
be in week 0.

%x Locale's appropriate date representation.

%X Locale's appropriate time representation.

%y Year within century [00,99].

%Y Year with century as a decimal number.

%Z Timezone name, or no characters if no timezone is determinable.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

74 Programming & Data Analysis with ‘R’

10.21 lapply()
Another function from the apply() functions.

The list apply lapply() function operates like apply () with similar output. The lapply()
function can operate on other objects like dataframes and lists. It returns a list of the
same length as X, each element of which is the result of applying FUN to the
corresponding element of X.

• lapply(): returns a vector or array or list of values obtained by applying a
function to margins of an array or matrix.

• apply(X, FUN, ...)
• X: an array, including a matrix.
• FUN: the function.

This example shows the mean() function applied to the elements of the vector at
position three of the list.

 > l = list("Orange", "Green", c(43,13,61), TRUE, 42.18, 218.2)
 (l,"[", , 3)

 > str(l)
 List of 6
 $: chr "Orange"
 $: chr "Green"
 $: num [1:3] 43 13 61
 $: logi TRUE
 $: num 42.2
 $: num 218

 > lapply(l[3],mean)
 [[1]]
 [1] 39

 > df = data.frame(employee_id = c (1:5),
 employee_name = c("Áine","Dónal","Siobhán","Sinéad","Donnacha"),
 salary = c(623.3,515.2,611.0,729.0,843.25),
 start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-
 11", "2015-03-27")),
 stringsAsFactors = FALSE
)

 > df
 employee_id employee_name salary start_date
 1 1 Áine 623.30 2012-01-01
 2 2 Dónal 515.20 2013-09-23
 3 3 Siobhán 611.00 2014-11-15
 4 4 Sinéad 729.00 2014-05-11
 5 5 Donnacha 843.25 2015-03-27

 > lapply(df[3],sum)
 $salary
 [1] 3321.75

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 75

10.22 User-defned Functions
One of the great strengths of any programming language is the ability to add functions,
R is no diferent. A function should be considered if there is any block of code that is
being repeated in a script. Instead put the block of code in a function, feed the function
values and return results.

 # Defining function above main block of code
 new_function_name = function(arg1, arg2, ...){
 statements
 return(object)
 }

 # Call function from main block of code
 new_function_name(arg1, arg2, ...)

The following script demonstrates how a user-defned function works. Create the
my_function_demo.R fle, make it executable and run it. The steps breakdown:

1. The existing set of objects in R are cleared.
2. Five vector objects are created and the last four are added to a dataframe.
3. The user-defned function is defned.
4. The main program follows:

• A loop of four sends the v vector plus the each vector from the dataframe
in turn as a list to the user-defned function.

• The function processes and returns the linear model to where it was
called from.

• This response is assigned to the object model<loop #>. In this way four
models are defned.

• The model<loop #> names are extracted from the list of objects.
• A loop through these models and their summary is output to standard

out.

 $ cat << EOM >> my_function_demo.R
 #!/usr/bin/Rscript

 # Clear objects from R
 rm(list = ls())

 # Define objects
 v = 1:8
 v1 = c(51,19,43,74,45,26,83,42)
 v2 = c(101,111,112,123,141,152,193,141)
 v3 = c(214,233,234,226,237,248,269,276)
 v4 = c(322,354,385,377,381,314,425,416)
 df = data.frame(v1,v2,v3,v4)

 # Function 'realmod'
 realmod = function(arg1, arg2){
 x = as.numeric(unlist(arg1));
 y = as.numeric(unlist(arg2));
 return(lm(y ~ x))
 }

 # Main program (calling the realmod function)
 for (x in 1:4){
 assign(paste0('model',x), realmod(v,df[x]));
 }

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

76 Programming & Data Analysis with ‘R’

 # Get list objects
 obj_list = ls()
 mod_list = grep ('model', obj_list)

 # Loop through models and output to stdout
 for (x in mod_list){
 cat(sprintf('%s',obj_list[x]),'\n');
 cat(strrep("=",6), "\n");
 print(summary(get(obj_list[x])))
 }

 # End script
 quit(status = 0)

 EOM

 $ chmod +x my_function_demo.R

 $./my_function_demo.R
 model1
 ======

 Call:
 lm(formula = y ~ x)

 Residuals:
 Min 1Q Median 3Q Max
 -25.036 -15.839 -2.821 14.670 29.857

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 38.393 17.764 2.161 0.0739 .
 x 2.107 3.518 0.599 0.5711

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 22.8 on 6 degrees of freedom
 Multiple R-squared: 0.05643, Adjusted R-squared: -0.1008
 F-statistic: 0.3588 on 1 and 6 DF, p-value: 0.5711

 model2
 ======

 Call:
 lm(formula = y ~ x)

 Residuals:
 Min 1Q Median 3Q Max
 -27.750 -6.607 1.321 2.107 34.107

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 89.893 14.384 6.250 0.000778 ***
 x 9.857 2.848 3.461 0.013459 *

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 18.46 on 6 degrees of freedom
 Multiple R-squared: 0.6662, Adjusted R-squared: 0.6106
 F-statistic: 11.98 on 1 and 6 DF, p-value: 0.01346

 model3
 ======

 Call:
 lm(formula = y ~ x)

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 77

 Residuals:
 Min 1Q Median 3Q Max
 -12.155 -6.801 1.726 6.319 10.726

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 206.393 6.989 29.531 1e-07 ***
 x 7.940 1.384 5.737 0.00122 **

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 8.97 on 6 degrees of freedom
 Multiple R-squared: 0.8458, Adjusted R-squared: 0.8201
 F-statistic: 32.91 on 1 and 6 DF, p-value: 0.001218

 model4
 ======

 Call:
 lm(formula = y ~ x)

 Residuals:
 Min 1Q Median 3Q Max
 -72.107 -0.714 8.107 14.964 29.321

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 328.679 27.290 12.044 1.99e-05 ***
 x 9.571 5.404 1.771 0.127

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 35.02 on 6 degrees of freedom
 Multiple R-squared: 0.3433, Adjusted R-squared: 0.2339
 F-statistic: 3.137 on 1 and 6 DF, p-value: 0.1269

10.23 Recap exercises

10.23.1 Exercise: Data-frames 2

1. Import the bird_egg.csv data and call the data frame df.egg.
2. Explore the data frame and check structure - change year, fail_fledge and

clutch to factors, & individual to character.
3. Create new column in df.egg called constant consisting of a column of 1s.
4. Create a new data frame (by indexing) consisting of individual, clutch, age &

egg and call it df.sub1.
5. Create a new data.frame (called df.sub2) which consists of all data from frst

clutches for birds less than three years old.
6. Create a new data.frame (called df.sub3) which contains all data for which there

are no missing values...
• HINT: complete.cases().

7. Calculate the mean distance to food for failed versus fedged nests. Do this for
all data.frames (df.sub1, 2 & 3)....

• HINT: check help(mean) if having problems.
8. Create a new column (dist.cat) that is a three-level distance category based on

the dist_food column. Where <100 is near, 100-200 is mid, and >200 is far.
• HINT: ifelse(... , ... , ifelse(... , ... , ...)).

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

http://www.obriain.com/training/R/datasets/bird_egg.csv

78 Programming & Data Analysis with ‘R’

9. Create df.sub4 which contains all records without missing values in order of bird
age (youngest to oldest)

• HINT: df.sub3[order(),].
10.Rename the individual column to id & rename the dist_food column to

distance.food.
11.Save the new data.frames as .csv fles in your working directory folder (e.g.

df.sub1.csv etc).

Answer:

 ##### // Read in the file //

 > setwd('~/datasets/birds_egg')

 > df.egg = read.csv('bird_egg.csv')

 ##### // Explore the data frame //

 > summary(df.egg)
 individual year clutch age eggs
 rm/bg : 21 Min. : 97.0 Min. :1.000 Min. : 1.000 Min. :1.000
 bm/bw : 20 1st Qu.:102.0 1st Qu.:1.000 1st Qu.: 1.000 1st Qu.:4.000
 m/ro : 19 Median :105.0 Median :1.000 Median : 2.000 Median :4.000
 bb/m : 17 Mean :104.7 Mean :1.396 Mean : 2.667 Mean :4.032
 bb/rm : 16 3rd Qu.:107.0 3rd Qu.:2.000 3rd Qu.: 4.000 3rd Qu.:5.000
 g/m : 15 Max. :109.0 Max. :3.000 Max. :10.000 Max. :6.000
 (Other):722 NA's :1 NA's :5
 dist_food fail_fledge
 Min. : 8.00 Min. :0.0000
 1st Qu.: 10.00 1st Qu.:0.0000
 Median : 70.00 Median :1.0000
 Mean : 90.69 Mean :0.6679
 3rd Qu.:135.00 3rd Qu.:1.0000
 Max. :434.00 Max. :1.0000
 NA's :481 NA's :2

 > str(df.egg)
 'data.frame': 830 obs. of 7 variables:
 $ individual : Factor w/ 252 levels "","/gm","/hm",..: 162 214 152 11 204 130 234
 238 55 214 ...
 $ year : int 101 97 107 108 106 103 97 97 100 98 ...
 $ clutch : int 3 3 3 3 3 3 3 3 3 3 ...
 $ age : int 2 1 2 7 2 2 4 1 2 2 ...
 $ eggs : int 4 3 4 3 3 4 3 3 2 3 ...
 $ dist_food : int 149 63 NA NA NA 164 18 191 112 12 ...
 $ fail_fledge: int 1 0 0 0 1 0 0 0 0 0 ...

 > names(df.egg)
 [1] "individual" "year" "clutch" "age" "eggs"
 [6] "dist_food" "fail_fledge"

 > head(df.egg)
 individual year clutch age eggs dist_food fail_fledge
 1 rm/bg 101 3 2 4 149 1
 2 wm/rb 97 3 1 3 63 0
 3 rb/bkm 107 3 2 4 NA 0
 4 bbk/bkm 108 3 7 3 NA 0
 5 wbk/ym 106 3 2 3 NA 1
 6 o/ym 103 3 2 4 164 0

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 79

 ##### // Change year, fail_fledge and clutch to factors //

 > str(df.egg)
 'data.frame': 830 obs. of 8 variables:
 $ individual : Factor w/ 252 levels "","/gm","/hm",..: 162 214 152 11 204 130 234
 238 55 214 ...
 $ year : int 101 97 107 108 106 103 97 97 100 98 ...
 $ clutch : int 3 3 3 3 3 3 3 3 3 3 ...
 $ age : int 2 1 2 7 2 2 4 1 2 2 ...
 $ eggs : int 4 3 4 3 3 4 3 3 2 3 ...
 $ dist_food : int 149 63 NA NA NA 164 18 191 112 12 ...
 $ fail_fledge: int 1 0 0 0 1 0 0 0 0 0 ...

 > df.egg[, 'year'] = as.factor(df.egg[, 'year'])

 > str(df.egg$year)
 Factor w/ 13 levels "97","98","99",..: 5 1 11 12 10 7 1 1 4 2 ...

 > df.egg[, 'fail_fledge'] = as.factor(df.egg[, 'fail_fledge'])

 > str(df.egg$fail_fledge)
 Factor w/ 2 levels "0","1": 2 1 1 1 2 1 1 1 1 1 ...

 ##### // Change individual to character //

 > df.egg[, 'individual'] = as.character(df.egg[, 'individual'])

 > str(df.egg$individual)
 chr [1:830] "rm/bg" "wm/rb" "rb/bkm" "bbk/bkm" "wbk/ym" "o/ym" "yg/m" ...

 ##### // Create new column in df.egg called ‘constant’ made of 1s //

 > df.egg$constant = 1

 > head(df.egg)
 individual year clutch age eggs dist_food fail_fledge constant
 1 rm/bg 101 3 2 4 149 1 1
 2 wm/rb 97 3 1 3 63 0 1
 3 rb/bkm 107 3 2 4 NA 0 1
 4 bbk/bkm 108 3 7 3 NA 0 1
 5 wbk/ym 106 3 2 3 NA 1 1
 6 o/ym 103 3 2 4 164 0 1

 ##### // Create a new data frame df.sub1 with individual, clutch, age & eggs //

 > names(df.egg)
 [1] "individual" "year" "clutch" "age" "eggs"
 [6] "dist_food" "fail_fledge" "constant"

 > df.sub1 = df.egg[, c(1,3,4,5)]

 > head(df.sub1)
 individual clutch age eggs
 1 rm/bg 3 2 4
 2 wm/rb 3 1 3
 3 rb/bkm 3 2 4
 4 bbk/bkm 3 7 3
 5 wbk/ym 3 2 3
 6 o/ym 3 2 4

 ##### // df.sub2 to consists of all data for birds < 3 //

 > df.sub2 = df.egg[df.egg$age < 3,]

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

80 Programming & Data Analysis with ‘R’

 > head(df.sub2)
 individual year clutch age eggs dist_food fail_fledge constant
 1 rm/bg 101 3 2 4 149 1 1
 2 wm/rb 97 3 1 3 63 0 1
 3 rb/bkm 107 3 2 4 NA 0 1
 5 wbk/ym 106 3 2 3 NA 1 1
 6 o/ym 103 3 2 4 164 0 1
 8 ym/b 97 3 1 3 191 0 1

 ##### // df.sub3 to contain all data with no missing values //

 > df.sub3 = df.egg[complete.cases(df.egg),]

 > head(df.sub3)
 individual year clutch age eggs dist_food fail_fledge constant
 1 rm/bg 101 3 2 4 149 1 1
 2 wm/rb 97 3 1 3 63 0 1
 6 o/ym 103 3 2 4 164 0 1
 7 yg/m 97 3 4 3 18 0 1
 8 ym/b 97 3 1 3 191 0 1
 9 bw/m 100 3 2 2 112 0 1

 ##### // Calculate the mean distance to food for failed versus fledged nests //

 Note: cannot do df.dub1 as it doesn't have a 'fail_fledge' column.

 > mean(df.sub2[df.sub2$fail_fledge == 0 & complete.cases(df.sub2$dist_food),6])
 [1] 118.2319

 > mean(df.sub2[df.sub2$fail_fledge == 1 & complete.cases(df.sub2$dist_food),6])
 [1] 93.60135

 > mean(df.sub3[df.sub3$fail_fledge == 0 & complete.cases(df.sub3$dist_food),6])
 [1] 96.70642

 > mean(df.sub3[df.sub3$fail_fledge == 1 & complete.cases(df.sub3$dist_food),6])
 [1] 87.9625

 ##### // 3-level distance category based on the ‘dist_food’ column //

 > df.egg$dist.cat = ifelse(
 (df.egg$dist_food < 100),
 print ('near'),
 ifelse(
 (df.egg$dist_food > 100 & df.egg$dist_food < 200),
 print ('mid'),
 ifelse(
 (df.egg$dist_food > 200),
 print ('far'),
 "NA"
)
)
)
 [1] "near"
 [1] "mid"
 [1] "far"

 > head(df.egg)
 individual year clutch age eggs dist_food fail_fledge constant dist.cat
 1 rm/bg 101 3 2 4 149 1 1 mid
 2 wm/rb 97 3 1 3 63 0 1 near
 3 rb/bkm 107 3 2 4 NA 0 1 <NA>
 4 bbk/bkm 108 3 7 3 NA 0 1 <NA>
 5 wbk/ym 106 3 2 3 NA 1 1 <NA>
 6 o/ym 103 3 2 4 164 0 1 mid

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 81

 ##### // df.sub4 contains all records without missing values in order of bird age //

 > temp = df.egg[complete.cases(df.egg),]

 > df.sub4 = temp[order(temp$age),]

 > head(df.sub4)
 individual year clutch age eggs dist_food fail_fledge constant dist.cat
 2 wm/rb 97 3 1 3 63 0 1 near
 8 ym/b 97 3 1 3 191 0 1 mid
 15 m/ro 99 3 1 4 127 1 1 mid
 27 bg/m 100 2 1 4 135 0 1 mid
 28 rm/bg 100 2 1 4 150 0 1 mid
 31 wm/rb 97 2 1 4 32 0 1 near

 ##### // rename ‘individual’ --> ‘id’, ‘dist_food’ --> ‘distance.food’ //

 > names(df.egg)
 [1] "individual" "year" "clutch" "age" "eggs"
 [6] "dist_food" "fail_fledge" "constant" "dist.cat"

 > names(df.egg)[1] = "id"

 > names(df.egg)[6] = "distance.food"

 > names(df.egg)
 [1] "id" "year" "clutch" "age"
 [5] "eggs" "distance.food" "fail_fledge" "constant"
 [9] "dist.cat"

 > write.csv(df.sub1, file = "df.sub1.csv")

 > write.csv(df.sub2, file = "df.sub2.csv")

 > write.csv(df.sub3, file = "df.sub3.csv")

 > write.csv(df.sub4, file = "df.sub4.csv")

10.23.2 Exercise: Data-frames 3

1. Create a new folder that contains the owl_data.csv data fle.
2. Set your working directory to the new folder.
3. Import the owl_data.csv data and call the data frame owl.
4. Explore the data frame and check structure [e.g. by using summary(), str(),

names(), head()].
5. Create a column of 1’s and 0’s called sex10 where male=0 & female=1 (from

the sex column).
6. Change the sex10 column to a factor

• HINT: as.factor().
7. Subset the data.frame to only include data from broods with fve chicks.
8. Add 2 columns to the owl data.frame.

• food.category: where food is a 2-category variable low (food less than
25) & high (food greater than or equal to 25).

• begging.3: where begging is a 3-category variable 1 (between 0-10), 2
(from 10-20) and 3 (above 20).

• HINT: you can nest ifelse functions within ifelse functions.
9. Save the new data.frame as a .csv fle called owl_2.csv.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

http://www.obriain.com/training/R/datasets/owl_data.csv
http://www.obriain.com/training/R/datasets/owl_data.csv

82 Programming & Data Analysis with ‘R’

 ##### // Inport the owl.csv file //

 > setwd('~/datasets/owl_data')

 > owl = read.csv('owl_data.csv')

 ##### // Explore the data frame //

 > summary(owl)
 nest sex food begging brood
 Oleyes : 52 Female:245 Min. :21.71 Min. : 0.00 Min. :1.000
 Moutet : 41 Male :354 1st Qu.:23.11 1st Qu.: 0.00 1st Qu.:4.000
 Etrabloz : 34 Median :24.38 Median : 5.00 Median :4.000
 Yvonnand : 34 Mean :24.76 Mean : 6.72 Mean :4.392
 Champmartin: 30 3rd Qu.:26.25 3rd Qu.:11.00 3rd Qu.:5.000
 Lucens : 29 Max. :29.25 Max. :32.00 Max. :7.000
 (Other) :379

 > str(owl)
 'data.frame': 599 obs. of 5 variables:
 $ nest : Factor w/ 27 levels "AutavauxTV","Bochet",..: 1 1 1 1 1 1 1 1 1 1 ...
 $ sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 1 2 1 ...
 $ food : num 22.2 22.4 22.5 22.6 22.6 ...
 $ begging: int 4 0 2 2 2 2 18 4 18 0 ...
 $ brood : int 5 5 5 5 5 5 5 5 5 5 ...

 > names(owl)
 [1] "nest" "sex" "food" "begging" "brood"

 > head(owl)
 nest sex food begging brood
 1 AutavauxTV Male 22.25 4 5
 2 AutavauxTV Male 22.38 0 5
 3 AutavauxTV Male 22.53 2 5
 4 AutavauxTV Male 22.56 2 5
 5 AutavauxTV Male 22.61 2 5
 6 AutavauxTV Male 22.65 2 5

 ##### // Create the 'sex10' column //

 > owl$sex10 = ifelse(owl$sex == 'Male', 0, 1)

 > head(owl)
 nest sex food begging brood sex10
 1 AutavauxTV Male 22.25 4 5 0
 2 AutavauxTV Male 22.38 0 5 0
 3 AutavauxTV Male 22.53 2 5 0
 4 AutavauxTV Male 22.56 2 5 0
 5 AutavauxTV Male 22.61 2 5 0
 6 AutavauxTV Male 22.65 2 5 0

 ##### // Change the 'sex10' column values to factors //

 > owl[, 'sex10'] = as.factor(owl[, 'sex10'])

 > str(owl$sex10)
 Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 2 1 2 ...

 ##### // Subset to only include data from broods with 5 chicks //

 > owl.5chicks = owl[owl$brood == 5,]

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 83

 ##### // add 'food.category' and 'begging.3' columns //

 > owl$food.category = ifelse(owl$food < 25, 'low', 'high')

 > head(owl)
 nest sex food begging brood sex10 food.category
 1 AutavauxTV Male 22.25 4 5 0 low
 2 AutavauxTV Male 22.38 0 5 0 low
 3 AutavauxTV Male 22.53 2 5 0 low
 4 AutavauxTV Male 22.56 2 5 0 low
 5 AutavauxTV Male 22.61 2 5 0 low
 6 AutavauxTV Male 22.65 2 5 0 low

 > owl$begging.3 = ifelse(
 (owl$begging < 10),
 print ('1'),
 ifelse(
 (owl$begging > 9 & owl$begging < 20),
 print ('2'),
 ifelse(
 (owl$begging > 19),
 print ('3'),
 "NA"
)
)
)
 [1] "1"
 [1] "2"
 [1] "3"

 > head(owl)
 nest sex food begging brood sex10 food.category begging.3
 1 AutavauxTV Male 22.25 4 5 0 low 1
 2 AutavauxTV Male 22.38 0 5 0 low 1
 3 AutavauxTV Male 22.53 2 5 0 low 1
 4 AutavauxTV Male 22.56 2 5 0 low 1
 5 AutavauxTV Male 22.61 2 5 0 low 1
 6 AutavauxTV Male 22.65 2 5 0 low 1

 ##### // Dave the data //

 > write.csv(owl, file = "owl_2.csv")

10.23.3 Exercise: Data-frames 4

1. Create a new folder that contains the individual.csv data fle.
2. Set your working directory to the new folder.
3. Import the individual.csv data and call the data frame ind.
4. Explore the data frame and check structure. [e.g. by using summary(), str(),

names(), head()].
5. Create a new column (id) where the individual names from the frst column are

replaced by numbers starting at one and increasing sequentially. Note that
individuals are repeated throughout the dataset so you’ll have to make sure
each number always matches the same individual.

• HINT: str() & as.numeric().
6. Save the new data.frame as a .csv fle called ind_2.csv.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

http://www.obriain.com/training/R/datasets/individual.csv
http://www.obriain.com/training/R/datasets/individual.csv

84 Programming & Data Analysis with ‘R’

 ##### // Inport the individual.csv file //

 > setwd('~/datasets/individual')

 > ind = read.csv('individual.csv')

 ##### // Explore the data frame and check structure.

 > summary(ind)
 individual trait
 g :9 Min. :2.000
 n :6 1st Qu.:4.000
 ee :5 Median :6.000
 h :5 Mean :5.513
 a :3 3rd Qu.:7.000
 q :3 Max. :9.000
 (Other):8

 > str(ind)
 'data.frame': 39 obs. of 2 variables:
 $ individual: Factor w/ 10 levels "a","ee","g","h",..: 1 1 3 3 3 3 3 3 3 4 ...
 $ trait : int 3 4 2 6 5 4 6 7 5 4 ...

 > names(ind)
 [1] "individual" "trait"

 > head(ind)
 individual trait
 1 a 3
 2 a 4
 3 g 2
 4 g 6
 5 g 5
 6 g 4

 ##### // Create column 'id' //

 > ind$id = as.numeric(ind[,1])

 > ind
 individual trait id
 1 a 3 1
 2 a 4 1
 3 g 2 3
 4 g 6 3
 5 g 5 3
 6 g 4 3
 7 g 6 3
 8 g 7 3
 9 g 5 3
 10 h 4 4
 11 n 5 6
 12 a 7 1
 13 n 2 6
 14 n 6 6
 15 n 7 6
 16 n 2 6
 17 n 9 6
 18 ee 8 2
 19 ee 6 2
 20 ee 7 2
 21 ee 8 2
 22 s 9 8
 23 h 6 4
 24 h 4 4

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 85

 25 g 3 3
 26 g 6 3
 27 ee 7 2
 28 h 8 4
 29 h 6 4
 30 q 5 7
 31 q 4 7
 32 q 3 7
 33 t 6 9
 34 t 7 9
 35 y 8 10
 36 y 8 10
 37 t 5 9
 38 m 4 5
 39 m 3 5

 ##### //Save the new as 'ind_2.csv' //

 > write.csv(ind, file = "ind_2.csv")

10.23.4 Exercise: Data-frames 5

1. Create a new folder that contains the RIKZ.csv data fle.
2. Set your working directory to the new folder.
3. Import the data (rikz), explore and check structure.
4. reorder the rows of the entire data.frame by increasing values of NAP

• HINT: rikz[order()].
5. create a data.frame called rikz2 that only contains data from beaches one to

four for the frst week of data collection.
6. what is the mean chalk value for Beach 5 and the mean grain size for beach

eight?.
7. save the new data.frame as .csv fle called rikz_2.csv.

 ##### // Inport the RIKZ.csv dataset file //

 > setwd('~/datasets/RIKZ')

 > rikz = read.csv('RIKZ.csv')

 ##### // Import the data (rikz), explore and check structure //

 > summary(rikz)
 Sample Richness Week angle1 angle2
 Min. : 1 Min. : 0.000 Min. :1.000 Min. : 6.00 Min. :21.00
 1st Qu.:12 1st Qu.: 3.000 1st Qu.:2.000 1st Qu.: 22.00 1st Qu.:32.00
 Median :23 Median : 4.000 Median :2.000 Median : 32.00 Median :42.00
 Mean :23 Mean : 5.689 Mean :2.333 Mean : 50.31 Mean :57.78
 3rd Qu.:34 3rd Qu.: 8.000 3rd Qu.:3.000 3rd Qu.: 55.00 3rd Qu.:89.00
 Max. :45 Max. :22.000 Max. :4.000 Max. :312.00 Max. :96.00
 exposure salinity temperature NAP
 Min. : 8.00 Min. :26.4 Min. :15.80 Min. :-1.3360
 1st Qu.:10.00 1st Qu.:27.1 1st Qu.:17.50 1st Qu.:-0.3750
 Median :10.00 Median :27.9 Median :18.77 Median : 0.1670
 Mean :10.22 Mean :28.1 Mean :18.77 Mean : 0.3477
 3rd Qu.:11.00 3rd Qu.:29.4 3rd Qu.:20.00 3rd Qu.: 1.1170
 Max. :11.00 Max. :29.9 Max. :20.80 Max. : 2.2550
 penetrability grainsize humus chalk
 Min. :151.8 Min. :186.0 Min. :0.00000 Min. : 0.850
 1st Qu.:237.1 1st Qu.:222.5 1st Qu.:0.00000 1st Qu.: 2.200
 Median :256.1 Median :266.0 Median :0.05000 Median : 4.750
 Mean :289.4 Mean :272.5 Mean :0.05028 Mean : 7.961

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

http://www.obriain.com/training/R/datasets/RIKZ.csv

86 Programming & Data Analysis with ‘R’

 3rd Qu.:272.9 3rd Qu.:316.5 3rd Qu.:0.10000 3rd Qu.: 9.150
 Max. :624.0 Max. :405.5 Max. :0.30000 Max. :45.750
 sorting1 Beach
 Min. : 53.08 Min. :1
 1st Qu.: 72.75 1st Qu.:3
 Median : 89.03 Median :5
 Mean : 97.82 Mean :5
 3rd Qu.:115.44 3rd Qu.:7
 Max. :248.60 Max. :9

 > str(rikz)
 'data.frame': 45 obs. of 15 variables:
 $ Sample : int 1 2 3 4 5 6 7 8 9 10 ...
 $ Richness : int 11 10 13 11 10 8 9 8 19 17 ...
 $ Week : int 1 1 1 1 1 1 1 1 1 1 ...
 $ angle1 : int 32 62 65 55 23 129 126 52 26 143 ...
 $ angle2 : int 96 96 96 96 96 89 89 89 89 89 ...
 $ exposure : int 10 10 10 10 10 8 8 8 8 8 ...
 $ salinity : num 29.4 29.4 29.4 29.4 29.4 29.6 29.6 29.6 29.6 29.6 ...
 $ temperature : num 17.5 17.5 17.5 17.5 17.5 20.8 20.8 20.8 20.8 20.8 ...
 $ NAP : num 0.045 -1.036 -1.336 0.616 -0.684 ...
 $ penetrability: num 254 227 237 249 252 ...
 $ grainsize : num 222 200 194 221 202 ...
 $ humus : num 0.05 0.3 0.1 0.15 0.05 0.1 0.1 0.1 0.15 0 ...
 $ chalk : num 2.05 2.5 3.45 1.6 2.45 2.5 1.85 1.7 2.3 2.6 ...
 $ sorting1 : num 69.8 59 59.2 67.8 57.8 ...
 $ Beach : int 1 1 1 1 1 2 2 2 2 2 ...

 > names(rikz)
 [1] "Sample" "Richness" "Week" "angle1"
 [5] "angle2" "exposure" "salinity" "temperature"
 [9] "NAP" "penetrability" "grainsize" "humus"
 [13] "chalk" "sorting1" "Beach"

 > head(rikz)
 Sample Richness Week angle1 angle2 exposure salinity temperature NAP
 1 1 11 1 32 96 10 29.4 17.5 0.045
 2 2 10 1 62 96 10 29.4 17.5 -1.036
 3 3 13 1 65 96 10 29.4 17.5 -1.336
 4 4 11 1 55 96 10 29.4 17.5 0.616
 5 5 10 1 23 96 10 29.4 17.5 -0.684
 6 6 8 1 129 89 8 29.6 20.8 1.190
 penetrability grainsize humus chalk sorting1 Beach
 1 253.9 222.5 0.05 2.05 69.830 1
 2 226.9 200.0 0.30 2.50 59.000 1
 3 237.1 194.5 0.10 3.45 59.220 1
 4 248.6 221.0 0.15 1.60 67.750 1
 5 251.9 202.0 0.05 2.45 57.760 1
 6 250.1 192.5 0.10 2.50 53.075 2

 ##### // Reorder the rows of the entire data.frame by increasing values of NAP.
HINT: rikz[order()] //

 > rikz = rikz[order(rikz$NAP),]

 > head(rikz)
 Sample Richness Week angle1 angle2 exposure salinity temperature NAP
 3 3 13 1 65 96 10 29.4 17.5 -1.336
 10 10 17 1 143 89 8 29.6 20.8 -1.334
 2 2 10 1 62 96 10 29.4 17.5 -1.036
 38 38 7 3 55 32 10 26.4 20.0 -1.005
 11 11 6 2 41 42 11 27.9 15.8 -0.976
 29 29 6 3 48 36 11 27.1 17.4 -0.893
 penetrability grainsize humus chalk sorting1 Beach
 3 237.1 194.5 0.10 3.45 59.220 1
 10 257.9 197.0 0.00 2.60 59.575 2

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 87

 2 226.9 200.0 0.30 2.50 59.000 1
 38 382.8 355.0 0.00 16.70 133.085 8
 11 268.4 330.5 0.05 3.40 101.330 3
 29 179.3 336.0 0.05 15.50 151.665 6

 ##### // Create 'rikz2' that only contains Beaches 1-4 from week 1 //

 > names(rikz)
 [1] "Sample" "Richness" "Week" "angle1"
 [5] "angle2" "exposure" "salinity" "temperature"
 [9] "NAP" "penetrability" "grainsize" "humus"
 [13] "chalk" "sorting1" "Beach"

 > rikz2 = rikz[rikz$Week == 1,][rikz[rikz$Week == 1,]$Beach > 0
 & rikz[rikz$Week == 1,]$Beach < 5,]

 > head(rikz2)
 Sample Richness Week angle1 angle2 exposure salinity temperature NAP
 3 3 13 1 65 96 10 29.4 17.5 -1.336
 10 10 17 1 143 89 8 29.6 20.8 -1.334
 2 2 10 1 62 96 10 29.4 17.5 -1.036
 5 5 10 1 23 96 10 29.4 17.5 -0.684
 1 1 11 1 32 96 10 29.4 17.5 0.045
 9 9 19 1 26 89 8 29.6 20.8 0.061
 penetrability grainsize humus chalk sorting1 Beach
 3 237.1 194.5 0.10 3.45 59.220 1
 10 257.9 197.0 0.00 2.60 59.575 2
 2 226.9 200.0 0.30 2.50 59.000 1
 5 251.9 202.0 0.05 2.45 57.760 1
 1 253.9 222.5 0.05 2.05 69.830 1
 9 248.9 205.5 0.15 2.30 58.810 2

 ##### // The mean chalk value for Beach 5 //

 > rikz[rikz$Beach == 5,][rikz[rikz$Beach == 5,]$chalk,]
 Sample Richness Week angle1 angle2 exposure salinity temperature NAP
 22 22 22 4 22 21 10 29.9 19.8 -0.503
 25 25 6 4 18 21 10 29.9 19.8 0.054
 25.1 25 6 4 18 21 10 29.9 19.8 0.054
 penetrability grainsize humus chalk sorting1 Beach
 22 256.1 265.0 0.0 1.6 89.035 5
 25 231.1 254.5 0.1 2.1 86.170 5
 25.1 231.1 254.5 0.1 2.1 86.170 5

 ##### // The mean grain size for Beach 8 //

 > mean(rikz[rikz$Beach == 8,][,'grainsize'])
 [1] 327.9

 ##### // Save the new data.frame 'rikz_2.csv' //

 > write.csv(rikz, file = "rikz_2.csv")

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

88 Programming & Data Analysis with ‘R’

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 89

11. Linear Models, predictions and probability distributions

11.1 Some terms
• Mean - is a set of values is the quantity commonly called the mean or the

average. To get the mean sum the number of of values and divide the result by
the number of values.

lm(y ~ 1) will return the mean value.

• Regression - A method for ftting a curve or a straight line through a set of
points using some goodness-of-ft criterion. The most common type of
regression is linear regression.

• Linear Regression - A regression that is linear in the unknown parameters
used in the ft. It is defned by the intercept point (α) of the best ft line where
the x axis is equal to zero plus the slope (β) of the best ft line times the value of
x. The intercept point (α) is the mean.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 5: The mean

90 Programming & Data Analysis with ‘R’

• y = α + β * x

• Multiple Regression - A regression giving conditional expectation values of a
given variable in terms of two or more other variables.

• Null Hypothesis (H0) - A H0 is a statistical hypothesis that is tested for

possible rejection under the assumption that it is true (usually that observations
are the result of chance). It means that there is no expectation of change.

• Alternative Hypothesis (H1) - is the hypothesis used in hypothesis testing that

is contrary to the H0. It is usually taken to be that the observations are the result

of a real efect (with some amount of chance variation superposed). In the p-test
values less than 0.05 indicate a signifcance and indicate contrary to the H0.

• Estimate - Mean expectation of the mean, the Null Hypothesis (H0).

• Standard Error - This gives one standard deviation (δ) of the certainty of the
accuracy of the Estimate (mean). 2δ gives the certainty of accuracy for 95% of
values. mean = 6.7195 and 2δ = 0.55, therefore there is a 95% chance of values
giving a mean in the range of 6.17 - 7.27.

• t-value - The coefcient divided by its standard error. The standard error is an
estimate of the standard deviation of the coefcient, the amount it varies across
cases. It can be thought of as a measure of the precision with which the
regression coefcient is measured. This value says how many standard
deviations from zero. For example:

the Estimate / Std. Error = t-value ==> 6.7195 / 0.2726 = 24.64967

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 6: Linear regression model

Programming & Data Analysis with ‘R’ 91

• p-value - Shows the expectation that the Estimate is accurate for values. A
small p-value (typically ≤ 0.05) indicates strong evidence against the H0, so you

reject the H0. A large p-value (> 0.05) indicates weak evidence against the H0,

so you shouldn't reject H0. The p-value of 0.05 means that there is less than a

5% chance of the results arising due to random chance.

• t-test - Refers to any statistical hypothesis test in which the test statistic follows
a t-distribution under the H0. A t-test is most commonly applied when the test

statistic would follow a normal distribution if the value of a scaling term in the
test statistic were known. Here is an example with the built-in mtcars dataset. It
shows a t-test to compare vehicles in rows 1 to 10 with vehicles in rows 11 to 20
for column 1 which is miles per gallon (mpg). The H0 is that there there is little to

no statistical diference between the groups in terms of mpg. As the p-value
from the test is 0.8744, it concurs with the H0 and sets the expectation that there

is indeed little statistical expectation of a signifcant diference.

 > data(mtcars)

 > head(mtcars[1])
 mpg
 Mazda RX4 21.0
 Mazda RX4 Wag 21.0
 Datsun 710 22.8
 Hornet 4 Drive 21.4
 Hornet Sportabout 18.7
 Valiant 18.1

 > a = t.test(mtcars[1:10,1],mtcars[11:20,1])

 > print (a)

 Welch Two Sample t-test

 data: mtcars[1:10, 1] and mtcars[11:20, 1]
 t = 0.16185, df = 10.892, p-value = 0.8744
 alternative hypothesis: true difference in means is not equal to 0
 95 percent confidence interval:
 -6.055477 7.015477
 sample estimates:
 mean of x mean of y
 20.37 19.89

 > str(a)
 List of 9
 $ statistic : Named num 0.162
 ..- attr(*, "names")= chr "t"
 $ parameter : Named num 10.9
 ..- attr(*, "names")= chr "df"
 $ p.value : num 0.874
 $ conf.int : atomic [1:2] -6.06 7.02
 ..- attr(*, "conf.level")= num 0.95
 $ estimate : Named num [1:2] 20.4 19.9
 ..- attr(*, "names")= chr [1:2] "mean of x" "mean of y"
 $ null.value : Named num 0
 ..- attr(*, "names")= chr "difference in means"
 $ alternative: chr "two.sided"
 $ method : chr "Welch Two Sample t-test"
 $ data.name : chr "mtcars[1:10, 1] and mtcars[11:20, 1]"
 - attr(*, "class")= chr "htest"

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

92 Programming & Data Analysis with ‘R’

 > unclass(a)
 $statistic
 t
 0.1618478

 $parameter
 df
 10.89198

 $p.value
 [1] 0.8743889

 $conf.int
 [1] -6.055477 7.015477
 attr(,"conf.level")
 [1] 0.95

 $estimate
 mean of x mean of y
 20.37 19.89

 $null.value
 difference in means
 0

 $alternative
 [1] "two.sided"

 $method
 [1] "Welch Two Sample t-test"

 $data.name
 [1] "mtcars[1:10, 1] and mtcars[11:20, 1]"

 # Extract the mean of y
 > a$estimate[2]
 mean of y
 19.89

 # Extract the 'p' value

 > a$p.value
 [1] 0.8743889

• Dependent Variable (DV) - The variable being tested and measured in an
experiment.

• Independent Variable (IV) - The variable that is changed or controlled in a
scientifc experiment to test the efects on the DV.

• Analysis of Variance (ANOVA) - is a collection of statistical models and their
associated estimation procedures used to analyse the diferences among group
means in a sample.

y = α + βx1 + βx2

• Multivarite ANOVA (MANOVA) - is a procedure for comparing multivariate
sample means. As a multivariate procedure, it is used when there are two or
more dependent variables, and is typically followed by signifcance tests
involving individual dependent variables separately.

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 93

Analysis of covariance (ANCOVA) - is a general linear model which blends
ANOVA and regression. ANCOVA evaluates whether the means of a DV are
equal across levels of a categorical IV.

• Generalised Linear Model (GLM) is a fexible generalisation of ordinary linear
regression that allows for response variables that have error distribution models
other than a normal distribution.

• Generalised Linear Mixed Model (GLMM) - is an extension to GLM in which the
linear predictor contains random efects in addition to the usual fxed efects.
They also inherit from GLMs the idea of extending linear mixed models to non-
normal data.

11.2 Demonstration
Working with the owl_data.csv fle once more to demonstrate linear models, predictions
and probability distributions.

 > setwd('~/datasets/owl_data_2')

 > owl = read.csv('owl_data.csv')

 ##### // Inspect the data //

 > str(owl)
 'data.frame': 599 obs. of 5 variables:
 $ nest : Factor w/ 27 levels "AutavauxTV","Bochet",..: 1 1 1 1 1 1 1 1 1 1 ...
 $ sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 1 2 1 ...
 $ food : num 22.2 22.4 22.5 22.6 22.6 ...
 $ begging: int 4 0 2 2 2 2 18 4 18 0 ...
 $ brood : int 5 5 5 5 5 5 5 5 5 5 ...

 > summary(owl)
 nest sex food begging brood
 Oleyes : 52 Female:245 Min. :21.71 Min. : 0.00 Min. :1.000
 Moutet : 41 Male :354 1st Qu.:23.11 1st Qu.: 0.00 1st Qu.:4.000
 Etrabloz : 34 Median :24.38 Median : 5.00 Median :4.000
 Yvonnand : 34 Mean :24.76 Mean : 6.72 Mean :4.392
 Champmartin: 30 3rd Qu.:26.25 3rd Qu.:11.00 3rd Qu.:5.000
 Lucens : 29 Max. :29.25 Max. :32.00 Max. :7.000
 (Other) :379

 > head(owl)
 nest sex food begging brood
 1 AutavauxTV Male 22.25 4 5
 2 AutavauxTV Male 22.38 0 5
 3 AutavauxTV Male 22.53 2 5
 4 AutavauxTV Male 22.56 2 5
 5 AutavauxTV Male 22.61 2 5
 6 AutavauxTV Male 22.65 2 5

The purpose of this is to explain the begging rate of the chicks in the nest.

Response variable = y = begging

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

http://www.obriain.com/training/R/datasets/owl_data.csv

94 Programming & Data Analysis with ‘R’

lm(): is used to ft linear models. It can be used to carry out regression, single stratum
analysis of variance and analysis of covariance.

11.3 The mean()
Question 1: What is the begging rate of the sampled population?

 mean(owl$begging)
 [1] 6.719533

 > lm(begging ~ 1, data = owl)

 Call:
 lm(formula = begging ~ 1, data = owl)

 Coefficients:
 (Intercept)
 6.72

lm(y ~ 1) returns the mean value (α), the intercept where βx = 1.

Now the statistics are given in the summary() of the data. Estimate, Standard error, t-
value and p-value.

 > mod = lm(begging ~ 1, data = owl)

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 7: Mean begging

Programming & Data Analysis with ‘R’ 95

 > summary(mod)

 Call:
 lm(formula = begging ~ 1, data = owl)

 Residuals:
 Min 1Q Median 3Q Max
 -6.72 -6.72 -1.72 4.28 25.28

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 6.7195 0.2726 24.65 <2e-16 ***

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 6.671 on 598 degrees of freedom

11.4 The t-test
Question 2: What is the begging rate of males versus females?

In this case R coded females = 0 and males = 1. So therefore females indicate the
intercept (* 0) and males the diference from the intercept. This is indicated by sexMale
in the second line of the output, males have been labelled internally as = 1, therefore
sexFemale must be = 0. So the intercept of females 6.0122 plus the diference 1.1968
gives the intercept value for males = 7.209.

In R the linear modelling is carried out using the lm() function. The DV is placed to the
left side of the tilde and the IV or IVs are placed to the right. As such the DV are the y
axis and the IVs are on the x axis of associated graphs.

lm(DV ~ IV(s), data=<dataset>)

 > lm(begging ~ sex, data = owl)

 Call:
 lm(formula = begging ~ sex, data = owl)

 Coefficients:
 (Intercept) sexMale
 6.012 1.197

 > mod2 = lm(begging ~ sex, data = owl)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

96 Programming & Data Analysis with ‘R’

 > summary(mod2)

 Call:
 lm(formula = begging ~ sex, data = owl)

 Residuals:
 Min 1Q Median 3Q Max
 -7.209 -6.012 -1.209 4.791 24.791

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 6.0122 0.4249 14.151 <2e-16 ***
 sexMale 1.1968 0.5527 2.165 0.0307 *

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 6.65 on 597 degrees of freedom
 Multiple R-squared: 0.007793, Adjusted R-squared: 0.006131
 F-statistic: 4.689 on 1 and 597 DF, p-value: 0.03075

lm(y ~ x1 + x2 + ...)

y = α + βx1 + βx2 + βxn

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 8: Mean begging rate based on sex

Programming & Data Analysis with ‘R’ 97

11.5 ANOVA, the Analysis of Variance
Comparing the means of greater than two groups.

Question 3: How does the begging rate change as nest size increases?

Important: First change owl$brood to a factor.

 > str(owl$brood)
 int [1:599] 5 5 5 5 5 5 5 5 5 5 ...

 > owl$brood = as.factor(owl$brood)

 > str(owl$brood)
 Factor w/ 7 levels "1","2","3","4",..: 5 5 5 5 5 5 5 5 5 5 ...

This is an ANOVA. the lm(begging ~ brood, data = owl) doesn't give much information
but the summary(lm(begging ~ brood, data = owl)) gives more useful information with
brood1 indicating the intercept and all other broods are indicated as the diference from
brood1.

Can't be certain that the birds didn't beg at a negative rate. Obviously this isn't possible.

t-value and p-values demonstrate the certainty of diference between each brood and
brood1. However there is a high level of uncertainty of H0.

For example brood7 p-value is less than 0.05 and therefore indicates that it doesn't
have the same begging rate as brood1, i.e. reject the H0.

This test is only comparing each brood relative to brood1. To review this further post-
hoc tests which will carry out statistics between each brood group.

 > lm(begging ~ brood, data = owl)

 Call:
 lm(formula = begging ~ brood, data = owl)

 Coefficients:
 (Intercept) brood2 brood3 brood4 brood5 brood6
 4.0000 -0.5263 0.4237 3.0905 2.6404 4.5385
 brood7
 7.5000

 > mod3 = lm(begging ~ brood, data = owl)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

98 Programming & Data Analysis with ‘R’

 > summary(mod3)

 Call:
 lm(formula = begging ~ brood, data = owl)

 Residuals:
 Min 1Q Median 3Q Max
 -11.500 -5.090 -1.500 4.743 25.360

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 4.0000 3.2477 1.232 0.2186
 brood2 -0.5263 3.4144 -0.154 0.8775
 brood3 0.4237 3.3560 0.126 0.8996
 brood4 3.0905 3.2785 0.943 0.3462
 brood5 2.6404 3.2761 0.806 0.4206
 brood6 4.5385 3.4886 1.301 0.1938
 brood7 7.5000 3.4334 2.184 0.0293 *

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 6.495 on 592 degrees of freedom
 Multiple R-squared: 0.06141, Adjusted R-squared: 0.0519
 F-statistic: 6.456 on 6 and 592 DF, p-value: 1.317e-06

lm(y ~ x1 + x2 + ...)

y = α + βx1 + βx2 + βxn

anova() - Compute analysis of variance (or deviance) tables for one or more ftted
model objects.

aov() - Fit an analysis of variance model by a call to lm for each stratum.

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 9: ANOVA

Programming & Data Analysis with ‘R’ 99

tukey() - Create a set of confdence intervals on the diferences between the means of
the levels of a factor with the specifed family-wise probability of coverage. The intervals
are based on the Studentised range statistic, Tukey Honest Significant Diference
method.

 > post = aov(mod3)

 > TukeyHSD(post)
 Tukey multiple comparisons of means
 95% family-wise confidence level

 Fit: aov(formula = mod3)

 $brood
 diff lwr upr p adj
 2-1 -0.5263158 -10.6277301 9.575099 0.9999989
 3-1 0.4237288 -9.5049990 10.352457 0.9999997
 4-1 3.0904762 -6.6089619 12.789914 0.9654242
 5-1 2.6403509 -7.0519281 12.332630 0.9843572
 6-1 4.5384615 -5.7825744 14.859498 0.8514925
 7-1 7.5000000 -2.6578473 17.657847 0.3055212
 3-2 0.9500446 -3.0470773 4.947167 0.9923990
 4-2 3.6167920 0.2291015 7.004482 0.0276208
 5-2 3.1666667 -0.2004714 6.533805 0.0809328
 6-2 5.0647773 0.1738541 9.955701 0.0368230
 7-2 8.0263158 3.4898846 12.562747 0.0000048
 4-3 2.6667474 -0.1647738 5.498269 0.0800918
 5-3 2.2166221 -0.5902774 5.023521 0.2284480
 6-3 4.1147327 -0.4087831 8.638249 0.1022524
 7-3 7.0762712 2.9386060 11.213936 0.0000116
 5-4 -0.4501253 -2.2880991 1.387848 0.9910760
 6-4 1.4479853 -2.5472191 5.443190 0.9360239
 7-4 4.4095238 0.8570970 7.961951 0.0048667
 6-5 1.8981107 -2.0796816 5.875903 0.7955024
 7-5 4.8596491 1.3268162 8.392482 0.0010456
 7-6 2.9615385 -2.0448994 7.967976 0.5824679

11.6 Regression
Compare the means of a continuous variable.

Question 4: How does begging rate change as food increases?

This demonstrates that the expectation line intercepts the y axis at a 26.9 begging rate.
This may or may not have an actual biological meaning as the samples taken may not
actually have gone down to zero food. The same can be said of the line crossing the x
axis. However it is useful mathematically. The slope of negative (-0.81) means the
expectation is that begging reduces by 0.81 for every 1 unit of food added. The very low
p-value means that there is a very high confdence that more food decreases the
begging rate.

 > lm(begging ~ food, data = owl)

 Call:
 lm(formula = begging ~ food, data = owl)

 Coefficients:
 (Intercept) food
 26.9738 -0.8181

 > mod4 = lm(begging ~ food, data = owl)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

100 Programming & Data Analysis with ‘R’

 > summary(mod4)

 Call:
 lm(formula = begging ~ food, data = owl)

 Residuals:
 Min 1Q Median 3Q Max
 -9.155 -5.253 -1.298 4.454 25.544

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 26.9738 3.4431 7.834 2.17e-14 ***
 food -0.8181 0.1387 -5.900 6.09e-09 ***

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 6.49 on 597 degrees of freedom
 Multiple R-squared: 0.0551, Adjusted R-squared: 0.05351
 F-statistic: 34.81 on 1 and 597 DF, p-value: 6.092e-09

lm(y ~ x1 + x2 + ...)

y = α + βx1 + βx2 + βxn

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 10: Regression

Programming & Data Analysis with ‘R’ 101

11.7 Multiple regression
Compare the means of a continuous variable plus a group variable.

Question 5a: How does begging rate change as food and sex increase?

 > lm(begging ~ food + sex, data = owl)

 Call:
 lm(formula = begging ~ food + sex, data = owl)

 Coefficients:
 (Intercept) food sexMale
 26.4475 -0.8276 1.2892

 > mod5a = lm(begging ~ food + sex, data = owl)

 > summary(mod5a)

 Call:
 lm(formula = begging ~ food + sex, data = owl)

 Residuals:
 Min 1Q Median 3Q Max
 -9.711 -5.244 -1.597 4.700 25.020

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 26.4475 3.4365 7.696 5.85e-14 ***
 food -0.8276 0.1382 -5.990 3.63e-09 ***
 sexMale 1.2892 0.5374 2.399 0.0168 *

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 6.464 on 596 degrees of freedom
 Multiple R-squared: 0.06413, Adjusted R-squared: 0.06099
 F-statistic: 20.42 on 2 and 596 DF, p-value: 2.642e-09

lm(y ~ x1 + x2 + ...)

y = α + βx1 + βx2 + βxn

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

102 Programming & Data Analysis with ‘R’

Question 5b: How does begging rate change as food and brood increase?

The data is a multidimensional model with both food and brood. In this case brood is
now continuous data showing brood size (as.numeric(owl$brood)).

 > owl$brood = as.numeric(owl$brood)

 > lm(begging ~ food + brood, data = owl)

 Call:
 lm(formula = begging ~ food + brood, data = owl)

 Coefficients:
 (Intercept) food brood
 21.0447 -0.7877 1.1786

 > mod5b = lm(begging ~ food + brood, data = owl)

 > summary(mod5b)

 Call:
 lm(formula = begging ~ food + brood, data = owl)

 Residuals:
 Min 1Q Median 3Q Max
 -10.981 -5.250 -1.300 4.514 24.818

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 21.0447 3.5561 5.918 5.50e-09 ***
 food -0.7877 0.1358 -5.799 1.08e-08 ***
 brood 1.1786 0.2258 5.220 2.47e-07 ***

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 6.352 on 596 degrees of freedom
 Multiple R-squared: 0.09641, Adjusted R-squared: 0.09338
 F-statistic: 31.79 on 2 and 596 DF, p-value: 7.583e-14

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 11: Multiple Regression

Programming & Data Analysis with ‘R’ 103

lm(y ~ x1 + x2 + ...)

y = α + βx1 + βx2 + βxn

11.8 ANCOVA, the Analysis of Covariance
Comparing the means of multiple variables and allow for interactions between them.

Question 5c: How does the begging rate change as food & sex increase, while
allowing for the food efect of each sex to difer?

The interaction of food & sex: an ANCOVA. If the efect of both food and sex change
relative to each other then the interaction of both must be accounted for. This allows the
relationship between males and females to change. As the p-value is quite large there
is no reason to reject the H0. In other words there is little evidence that there is a

divergence between the begging rate of males and females given greater levels of food.

 > lm(begging ~ food + sex + food*sex, data = owl)

 Call:
 lm(formula = begging ~ food + sex + food * sex, data = owl)

 Coefficients:
 (Intercept) food sexMale food:sexMale
 23.6642 -0.7149 6.0699 -0.1933

 > mod5c = lm(begging ~ food + sex + food*sex, data = owl)

 > summart(mod5c)
 Error in summart(mod5c) : could not find function "summart"

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 12: Another multiple regression

104 Programming & Data Analysis with ‘R’

 > summary(mod5c)

 Call:
 lm(formula = begging ~ food + sex + food * sex, data = owl)

 Residuals:
 Min 1Q Median 3Q Max
 -9.955 -5.241 -1.461 4.515 25.042

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 23.6642 5.3035 4.462 9.71e-06 ***
 food -0.7149 0.2141 -3.338 0.000895 ***
 sexMale 6.0699 6.9569 0.873 0.383286
 food:sexMale -0.1933 0.2804 -0.689 0.490936

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 6.467 on 595 degrees of freedom
 Multiple R-squared: 0.06488, Adjusted R-squared: 0.06016
 F-statistic: 13.76 on 3 and 595 DF, p-value: 1.094e-08

lm(y ~ x1 + x2 + x1 * x2)

y = α + βx1 + βx2 + βx1 * βx2

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 13: ANCOVA

Programming & Data Analysis with ‘R’ 105

11.9 Linear model summary

Function R function Result

y = α + βx lm(begging ~ 1) The mean of y

y = α + βx lm(begging ~ sex) t-test

y = α + βx1 + βx2 lm(begging ~ brood size) ANOVA

y = α + βx lm(begging ~ food) Simple regression

y = α + βx1 + βx2 lm(begging ~ food + sex) Multiple regression

y = α + βx1 + βx2 lm(begging ~ food + brood) Multiple regression

y = α + βx1 + βx2 lm(begging ~ food + sex + food*sex) ANCOVA

All linear models are about calculating the mean of a particular group or groups. The
statistics simply tell you how confdent you are that the means difer between groups.

11.10 Exercise: Linear models
1. Import the RIKZ.csv data into an object called rikz (inspect the data etc).
2. What is the average species richness across all samples?
3. How does species richness vary with sand grainsize?

• HINT: simple regression.
4. How does species richness vary at the diferent beaches?

• HINT: ANOVA.
5. How does species richness vary with sampling time (week 1&2 versus week

3&4)?
• HINT: t-test (will need to create a 2-category variable from week).

6. How does species richness vary with NAP and beach angle; is there any
evidence of an interaction efect between them?

• HINT: multiple regression.

Question 1: Import the 'RIKZ.csv' data into an object called rikz.

 > setwd('~/datasets/RIKZ_2')

 > rikz = read.csv('RIKZ.csv')

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

http://www.obriain.com/training/R/datasets/RIKZ.csv

106 Programming & Data Analysis with ‘R’

Explore the data frame.

 > summary(rikz)
 Sample Richness Week angle1 angle2
 Min. : 1 Min. : 0.000 Min. :1.000 Min. : 6.00 Min. :21.00
 1st Qu.:12 1st Qu.: 3.000 1st Qu.:2.000 1st Qu.: 22.00 1st Qu.:32.00
 Median :23 Median : 4.000 Median :2.000 Median : 32.00 Median :42.00
 Mean :23 Mean : 5.689 Mean :2.333 Mean : 50.31 Mean :57.78
 3rd Qu.:34 3rd Qu.: 8.000 3rd Qu.:3.000 3rd Qu.: 55.00 3rd Qu.:89.00
 Max. :45 Max. :22.000 Max. :4.000 Max. :312.00 Max. :96.00
 exposure salinity temperature NAP
 Min. : 8.00 Min. :26.4 Min. :15.80 Min. :-1.3360
 1st Qu.:10.00 1st Qu.:27.1 1st Qu.:17.50 1st Qu.:-0.3750
 Median :10.00 Median :27.9 Median :18.77 Median : 0.1670
 Mean :10.22 Mean :28.1 Mean :18.77 Mean : 0.3477
 3rd Qu.:11.00 3rd Qu.:29.4 3rd Qu.:20.00 3rd Qu.: 1.1170
 Max. :11.00 Max. :29.9 Max. :20.80 Max. : 2.2550
 penetrability grainsize humus chalk
 Min. :151.8 Min. :186.0 Min. :0.00000 Min. : 0.850
 1st Qu.:237.1 1st Qu.:222.5 1st Qu.:0.00000 1st Qu.: 2.200
 Median :256.1 Median :266.0 Median :0.05000 Median : 4.750
 Mean :289.4 Mean :272.5 Mean :0.05028 Mean : 7.961
 3rd Qu.:272.9 3rd Qu.:316.5 3rd Qu.:0.10000 3rd Qu.: 9.150
 Max. :624.0 Max. :405.5 Max. :0.30000 Max. :45.750
 sorting1 Beach
 Min. : 53.08 Min. :1
 1st Qu.: 72.75 1st Qu.:3
 Median : 89.03 Median :5
 Mean : 97.82 Mean :5
 3rd Qu.:115.44 3rd Qu.:7
 Max. :248.60 Max. :9

 > str(rikz)
 'data.frame': 45 obs. of 15 variables:
 $ Sample : int 1 2 3 4 5 6 7 8 9 10 ...
 $ Richness : int 11 10 13 11 10 8 9 8 19 17 ...
 $ Week : int 1 1 1 1 1 1 1 1 1 1 ...
 $ angle1 : int 32 62 65 55 23 129 126 52 26 143 ...
 $ angle2 : int 96 96 96 96 96 89 89 89 89 89 ...
 $ exposure : int 10 10 10 10 10 8 8 8 8 8 ...
 $ salinity : num 29.4 29.4 29.4 29.4 29.4 29.6 29.6 29.6 29.6 29.6 ...
 $ temperature : num 17.5 17.5 17.5 17.5 17.5 20.8 20.8 20.8 20.8 20.8 ...
 $ NAP : num 0.045 -1.036 -1.336 0.616 -0.684 ...
 $ penetrability: num 254 227 237 249 252 ...
 $ grainsize : num 222 200 194 221 202 ...
 $ humus : num 0.05 0.3 0.1 0.15 0.05 0.1 0.1 0.1 0.15 0 ...
 $ chalk : num 2.05 2.5 3.45 1.6 2.45 2.5 1.85 1.7 2.3 2.6 ...
 $ sorting1 : num 69.8 59 59.2 67.8 57.8 ...
 $ Beach : int 1 1 1 1 1 2 2 2 2 2 ...

 > names(rikz)
 [1] "Sample" "Richness" "Week" "angle1"
 [5] "angle2" "exposure" "salinity" "temperature"
 [9] "NAP" "penetrability" "grainsize" "humus"
 [13] "chalk" "sorting1" "Beach"

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 107

 > head(rikz)
 Sample Richness Week angle1 angle2 exposure salinity temperature NAP
 1 1 11 1 32 96 10 29.4 17.5 0.045
 2 2 10 1 62 96 10 29.4 17.5 -1.036
 3 3 13 1 65 96 10 29.4 17.5 -1.336
 4 4 11 1 55 96 10 29.4 17.5 0.616
 5 5 10 1 23 96 10 29.4 17.5 -0.684
 6 6 8 1 129 89 8 29.6 20.8 1.190
 penetrability grainsize humus chalk sorting1 Beach
 1 253.9 222.5 0.05 2.05 69.830 1
 2 226.9 200.0 0.30 2.50 59.000 1
 3 237.1 194.5 0.10 3.45 59.220 1
 4 248.6 221.0 0.15 1.60 67.750 1
 5 251.9 202.0 0.05 2.45 57.760 1
 6 250.1 192.5 0.10 2.50 53.075 2

Question 2: What is the average species richness across all samples?

 Mean : 5.689 # Extracted from the summary(rikz)

 # Alternatively extract from the intercept (α) where y = 0

 > lm (Richness ~ 1, rikz)

 Call:
 lm(formula = Richness ~ 1, data = rikz)

 Coefficients:
 (Intercept)
 5.689

Question 3: How does species richness vary with sand grainsize?

 > rikz 1 = lm(Richness ~ grainsize, data=rikz)

 > summary(rikz1)

 Call:
 lm(formula = Richness ~ grainsize, data = rikz)

 Residuals:
 Min 1Q Median 3Q Max
 -8.4833 -3.6733 -0.2693 2.1872 16.0701

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 14.49529 3.40326 4.259 0.000109 ***
 grainsize -0.03232 0.01222 -2.644 0.011386 *

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 4.694 on 43 degrees of freedom
 Multiple R-squared: 0.1399, Adjusted R-squared: 0.1198
 F-statistic: 6.991 on 1 and 43 DF, p-value: 0.01139

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

108 Programming & Data Analysis with ‘R’

Answer, Very little as the slope of the line is almost zero with a p-value < 0.05 means
that the model demonstrates a high probability of H0.

Question 4: How does species richness vary at the diferent beaches?

 > rikz$Beach = as.factor(rikz$Beach)

 > rikz2 = lm(Richness ~ Beach, data=rikz)

 > summary(rikz2)

 Call:
 lm(formula = Richness ~ Beach, data = rikz)

 Residuals:
 Min 1Q Median 3Q Max
 -7.4 -1.4 -0.2 1.0 14.6

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 11.000 1.761 6.245 3.27e-07 ***
 Beach2 1.200 2.491 0.482 0.63289
 Beach3 -7.600 2.491 -3.051 0.00426 **
 Beach4 -8.600 2.491 -3.453 0.00144 **
 Beach5 -3.600 2.491 -1.445 0.15703
 Beach6 -7.000 2.491 -2.810 0.00796 **
 Beach7 -8.800 2.491 -3.533 0.00115 **
 Beach8 -7.000 2.491 -2.810 0.00796 **
 Beach9 -6.400 2.491 -2.569 0.01448 *

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 3.938 on 36 degrees of freedom
 Multiple R-squared: 0.4931, Adjusted R-squared: 0.3805
 F-statistic: 4.378 on 8 and 36 DF, p-value: 0.0009179

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 14: Richness/grainsize

Programming & Data Analysis with ‘R’ 109

As the p-value is less than 0.05 there is a high level of confdence that at least one of
the pairs of beaches vary from each other in species richness. Carrying out ft an
analysis of variance model test (aov()) test to investigate further.

 > rikz3 = aov(rikz2)

 > summary (rikz3)
 Df Sum Sq Mean Sq F value Pr(>F)
 Beach 8 543.2 67.91 4.378 0.000918 ***
 Residuals 36 558.4 15.51

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The resulting p-value of 0.000918 says that with a high level of probability that there is a
variance between beaches. Compute the Tukey Honest Significant Diferences
between the beaches.

 > rikz4 = TukeyHSD(rikz3)

 > print(rikz4)
 Tukey multiple comparisons of means
 95% family-wise confidence level

 Fit: aov(formula = rikz2)

 $Beach
 diff lwr upr p adj
 2-1 1.200000e+00 -7.01263 9.41262978 0.9999026
 3-1 -7.600000e+00 -15.81263 0.61262978 0.0882779
 4-1 -8.600000e+00 -16.81263 -0.38737022 0.0342201
 5-1 -3.600000e+00 -11.81263 4.61262978 0.8723088
 6-1 -7.000000e+00 -15.21263 1.21262978 0.1475693
 7-1 -8.800000e+00 -17.01263 -0.58737022 0.0279853
 8-1 -7.000000e+00 -15.21263 1.21262978 0.1475693
 9-1 -6.400000e+00 -14.61263 1.81262978 0.2347476
 3-2 -8.800000e+00 -17.01263 -0.58737022 0.0279853
 4-2 -9.800000e+00 -18.01263 -1.58737022 0.0097691
 5-2 -4.800000e+00 -13.01263 3.41262978 0.6005725
 6-2 -8.200000e+00 -16.41263 0.01262978 0.0506097
 7-2 -1.000000e+01 -18.21263 -1.78737022 0.0078509
 8-2 -8.200000e+00 -16.41263 0.01262978 0.0506097
 9-2 -7.600000e+00 -15.81263 0.61262978 0.0882779
 4-3 -1.000000e+00 -9.21263 7.21262978 0.9999757
 5-3 4.000000e+00 -4.21263 12.21262978 0.7953899
 6-3 6.000000e-01 -7.61263 8.81262978 0.9999995
 7-3 -1.200000e+00 -9.41263 7.01262978 0.9999026
 8-3 6.000000e-01 -7.61263 8.81262978 0.9999995
 9-3 1.200000e+00 -7.01263 9.41262978 0.9999026
 5-4 5.000000e+00 -3.21263 13.21262978 0.5484761
 6-4 1.600000e+00 -6.61263 9.81262978 0.9991816
 7-4 -2.000000e-01 -8.41263 8.01262978 1.0000000
 8-4 1.600000e+00 -6.61263 9.81262978 0.9991816
 9-4 2.200000e+00 -6.01263 10.41262978 0.9925552
 6-5 -3.400000e+00 -11.61263 4.81262978 0.9034383
 7-5 -5.200000e+00 -13.41263 3.01262978 0.4968860
 8-5 -3.400000e+00 -11.61263 4.81262978 0.9034383
 9-5 -2.800000e+00 -11.01263 5.41262978 0.9664876
 7-6 -1.800000e+00 -10.01263 6.41262978 0.9981055
 8-6 8.881784e-16 -8.21263 8.21262978 1.0000000
 9-6 6.000000e-01 -7.61263 8.81262978 0.9999995
 8-7 1.800000e+00 -6.41263 10.01262978 0.9981055
 9-7 2.400000e+00 -5.81263 10.61262978 0.9869248
 9-8 6.000000e-01 -7.61263 8.81262978 0.9999995

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

110 Programming & Data Analysis with ‘R’

Looking over the p-values there are a number of beach pairs that how a value lower
than 0.05, in other words there is a diference in species diversity for these beach pairs.
Convert the list to a dataframe and pull out that data.

 > df.rikz4 = data.frame(unclass(rikz4))

 > names(df.rikz4)
 [1] "Beach.diff" "Beach.lwr" "Beach.upr" "Beach.p.adj"

 > df.rikz4[df.rikz4$Beach.p.adj < 0.05,]
 Beach.diff Beach.lwr Beach.upr Beach.p.adj
 4-1 -8.6 -16.81263 -0.3873702 0.034220065
 7-1 -8.8 -17.01263 -0.5873702 0.027985274
 3-2 -8.8 -17.01263 -0.5873702 0.027985274
 4-2 -9.8 -18.01263 -1.5873702 0.009769101
 7-2 -10.0 -18.21263 -1.7873702 0.007850934

There is a signifcant diference in species diversity between beaches:

• beach 4 and beach 1
• beach 7 and beach 1
• beach 3 and beach 2
• beach 4 and beach 2
• beach 7 and beach 2

Question 5: How does species richness vary with sampling time?

Week 1&2 versus week 3&4 t-test (need to create a 2-category variable from 'week'').

 > rikz5 = rikz[rikz$Week < 5,]

 > rikz5$fortnight = ifelse(rikz5$Week < 3, 1, 2)

 > rikz5$fortnight = as.factor(rikz5$fortnight)

 > rikz6 = lm(Richness ~ fortnight, data=rikz5)

 > summary(rikz6)

 Call:
 lm(formula = Richness ~ fortnight, data = rikz5)

 Residuals:
 Min 1Q Median 3Q Max
 -5.24 -3.24 -1.00 2.00 17.00

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 6.240 1.004 6.212 1.79e-07 ***
 fortnight2 -1.240 1.507 -0.823 0.415

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 5.022 on 43 degrees of freedom
 Multiple R-squared: 0.01551, Adjusted R-squared: -0.007387
 F-statistic: 0.6774 on 1 and 43 DF, p-value: 0.415

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 111

The p-value of 1.79e-07 being the intercept does not mean anything signifcant. The fact
that 0.415 is greater that 0.05 indicates that there is little likelihood that there is any
diference between species richness fortnight1 and fortnight2.

Question 6: How does species richness vary with NAP and beach angle?

 > rikz7 = lm(Richness ~ NAP + angle1, data=rikz)

 > summary(rikz7)

 Call:
 lm(formula = Richness ~ NAP + angle1, data = rikz)

 Residuals:
 Min 1Q Median 3Q Max
 -4.9890 -3.0331 -0.7893 1.5244 14.0487

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 6.376753 0.903875 7.055 1.21e-08 ***
 NAP -2.862905 0.636315 -4.499 5.31e-05 ***
 angle1 0.006113 0.012145 0.503 0.617

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 4.197 on 42 degrees of freedom
 Multiple R-squared: 0.3286, Adjusted R-squared: 0.2966
 F-statistic: 10.28 on 2 and 42 DF, p-value: 0.0002327

 > rikz8 = lm(Richness ~ NAP + angle2, data=rikz)

 > summary(rikz8)

 Call:
 lm(formula = Richness ~ NAP + angle2, data = rikz)

 Residuals:
 Min 1Q Median 3Q Max
 -5.4611 -2.4319 -0.8159 1.4524 15.7456

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 3.88471 1.34484 2.889 0.00609 **
 NAP -2.72332 0.60297 -4.517 5.03e-05 ***
 angle2 0.04761 0.02024 2.353 0.02339 *

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 3.956 on 42 degrees of freedom
 Multiple R-squared: 0.4032, Adjusted R-squared: 0.3748
 F-statistic: 14.19 on 2 and 42 DF, p-value: 1.961e-05

The p-value for angle1 is not signifcant however the p-value of 0.02339 for angle2
demonstrates signifcance in the diference in species richness.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

112 Programming & Data Analysis with ‘R’

Question 7: Is there any evidence of an interaction efect between them?

 > rikz9 = lm(Richness ~ NAP + angle1 + NAP * angle1, data=rikz)

 > summary(rikz9)

 Call:
 lm(formula = Richness ~ NAP + angle1 + NAP * angle1, data = rikz)

 Residuals:
 Min 1Q Median 3Q Max
 -5.3839 -2.7098 -0.8666 1.6629 14.6538

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 5.68941 1.13138 5.029 1.02e-05 ***
 NAP -2.13058 0.96476 -2.208 0.0329 *
 angle1 0.01947 0.01795 1.084 0.2846
 NAP:angle1 -0.01418 0.01404 -1.010 0.3186

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 4.196 on 41 degrees of freedom
 Multiple R-squared: 0.3449, Adjusted R-squared: 0.2969
 F-statistic: 7.195 on 3 and 41 DF, p-value: 0.0005466

 > rikz10 = lm(Richness ~ NAP + angle2 + NAP * angle2, data=rikz)

 > summary(rikz10)

 Call:
 lm(formula = Richness ~ NAP + angle2 + NAP * angle2, data = rikz)

 Residuals:
 Min 1Q Median 3Q Max
 -5.608 -2.265 -1.046 1.453 16.257

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 3.56005 1.41559 2.515 0.0159 *
 NAP -1.81118 1.33015 -1.362 0.1807
 angle2 0.05251 0.02131 2.465 0.0180 *
 NAP:angle2 -0.01603 0.02081 -0.770 0.4455

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 3.976 on 41 degrees of freedom
 Multiple R-squared: 0.4117, Adjusted R-squared: 0.3687
 F-statistic: 9.565 on 3 and 41 DF, p-value: 6.513e-05

There does appear to be a signifcant impact on species richness when the interaction
efect between angle2 and NAP is considered. However there does not appear to be a
signifcant impact when the interaction efect between angle1 and NAP is considered.

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 113

11.11 Model Predictions
The predict() function returns predictions from the results of various model ftting
functions. Most prediction methods which are similar to those for linear models have an
argument newdata specifying the frst place to look for explanatory variables to be used
for prediction.

Input to the predict() function must be in the format of a dataframe.

 > owl = read.csv('owl_data.csv')

 > owl.lm = lm(begging~sex+food+sex*food, data = owl)

 > newdata = data.frame(sex=rep('Male',20),food=1:20)

 > newdata.2 = data.frame(sex=rep('Female',20),food=1:20)

 > owl.lm_male = predict(owl.lm, newdata)

 > owl.lm_female = predict(owl.lm, newdata.2)

 > owl.lm_male
 1 2 3 4 5 6 7 8
 28.82591 27.91776 27.00962 26.10147 25.19332 24.28518 23.37703 22.46889
 9 10 11 12 13 14 15 16
 21.56074 20.65260 19.74445 18.83630 17.92816 17.02001 16.11187 15.20372
 17 18 19 20
 14.29558 13.38743 12.47929 11.57114

 > owl_lm_female
 1 2 3 4 5 6 7 8
 22.94928 22.23438 21.51949 20.80459 20.08970 19.37480 18.65991 17.94501
 9 10 11 12 13 14 15 16
 17.23012 16.51522 15.80033 15.08543 14.37054 13.65564 12.94075 12.22585
 17 18 19 20
 11.51096 10.79606 10.08117 9.36627

 > colours = c("red","blue", "green",
 "yellow", "purple", "Cyan",
 "pink", "brown"
)

 > title = "Histogram of Owl predictions (Male)"

 > title.2 = "Histogram of Owl predictions (Female)"

 > hist(owl.lm_male, col = colours, main = title, ylab = "Begging", xlab = "Food")

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

114 Programming & Data Analysis with ‘R’

 >

hist(owl.lm_female, col = colours, main = title.2, ylab = "Begging", xlab = "Food")

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 15: owl: Predictions (male)

Illustration 16: owl: Predictions (female)

Programming & Data Analysis with ‘R’ 115

12. Distribution models

Thus far the linear modelling assumed that the residuals fell around the line of
regression on a Normal or Gaussian distribution. This form of model is a continuous
function which approximates the exact binomial distribution of events. The Gaussian
distribution shown is normalised so that the sum over all values of x gives a probability
of one.

12.1 Standard Deviation
A simple example.

 > a = c(9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4, 10, 9, 6, 9, 4)
 > a
 [1] 9 2 5 4 12 7 8 11 9 3 7 4 12 5 4 10 9 6 9 4

 > b = mean(a)
 > b
 [1] 7

 > c = a-b
 > c
 [1] 2 -5 -2 -3 5 0 1 4 2 -4 0 -3 5 -2 -3 3 2 -1 2 -3

 > d = c*c
 > d
 [1] 4 25 4 9 25 0 1 16 4 16 0 9 25 4 9 9 4 1 4 9

 > e = mean(d)
 > e
 [1] 8.9

 > f = sqrt(e)
 > f
 [1] 2.983287

So for the set of data (9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4, 10, 9, 6, 9, 4) mean (μ)
= 7 standard deviation δ = 2.983287

12.1.1 Plotting the Standard Deviation

Note for the plot # - type: the type of plot to be drawn where "n" means do not plot the
points

• xlab: the title of the x axis
• ylab: the title of the y axis
• main: the overall title for the plot

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

116 Programming & Data Analysis with ‘R’

• axes: when FALSE it suppresses the axis automatically generated by the high
level plotting function so that we can create custom axis

 # Set the sample mean to 7 and SD to 2.8
 > sample_mean = 7
 > sample_sd = 2.8

 # Fill one SD
 > sd_to_fill = 1
 > lower_bound = sample_mean - sample_sd * sd_to_fill
 > upper_bound = sample_mean + sample_sd * sd_to_fill

 # Generates equally spaced values within 4 SD of mean
 > x = seq(-4, 4, length = 1000) * sample_sd + sample_mean

 # The height of the probability distribution at each point
 > y = dnorm(x, sample_mean, sample_sd)

 # Generate the plot
 > plot(x, y, type="n", xlab = "Samples", ylab = "", main = "Distribution of
 Samples", axes = FALSE)

 # Connect the points with each other to form a curve
 lines(x, y)

 # Returns a vector of boolean values to ensure only x values
 # between bounds are allowed
 > bounds_filter = x >= lower_bound & x <= upper_bound
 > x_within_bounds = x[bounds_filter]
 > y_within_bounds = y[bounds_filter]

 # Bordering the area to be filled
 > x_polygon = c(lower_bound, x_within_bounds, upper_bound)
 > y_polygon = c(0, y_within_bounds, 0)
 > polygon(x_polygon, y_polygon, col = "green")

 # Returns the probability that a normally distributed random number
 # will be less than the given number
 > probability_within_bounds = pnorm(upper_bound, sample_mean, sample_sd) -
 pnorm(lower_bound, sample_mean, sample_sd)

 # Concatenate the various values to display on the curve
 > text = paste("p(", lower_bound, "< height <", upper_bound, ") =",
 signif(probability_within_bounds, digits = 3))

 # Display the text on the plot
 > mtext(text)>

 # Add an axis to the plot
 > sd_axis_bounds = 5>
 > axis_bounds = seq(-sd_axis_bounds * sample_sd + sample_mean, sd_axis_bounds

 * sample_sd + sample_mean, by = sample_sd)
 > axis(side = 1, at = axis_bounds, pos = 0)

By changing the value of the sd_fill from one to two and three the various areas
under the curve for each standard deviation can be seen. There is a simple rule
canned the empirical rule to remember these. 68.27%, 95.45% and 99.73% of
the values lie within one, two and three standard deviations of the mean.

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 117

Another example

Looking at another example in more detail.

To calculate the standard deviation of a set of random numbers:

• Work out the mean (μ).
• For each number, subtract the mean (x - μ).
• Square the result (x - μ)².
• Get the mean of the squared diferences 1/N Σ(x - μ)². This is called the

variance (v).
• Get the square root of that δ = √1/N Σ(x - μ)².

 > data.set = round(runif(100,0,1), 2)

 > data.set
 [1] 0.56 0.13 0.27 0.91 0.08 0.49 0.99 0.67 0.74 0.59 0.92 0.55 0.18 0.44 0.64
 [16] 0.92 0.15 0.96 0.17 0.67 0.74 0.33 0.52 0.59 0.17 0.59 0.95 0.68 0.71 0.51
 [31] 0.73 0.72 0.71 0.57 0.37 0.73 0.57 0.99 0.84 0.06 0.93 0.16 0.23 0.91 0.75
 [46] 0.89 0.67 0.17 0.29 0.62 0.56 0.35 0.03 0.55 0.62 0.84 0.30 0.69 0.30 0.88
 [61] 0.10 0.03 0.98 0.68 0.38 0.35 0.60 0.82 0.51 0.24 0.58 1.00 0.97 0.65 0.04
 [76] 0.93 0.42 0.97 0.03 0.52 0.38 0.83 0.18 0.37 0.10 0.60 0.96 0.96 0.54 0.65
 [91] 0.75 0.56 0.27 0.94 0.25 0.66 0.41 0.34 0.21 0.99

 > mean_ds = mean(data.set)

 > mean_ds
 [1] 0.556

The mean: μ = 0.556

Subtract the Mean from each x to get (x - μ).

 > sub_ds = data.set - mean_ds

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 17: Standard Deviation

118 Programming & Data Analysis with ‘R’

 > sub_ds
 [1] 0.004 -0.426 -0.286 0.354 -0.476 -0.066 0.434 0.114 0.184 0.034
 [11] 0.364 -0.006 -0.376 -0.116 0.084 0.364 -0.406 0.404 -0.386 0.114
 [21] 0.184 -0.226 -0.036 0.034 -0.386 0.034 0.394 0.124 0.154 -0.046
 [31] 0.174 0.164 0.154 0.014 -0.186 0.174 0.014 0.434 0.284 -0.496
 [41] 0.374 -0.396 -0.326 0.354 0.194 0.334 0.114 -0.386 -0.266 0.064
 [51] 0.004 -0.206 -0.526 -0.006 0.064 0.284 -0.256 0.134 -0.256 0.324
 [61] -0.456 -0.526 0.424 0.124 -0.176 -0.206 0.044 0.264 -0.046 -0.316
 [71] 0.024 0.444 0.414 0.094 -0.516 0.374 -0.136 0.414 -0.526 -0.036
 [81] -0.176 0.274 -0.376 -0.186 -0.456 0.044 0.404 0.404 -0.016 0.094
 [91] 0.194 0.004 -0.286 0.384 -0.306 0.104 -0.146 -0.216 -0.346 0.434

Square each result to get (x - μ)².

 > sq_ds = sub_ds * sub_ds

 > sq_ds
 [1] 0.000016 0.181476 0.081796 0.125316 0.226576 0.004356 0.188356 0.012996
 [9] 0.033856 0.001156 0.132496 0.000036 0.141376 0.013456 0.007056 0.132496
 [17] 0.164836 0.163216 0.148996 0.012996 0.033856 0.051076 0.001296 0.001156
 [25] 0.148996 0.001156 0.155236 0.015376 0.023716 0.002116 0.030276 0.026896
 [33] 0.023716 0.000196 0.034596 0.030276 0.000196 0.188356 0.080656 0.246016
 [41] 0.139876 0.156816 0.106276 0.125316 0.037636 0.111556 0.012996 0.148996
 [49] 0.070756 0.004096 0.000016 0.042436 0.276676 0.000036 0.004096 0.080656
 [57] 0.065536 0.017956 0.065536 0.104976 0.207936 0.276676 0.179776 0.015376
 [65] 0.030976 0.042436 0.001936 0.069696 0.002116 0.099856 0.000576 0.197136
 [73] 0.171396 0.008836 0.266256 0.139876 0.018496 0.171396 0.276676 0.001296
 [81] 0.030976 0.075076 0.141376 0.034596 0.207936 0.001936 0.163216 0.163216
 [89] 0.000256 0.008836 0.037636 0.000016 0.081796 0.147456 0.093636 0.010816
 [97] 0.021316 0.046656 0.119716 0.188356

Get the mean of these values 1/N Σ(x - μ)².

 > mean_ds_sd = mean(sq_ds)

 > mean_ds_sd
 [1] 0.081938

Therefore δ = 0.081938.

12.2 Expand Grid - expand.grid()
Create a data-frame from all combinations of the supplied vectors or factors.

 > grid.data = expand.grid(height = seq(60,80,5),
 weight = seq(100, 300, 50),
 sex = c("Male", "Female")
)

 > grid.data
 height weight sex
 1 60 100 Male
 2 65 100 Male
 3 70 100 Male
 4 75 100 Male
 5 80 100 Male
 6 60 150 Male
 7 65 150 Male
 8 70 150 Male
 9 75 150 Male
 10 80 150 Male
 11 60 200 Male
 12 65 200 Male
 13 70 200 Male
 14 75 200 Male

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 119

 15 80 200 Male
 16 60 250 Male
 17 65 250 Male
 18 70 250 Male
 19 75 250 Male
 20 80 250 Male
 21 60 300 Male
 22 65 300 Male
 23 70 300 Male
 24 75 300 Male
 25 80 300 Male
 26 60 100 Female
 27 65 100 Female
 28 70 100 Female
 29 75 100 Female
 30 80 100 Female
 31 60 150 Female
 32 65 150 Female
 33 70 150 Female
 34 75 150 Female
 35 80 150 Female
 36 60 200 Female
 37 65 200 Female
 38 70 200 Female
 39 75 200 Female
 40 80 200 Female
 41 60 250 Female
 42 65 250 Female
 43 70 250 Female
 44 75 250 Female
 45 80 250 Female
 46 60 300 Female
 47 65 300 Female
 48 70 300 Female
 49 75 300 Female
 50 80 300 Female

12.3 Normal or Gaussian distribution
What has been shown is actually a Normal or Gaussian distribution. This is a very
common continuous probability distribution that are often used to represent real-valued
random variables whose distributions are not known.

12.4 Poisson distribution
The Poisson distribution is the probability distribution of independent event occurrences
in an interval. If lambda (λ) is the mean occurrence per interval, then the probability of
having x occurrences within a given interval is:

f(x) = λxe-λ / x! where x = 0,1,2,3,n

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

120 Programming & Data Analysis with ‘R’

Note that the Poisson distribution is for zero and positive values only. This can be useful
if the dataset being operated on cannot have negative values.

For example.

Question: If there are fve birds spotted landing on a pond per minute on average, what
is the probability of eight birds landing on the pond in any minute?

The probability of having eight or less birds landing on the pond in any minute is given
by the ppois() function. This function is the density, distribution function, quantile
function and random generation for the Poisson distribution with parameter lambda (λ).
This is called the lower tail of the function.

 > ppois(8, lambda=5)
 [1] 0.9319064

Secondly it is necessary to calculate the probability of having eight or more birds
landing on the pond in any minute is called the upper tail. Hence the probability of
having seventeen or more cars crossing the bridge in a minute is in the upper tail of the
probability density function.

 > ppois(8, lambda=5, lower=FALSE)
 [1] 0.06809363

So there is a 93% chance of having eight or less birds landing on the pond while there
is a 6.8% chance of having eight or more birds landing on the pond in and minute.

12.4.1 Linear Models based on Poisson Distribution

Returning to an earlier example.

 > setwd('~/datasets/RIKZ_2')

 > rikz = read.csv('RIKZ.csv')

 > rikz10 = lm(Richness ~ NAP + angle2 + NAP * angle2, data=rikz)

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 18: Poisson distribution

Programming & Data Analysis with ‘R’ 121

 > summary(rikz10)

 Call:
 lm(formula = Richness ~ NAP + angle2 + NAP * angle2, data = rikz)

 Residuals:
 Min 1Q Median 3Q Max
 -5.608 -2.265 -1.046 1.453 16.257

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 3.56005 1.41559 2.515 0.0159 *
 NAP -1.81118 1.33015 -1.362 0.1807
 angle2 0.05251 0.02131 2.465 0.0180 *
 NAP:angle2 -0.01603 0.02081 -0.770 0.4455

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 3.976 on 41 degrees of freedom
 Multiple R-squared: 0.4117, Adjusted R-squared: 0.3687
 F-statistic: 9.565 on 3 and 41 DF, p-value: 6.513e-05

Using the Normal Distribution did not show a p-value of much signifcance.

Try running a linear model using the Poisson Distribution. In R to do this it is necessary
to run the Fitting Generalized Linear Models which ofers the family option. to run
models based on other distributions like poisson.

 > rikz11 = glm(Richness ~ NAP + angle2 + NAP * angle2, data=rikz, family=poisson)

 > summary(rikz11)

 Call:
 glm(formula = Richness ~ NAP + angle2 + NAP * angle2, family = poisson,
 data = rikz)

 Deviance Residuals:
 Min 1Q Median 3Q Max
 -2.4543 -1.1122 -0.7233 0.7948 5.0552

 Coefficients:
 Estimate Std. Error z value Pr(>|z|)
 (Intercept) 1.259472 0.157057 8.019 1.06e-15 ***
 NAP -0.743224 0.188056 -3.952 7.75e-05 ***
 angle2 0.008586 0.002176 3.946 7.95e-05 ***
 NAP:angle2 0.003209 0.002523 1.272 0.203

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 (Dispersion parameter for poisson family taken to be 1)

 Null deviance: 179.753 on 44 degrees of freedom
 Residual deviance: 97.026 on 41 degrees of freedom
 AIC: 247.02

 Number of Fisher Scoring iterations: 5

As can be seen the p-values show much more signifcance for this distribution model.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

122 Programming & Data Analysis with ‘R’

12.4.2 Linear Models based on other Distributions

There are many other distribution models. Here is a summary and R ofers the
capability to run tests with each by adjusting the family value.

Continuous Data Data range Link Function

Normal Any value, positive or negative 1

Gamma Positive values only log

Beta Values between zero and one logit

Discrete Data Data range Link Function

Poisson Zero and positive values log

Binomial Zero and positive values logit

 > rikz12 = glm(Richness ~ NAP, data=rikz, family=binomial)
 Error in eval(family$initialize) : y values must be 0 <= y <= 1

In this case //Richness/ would have to be yes/no values.

 > rikz13 = glm(Richness ~ NAP, data=rikz, family=gamma)
 Error in family() : 0 arguments passed to 'gamma' which requires 1

In this case Richness would have to consist of count values.

12.4.3 Link Functions

The link function provides the relationship between the linear predictor and the mean of
the distribution function. There are many commonly used link functions, and their choice
is informed by several considerations. The table above gives the link functions
associated with the various distributions.

12.4.4 Type Response

The type of prediction is required for predict.glm. The default is on the scale of the
linear predictors; the alternative response is on the scale of the response variable. Thus
for a default binomial model the default predictions are of log-odds (probabilities on
logit scale) and type = "response" gives the predicted probabilities. The terms option
returns a matrix giving the ftted values of each term in the model formula on the linear
predictor scale.

The alternative type to response is the type = "terms" option which returns a matrix
giving the ftted values of each term in the model formula on the linear predictor scale.

 > owl = read.csv('owl_data.csv')

 > owl.glm = glm(begging~sex+food+sex*food, family=poisson, data = owl)

 > newdata = data.frame(sex=rep('Male',20),food=1:20)

 > owl.glm_male = predict.glm(owl.glm, newdata, family=poisson)

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 123

 > owl.glm_male
 1 2 3 4 5 6 7 8
 5.155740 5.020808 4.885877 4.750945 4.616013 4.481082 4.346150 4.211218
 9 10 11 12 13 14 15 16
 4.076286 3.941355 3.806423 3.671491 3.536559 3.401628 3.266696 3.131764
 17 18 19 20
 2.996832 2.861901 2.726969 2.592037

 > owl.glm_male = predict.glm(owl.glm, newdata, family=poisson, type='response')

 > owl.glm_male
 1 2 3 4 5 6 7 8
 173.42413 151.53377 132.40650 115.69357 101.09021 88.33015 77.18073 67.43864
 9 10 11 12 13 14 15 16
 58.92623 51.48830 44.98922 39.31048 34.34854 30.01291 26.22455 22.91437
 17 18 19 20
 20.02202 17.49475 15.28648 13.35696

 > owl.glm_male = predict.glm(owl.glm, newdata, family=poisson, type='terms')

 > owl.glm_male
 sex food sex:food
 1 0.1482603 3.0438445 0.093027486
 2 0.1482603 2.9157238 0.086216467
 3 0.1482603 2.7876031 0.079405448
 4 0.1482603 2.6594824 0.072594430
 5 0.1482603 2.5313617 0.065783411
 6 0.1482603 2.4032409 0.058972392
 7 0.1482603 2.2751202 0.052161374
 8 0.1482603 2.1469995 0.045350355
 9 0.1482603 2.0188788 0.038539336
 10 0.1482603 1.8907581 0.031728318
 11 0.1482603 1.7626373 0.024917299
 12 0.1482603 1.6345166 0.018106280
 13 0.1482603 1.5063959 0.011295261
 14 0.1482603 1.3782752 0.004484243
 15 0.1482603 1.2501545 -0.002326776
 16 0.1482603 1.1220338 -0.009137795
 17 0.1482603 0.9939130 -0.015948813
 18 0.1482603 0.8657923 -0.022759832
 19 0.1482603 0.7376716 -0.029570851
 20 0.1482603 0.6095509 -0.036381869
 attr(,"constant")
 [1] 1.870608

12.5 Exercise: Linear Modelling 1
Using the insect_spray.csv data which shows counts of insects after a particular type of
insect spray has been used.

1. Run a simple linear model comparing the efectiveness of the diferent sprays
(this will be a traditional ANOVA).

2. Get predictions and their standard errors from this model for each spray type
(using the predict.lm function).

3. Run the model again as a GLM using the poisson distribution (are the estimates
diferent from model 1? why are they so diferent?).

4. Get predictions and their standard errors (using the predict.glm function). How
do the SEs compare to model 1. Why are they so diferent?

5. Create a matrix to store the predictions and SEs from both models (i.e. four
column matrix).

6. Save this matrix table of results as a .csv fle in your working directory.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

http://www.obriain.com/training/R/datasets/insect_spray.csv

124 Programming & Data Analysis with ‘R’

Answer:

Import the data.

 > insect_spray = read.csv('insect_spray.csv')

 > names(insect_spray)
 [1] "X" "count" "spray"

 > head(insect_spray)
 X count spray
 1 1 10 A
 2 2 7 A
 3 3 20 A
 4 4 14 A
 5 5 14 A
 6 6 12 A

 > str(insect_spray)
 'data.frame': 72 obs. of 3 variables:
 $ X : int 1 2 3 4 5 6 7 8 9 10 ...
 $ count: int 10 7 20 14 14 12 10 23 17 20 ...
 $ spray: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...

 > summary(insect_spray)
 X count spray
 Min. : 1.00 Min. : 0.00 A:12
 1st Qu.:18.75 1st Qu.: 3.00 B:12
 Median :36.50 Median : 7.00 C:12
 Mean :36.50 Mean : 9.50 D:12
 3rd Qu.:54.25 3rd Qu.:14.25 E:12
 Max. :72.00 Max. :26.00 F:12

Run a simple linear model comparing the efectiveness of the diferent sprays.

 > mod1 = lm(count~spray, data=insect_spray)

 > summary(mod1)

 Call:
 lm(formula = count ~ spray, data = insect_spray)

 Residuals:
 Min 1Q Median 3Q Max
 -8.333 -1.958 -0.500 1.667 9.333

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 14.5000 1.1322 12.807 < 2e-16 ***
 sprayB 0.8333 1.6011 0.520 0.604
 sprayC -12.4167 1.6011 -7.755 7.27e-11 ***
 sprayD -9.5833 1.6011 -5.985 9.82e-08 ***
 sprayE -11.0000 1.6011 -6.870 2.75e-09 ***
 sprayF 2.1667 1.6011 1.353 0.181

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 3.922 on 66 degrees of freedom
 Multiple R-squared: 0.7244, Adjusted R-squared: 0.7036
 F-statistic: 34.7 on 5 and 66 DF, p-value: < 2.2e-16

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 125

 > anova(mod1)
 Analysis of Variance Table

 Response: count
 Df Sum Sq Mean Sq F value Pr(>F)
 spray 5 2668.8 533.77 34.702 < 2.2e-16 ***
 Residuals 66 1015.2 15.38

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Get predictions and their standard errors from this model for each spray type.

 > new.data = data.frame(spray=c("A", "B", "C", "D", "E", "F"))

 > pred1 = predict.lm(mod1, new.data, se.fit=T)

 > summary(pred1)
 Length Class Mode
 fit 6 -none- numeric
 se.fit 6 -none- numeric
 df 1 -none- numeric
 residual.scale 1 -none- numeric

 > pred1
 $fit
 1 2 3 4 5 6
 14.500000 15.333333 2.083333 4.916667 3.500000 16.666667

 $se.fit
 1 2 3 4 5 6
 1.132156 1.132156 1.132156 1.132156 1.132156 1.132156

 $df
 [1] 66

 $residual.scale
 [1] 3.921902

Run the model again as a GLM using the poisson distribution. Are the estimates
diferent from model one?

 > mod2 = glm(count~spray, data=insect_spray, family=poisson)

 > summary(mod2)

 Call:
 glm(formula = count ~ spray, family = poisson, data = insect_spray)

 Deviance Residuals:
 Min 1Q Median 3Q Max
 -2.3852 -0.8876 -0.1482 0.6063 2.6922

 Coefficients:
 Estimate Std. Error z value Pr(>|z|)
 (Intercept) 2.67415 0.07581 35.274 < 2e-16 ***
 sprayB 0.05588 0.10574 0.528 0.597
 sprayC -1.94018 0.21389 -9.071 < 2e-16 ***
 sprayD -1.08152 0.15065 -7.179 7.03e-13 ***
 sprayE -1.42139 0.17192 -8.268 < 2e-16 ***
 sprayF 0.13926 0.10367 1.343 0.179

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 (Dispersion parameter for poisson family taken to be 1)

 Null deviance: 409.041 on 71 degrees of freedom
 Residual deviance: 98.329 on 66 degrees of freedom

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

126 Programming & Data Analysis with ‘R’

 AIC: 376.59

 Number of Fisher Scoring iterations: 5

 > anova(mod2)
 Analysis of Deviance Table

 Model: poisson, link: log

 Response: count

 Terms added sequentially (first to last)

 Df Deviance Resid. Df Resid. Dev
 NULL 71 409.04
 spray 5 310.71 66 98.33

Get predictions and their standard errors (using the predict.glm function). How do the
SEs compare to model one. Why are they so diferent?

 > new.data = data.frame(spray=c("A", "B", "C", "D", "E", "F"))

 > pred2 = predict.glm(mod2, new.data, se.fit=T, type="response")

 > summary(pred2)
 Length Class Mode
 fit 6 -none- numeric
 se.fit 6 -none- numeric
 residual.scale 1 -none- numeric

 > pred2
 $fit
 1 2 3 4 5 6
 14.500000 15.333333 2.083333 4.916667 3.500000 16.666667

 $se.fit
 1 2 3 4 5 6
 1.0992422 1.1303883 0.4166664 0.6400955 0.5400617 1.1785113

 $residual.scale
 [1] 1

Save this matrix table of results as a .csv fle in your working directory.

 > store = matrix(0, nrow=6, ncol=4)
 > store[,1] = pred1$fit
 > store[,2] = pred1$se.fit
 > store[,3] = pred2$fit
 > store[,4] = pred2$se.fit

 > write.csv(store, "insect_pred_table.csv")

 > quit()
 Save workspace image? [y/n/c]: n

 $ cat insect_pred_table.csv
 "","V1","V2","V3","V4"
 "1",14.5,1.13215550799177,14.5,1.0992421631893
 "2",15.3333333333333,1.13215550799177,15.3333333333333,1.13038833052086
 "3",2.08333333333331,1.13215550799177,2.08333333333498,0.416666404601133
 "4",4.91666666666668,1.13215550799177,4.91666666666666,0.640095478972524
 "5",3.50000000000001,1.13215550799177,3.49999999999999,0.540061724814324
 "6",16.6666666666667,1.13215550799177,16.6666666666667,1.17851130197669

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 127

12.6 Exercise: Linear Modelling 2
Using the CO2.csv data which shows the uptake of carbon dioxide of two plant types
when kept at diferent temperatures and at diferent concentrations of CO2.

1. Run a simple linear model (regression) comparing the uptake of CO2 to the

concentration of CO2.

2. Run a simple linear model (t-test) comparing the efect of temperature on CO2

uptake.
3. Combine these two explanatory variables into a model that includes them both,

and also look at one that includes an interaction between them.
4. Get predictions for the two types of plants, for a range of CO2 concentrations.

5. Rerun the models and get predictions for a Gamma distribution.
6. Compare the diferent models and fnd the best model by looking at their Akaike

Information Criterion (AIC).

Note: The AIC is an estimator of the relative quality of statistical models for a given set
of data. Given a collection of models for the data, AIC estimates the quality of each
model, relative to each of the other models. Thus, AIC provides a means for model
selection. The AIC can be used to help decide which model is better at describing your
data and making predictions from it. The lower the AIC, the better the model.

HINT: an example of using the function is AIC(mod1, mod2, mod3).

Answer:

Import the data.

 > co2 = read.csv('CO2.csv')

 > names(co2)
 [1] "X" "Plant" "Type" "Treatment" "conc" "uptake"

 > head(co2)
 X Plant Type Treatment conc uptake
 1 1 Qn1 Quebec nonchilled 95 16.0
 2 2 Qn1 Quebec nonchilled 175 30.4
 3 3 Qn1 Quebec nonchilled 250 34.8
 4 4 Qn1 Quebec nonchilled 350 37.2
 5 5 Qn1 Quebec nonchilled 500 35.3
 6 6 Qn1 Quebec nonchilled 675 39.2

 > str(co2)
 'data.frame': 84 obs. of 6 variables:
 $ X : int 1 2 3 4 5 6 7 8 9 10 ...
 $ Plant : Factor w/ 12 levels "Mc1","Mc2","Mc3",..: 10 10 10 10 10 10 10 11 11
11 ...
 $ Type : Factor w/ 2 levels "Mississippi",..: 2 2 2 2 2 2 2 2 2 2 ...
 $ Treatment: Factor w/ 2 levels "chilled","nonchilled": 2 2 2 2 2 2 2 2 2 2 ...
 $ conc : int 95 175 250 350 500 675 1000 95 175 250 ...
 $ uptake : num 16 30.4 34.8 37.2 35.3 39.2 39.7 13.6 27.3 37.1 ...

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

http://www.obriain.com/training/R/datasets/CO2.csv

128 Programming & Data Analysis with ‘R’

 > summary(co2)
 X Plant Type Treatment conc
 Min. : 1.00 Mc1 : 7 Mississippi:42 chilled :42 Min. : 95
 1st Qu.:21.75 Mc2 : 7 Quebec :42 nonchilled:42 1st Qu.: 175
 Median :42.50 Mc3 : 7 Median : 350
 Mean :42.50 Mn1 : 7 Mean : 435
 3rd Qu.:63.25 Mn2 : 7 3rd Qu.: 675
 Max. :84.00 Mn3 : 7 Max. :1000
 (Other):42
 uptake
 Min. : 7.70
 1st Qu.:17.90
 Median :28.30
 Mean :27.21
 3rd Qu.:37.12
 Max. :45.50

Run a simple linear model (regression) comparing the uptake of CO2 to the

concentration of CO2.

 > mod1 = lm(uptake~conc, data=co2)

 > summary(mod1)

 Call:
 lm(formula = uptake ~ conc, data = co2)

 Residuals:
 Min 1Q Median 3Q Max
 -22.831 -7.729 1.483 7.748 16.394

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 19.500290 1.853080 10.523 < 2e-16 ***
 conc 0.017731 0.003529 5.024 2.91e-06 ***

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 9.514 on 82 degrees of freedom
 Multiple R-squared: 0.2354, Adjusted R-squared: 0.2261
 F-statistic: 25.25 on 1 and 82 DF, p-value: 2.906e-06

Run a simple linear model (t-test) comparing the efect of temperature on CO2 uptake.

 > mod2 = lm(uptake~Treatment, data=co2)

 > summary(mod2)

 Call:
 lm(formula = uptake ~ Treatment, data = co2)

 Residuals:
 Min 1Q Median 3Q Max
 -20.0429 -8.6530 -0.4429 9.7321 18.6167

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 23.783 1.591 14.948 <2e-16 ***
 Treatmentnonchilled 6.860 2.250 3.048 0.0031 **

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 10.31 on 82 degrees of freedom
 Multiple R-squared: 0.1018, Adjusted R-squared: 0.09084
 F-statistic: 9.293 on 1 and 82 DF, p-value: 0.003096

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 129

Combine these two explanatory variables into a model that includes them both, and
also look at one that includes an interaction between them.

 > mod3a = lm(uptake~conc + Treatment, data=co2)

 > mod3b = lm(uptake~conc * Treatment, data=co2)

 > summary(mod3a)

 Call:
 lm(formula = uptake ~ conc + Treatment, data = co2)

 Residuals:
 Min 1Q Median 3Q Max
 -19.401 -7.066 -1.168 7.573 17.597

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 16.070528 1.989746 8.077 5.31e-12 ***
 conc 0.017731 0.003306 5.364 7.55e-07 ***
 Treatmentnonchilled 6.859524 1.944840 3.527 0.000695 ***

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 8.912 on 81 degrees of freedom
 Multiple R-squared: 0.3372, Adjusted R-squared: 0.3208
 F-statistic: 20.6 on 2 and 81 DF, p-value: 5.837e-08

 > summary(mod3b)

 Call:
 lm(formula = uptake ~ conc * Treatment, data = co2)

 Residuals:
 Min 1Q Median 3Q Max
 -18.218 -7.401 -1.117 7.835 17.209

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 16.981416 2.464160 6.891 1.15e-09 ***
 conc 0.015637 0.004693 3.332 0.00131 **
 Treatmentnonchilled 5.037747 3.484848 1.446 0.15219
 conc:Treatmentnonchilled 0.004188 0.006636 0.631 0.52979

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 8.946 on 80 degrees of freedom
 Multiple R-squared: 0.3405, Adjusted R-squared: 0.3157
 F-statistic: 13.77 on 3 and 80 DF, p-value: 2.528e-07

Get predictions for the two types of plants, for a range of CO2 concentrations.

 > mod4 = lm(uptake~conc * Type, data=co2)

 > new.data = expand.grid(Type=c("Quebec", "Mississippi"),
 conc=seq(100,1000,100)
)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

130 Programming & Data Analysis with ‘R’

 > predict.lm(mod4, new.data, se.fit=T)
 $fit
 1 2 3 4 5 6 7 8
 25.81104 16.73566 28.11905 17.97377 30.42705 19.21188 32.73506 20.44999
 9 10 11 12 13 14 15 16
 35.04306 21.68811 37.35106 22.92622 39.65907 24.16433 41.96707 25.40245
 17 18 19 20
 44.27508 26.64056 46.58308 27.87867

 $se.fit
 1 2 3 4 5 6 7 8
 1.622000 1.622000 1.369811 1.369811 1.177546 1.177546 1.077770 1.077770
 9 10 11 12 13 14 15 16
 1.096037 1.096037 1.227089 1.227089 1.440463 1.440463 1.705538 1.705538
 17 18 19 20
 2.001880 2.001880 2.317526 2.317526

 $df
 [1] 80

 $residual.scale
 [1] 6.935822

Rerun the models and get predictions for a Gamma distribution.

 > mod5 = glm(uptake~conc * Type, data=co2, family=Gamma)

 > summary(mod5)

 Call:
 glm(formula = uptake ~ conc * Type, family = Gamma, data = co2)

 Deviance Residuals:
 Min 1Q Median 3Q Max
 -0.90639 -0.22457 -0.01455 0.19478 0.54514

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 6.020e-02 4.361e-03 13.803 < 2e-16 ***
 conc -2.532e-05 6.898e-06 -3.671 0.000434 ***
 TypeQuebec -2.148e-02 5.156e-03 -4.166 7.78e-05 ***
 conc:TypeQuebec 7.311e-06 8.094e-06 0.903 0.369081

 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 (Dispersion parameter for Gamma family taken to be 0.0939836)

 Null deviance: 15.8858 on 83 degrees of freedom
 Residual deviance: 8.4588 on 80 degrees of freedom
 AIC: 596.1

 Number of Fisher Scoring iterations: 5

 > new.data = expand.grid(Type=c("Quebec", "Mississippi"),
 conc=seq(100,1000,100)
)

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 131

 > predict.glm(mod5, new.data, se.fit=T, type="response")
 $fit
 1 2 3 4 5 6 7 8
 27.08678 17.34099 28.47595 18.13741 30.01533 19.01050 31.73064 19.97190
 9 10 11 12 13 14 15 16
 33.65390 21.03572 35.82534 22.21925 38.29633 23.54390 41.13343 25.03650
 17 18 19 20
 44.42452 26.73116 48.28806 28.67189

 $se.fit
 1 2 3 4 5 6 7 8
 1.7561008 1.1382195 1.6721912 1.0702451 1.5951945 1.0088967 1.5520705 0.9732649
 9 10 11 12 13 14 15 16
 1.5921838 0.9959336 1.7853024 1.1180932 2.2010333 1.3739928 2.8953715 1.7851440
 17 18 19 20
 3.9288835 2.3729936 5.3967264 3.1730722

 $residual.scale
 [1] 0.3065674

Compare the diferent models and fnd the best model by looking at their AIC.

 > AIC(mod1, mod2, mod3a, mod3b, mod4, mod5)
 df AIC
 mod1 3 620.8180
 mod2 3 634.3456
 mod3a 4 610.8169
 mod3b 5 612.3997
 mod4 5 569.6488
 mod5 5 596.0955

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

132 Programming & Data Analysis with ‘R’

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 133

13. Plots

Simple plot. plot() is a generic base graphic function for the plotting of R objects. x and
y objects must be given to the function.

 > x = 1:5

 > y = 1:5

 > plot(x,y)

plot(x=c(1,2,3,4), y=c(1,2,3,4))

 > args(plot)
 function (x, y, ...)
 NULL

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 19: Simple plot

134 Programming & Data Analysis with ‘R’

13.1 Beautify the plot
Add type to adjust the view of the plot. What type of plot should be drawn. Possible
types are:

p points

l lines

b both

c the lines part alone of b

o both over|plotted

h histogram like (or high|density) vertical lines

s stair steps

n no plotting

 > x = 1:5

 > y = 1:5

 > plot(x,y, type = "b")

Illustration 20: Plot with lines

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 135

Add some colour.

 > plot(x,y, type = "b", col = "green")

It also works as a general plot function for many object types. See Illustration 22 for a
simple linear regression.

 > x = c(1,2,2,3,2,3,4,3,4,5,3)

 > y = c(4,8,6,3,5,7,9,2,1,7,4)

 > model.1 = lm(y~x)

 > class(model.1)
 [1] "lm"

 > plot(model.1)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 21: Plot with colour

136 Programming & Data Analysis with ‘R’

13.1.1 Plot layers

Add some other values.

 > plot(x,y, type = "b", col = "green",xlab = "bottom", ylab = "left")

 > title(main = "My plot", xlab = "length", ylab = "height")

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 22: Plot - model1

Programming & Data Analysis with ‘R’ 137

Notice how each or these lines layered on to of each-other. It is necessary to turn of
some things in the frst line.

 > plot(x,y, type = "b", col = "green",xlab = "", ylab = "", xaxt="n", xaxt="n")

 > title(main = "My plot", xlab = "length", ylab = "height")

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 23: Plot layers

138 Programming & Data Analysis with ‘R’

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 24: Plot layers 2

Programming & Data Analysis with ‘R’ 139

13.1.2 Box type

Use the argument box type [bty] to adjust the box.

• o: The default value draws a complete rectangle around the plot.

• n: Draws nothing around the plot.

• l, 7, c, u, or]: Draws a shape around the plot area that resembles the uppercase
letter of the option. So, the option bty="l" draws a line to the left and bottom of
the plot.

 > plot(rnorm(100))
 > plot(rnorm(100),bty="o")
 > plot(rnorm(100),bty="l")
 > plot(rnorm(100),bty="7")
 > plot(rnorm(100),bty="c")
 > plot(rnorm(100),bty="]")
 > plot(rnorm(100),bty="n")

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 25: Box type

140 Programming & Data Analysis with ‘R’

13.1.3 Splitting arguments
 > plot(x,y, xlab="height", ylab="length", cex.axis= 1.2,
 cex.lab=1.5, typ="p", col="red", bty="l", pch=16,
 tck=0.03
)

 > plot(x,y, # call the plot
 xlab="height", ylab="length", # label the axes
 xlim=c(0,10), # set specific limits to x-axis
 cex.axis= 1.2, cex.lab=1.5, # set character size for axis & labels
 typ="p", col="red", # set plot type & colour
 bty="l", # set box type around plot
 pch=16, # set point character type
 tck=0.03 # set axis tick marks (+ve is inside plot)
)

13.1.4 Graphical parameters: par

par(): can be used to set or query graphical parameters. Parameters can be set by
specifying them as arguments to par in tag = value form, or by passing them as a list of
tagged values. par() on its own returns the current settings for default graphical
parameters. These defaults can be modifed in par(). Some graphical parameters must
be set in par() like background colour.

 > par(lty=2, # Set the line type
 pch=17, # Define the plotting symbol
 cex.axis=3 # Specify the size of the tick labels
)

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 26: Plot - splitting arguments

Programming & Data Analysis with ‘R’ 141

Icon type: PCH
Sets the icon type.

pch = 0 square pch = 13 circle cross

pch = 1 circle pch = 14 square and triangle down

pch = 2 triangle point up pch = 15 flled square

pch = 3 plus pch = 16 flled circle

pch = 4 cross pch = 17 flled triangle point up

pch = 5 diamond pch = 18 flled diamond

pch = 6 triangle point down pch = 19 solid circle up

pch = 7 square cross pch = 20 bullet (smaller circle)

pch = 8 star pch = 21 flled circle blue

pch = 9 diamond plus pch = 22 flled square blue

pch = 10 circle plus pch = 23 flled diamond blue

pch = 11 triangles up and down pch = 24 flled triangle point up blue

pch = 12 square plus pch = 25 flled triangle point down blue

13.1.5 Colours

R has 657 colours to choose from. The colours() function gives a list of the available
colour names.

colours(): Creates a list of all available colours.

 colours = colours()
 > head(colours)
 [1] "white" "aliceblue" "antiquewhite" "antiquewhite1"
 [5] "antiquewhite2" "antiquewhite3"

rainbow(n): Creates a vector of n contiguous colors.

 > rainbow = rainbow(5)

 > rainbow
 [1] "#FF0000FF" "#CCFF00FF" "#00FF66FF" "#0066FFFF" "#CC00FFFF"

grey(level): Creates a vector of colours from a vector of gray levels. These are given
as a vector of desired gray levels between zero and one; zero indicates black and one
indicates white.

 > grey = grey(c(0.1,0.3,0.5,0.7,0.9))

 > grey
 [1] "#1A1A1A" "#4D4D4D" "#808080" "#B3B3B3" "#E6E6E6"

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

142 Programming & Data Analysis with ‘R’

13.1.6 text

text(): Insert text at any position of a current open plot.

 > text(x, y, # x,y plot co-ordinates for the text
 labels, # Text to be inserted
 pos, # Position (1,2,3,4=below,left,above,right)
 offset, # Distance of pos offset from x,y
 col, cex, font ... # Other options
)

Example:

 > plot(1,1)

 > text(1,1.05,
 "This is a dot in the middle",
 col="red",cex=0.8
)

 > text(1,1,
 "This is the test to be printed",
 pos=1,offset=1,col="red",cex=0.8
)

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 27: Plot text

Programming & Data Analysis with ‘R’ 143

Another example.

 > plot(0,1,xaxt='n',yaxt='n')
 > my_text = list(bquote(paste("Average Area=5.78" , m^2/h)),
 bquote(paste("Average Distance=12.2", km/h))
)
 >
 > mtext(side=1,do.call(expression, my_text), line=-1:-2, adj=0)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 28: Plot text 2

144 Programming & Data Analysis with ‘R’

13.1.7 Points

points(): Insert points at any position of a current open plot.

 points(x, y,
 pch, # Point character type
 cex, # Character expansion - i.e size
 col, # Colour of the point
 bg # Background colour or point
)

Example:

 > plot(c(0,2),c(0,25), type='n')

 > points(x=rep(1,25), y=1:25, pch=1:25)

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 29: Plot - points

Programming & Data Analysis with ‘R’ 145

13.1.8 Symbols

symbols(): Insert a shape at any position of a currently open plot.

 symbols(x, y, # x,y plot co-ordinates
 circles, # Draw circle with of diameter (e.g. circle=0.8)
 squares, # Draw square of side length (e.g. square=0.5)
 rectangles, # Draw rectangle (side lengths specified by matrix)
 stars, # Draw star (points etc specified by 3 column matrix)
 thermometers, # Craw with matrix of 3 or 4 columns
 boxplots, # Draw with matrix of 5 columns
 add=T, # Adds the symbol to the current plot
 bg, fg, lwd... # General settings - see help(symbols)
)

Example:

 > plot(c(0,4),c(0,6), type='n')

 > symbols(x=1, y=3, circles=3,
 bg='red', fg='green',
 lwd=3, add=T
)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 30: Plot - symbols

146 Programming & Data Analysis with ‘R’

13.1.9 Segments

segments(): Insert line segment at any position of a currently open plot.

 > segments(x0, y0, # x,y plot co-ordinates for the start of the segment
 x1, y1, # x,y plot co-ordinates for the end of the segment
 col, # Colour of the line = 1:8
 lty, # Line type = 1:6 (dashed, dotted, whole etc)
 lwd # Line width
)

Example:

 > plot(c(0,4),c(0,6), type='n')

 > segments(x0=rep(1,6), y0=1:6,
 x1=rep(3,6), y1=1:6,
 lty=1:25
)

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 31: Plot - lines

Programming & Data Analysis with ‘R’ 147

13.1.10 Polygon

polygon(): Insert any shape at any position of a currently open plot.

 > polygon(x, # Vector of x co-ordinates for each point to be joined to make
the shape
 y, # Vector of corresponding y co-ordinates for the shape (matched
to x)
 density, # Density of shading lines that fill the object
 angle, # Slope of shading lines that fill the object
 col, # Colour of shading lines (if density=NA then col is fill colour)
 border, # Colour of the border
 lwd... # Line width
)

Example:

 > plot(c(0,8),c(0,3), type='n')

 > polygon(c(1,1:7,7), c(0,1,2,1,2,1,2,1,0), col='blue', lwd=3)

 > polygon(c(1,7,7), c(0,0,1), col='yellow', angle=90, density=7)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 32: Plot - polygons

148 Programming & Data Analysis with ‘R’

13.1.11 Arrows

arrows(): Draw an arrow between pairs of coordinates in a current open plot.

 > arrows(x0, y0, # Co-ordinates of points from which to draw
 x1, y1, # Co-ordinates of points to which to draw
 length, # Length of edge of arrow head
 angle, # Angle from arrow shaft to arrow head
 code, # 1:3 specifying the type of arrow head
 col, lty, lwd... # Other options
)

Example:

 > plot(c(0,8),c(0,3), type='n')

 > arrows(x0=1,y0=1,x1=6,y1=2,col='dark green',lty=2, lwd=3)

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 33: Plot - arrows

Programming & Data Analysis with ‘R’ 149

13.1.12 Lines

• lines(): A generic function taking coordinates given in various ways and joining
the corresponding points with line segments.

• abline(): This function adds one or more straight lines through the current plot.
It can specify intercept and slope, horizontal or vertical and can take intercept &
slope from an lm object.

• curve() Draws a curve corresponding to a function over the interval from, to.
curve() can plot also an expression in the variable xname, default x. Can add
the line of an equation to a plot. Note: must set add=TRUE.

Example:

 > plot(c(0,8),c(0,8), type='n')

 > lines(x=c(1,5,8), y=c(2,3,1), col='blue', lwd=3)

 > x=c(1,2,3,4,5); y=c(2,2,1,1,0)

 > abline(lm(y~x))

 > curve(x+0.1*x^2, add=T)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 34: Plot - lines, curves

150 Programming & Data Analysis with ‘R’

Example: abline()

 > plot(1:21,-10:10)

 > abline(h=0, lty=2) # Put horizontal line at y=0

 > abline(v=5, lty=1) # Put vertical line at x=5

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 35: Plot - abline

Programming & Data Analysis with ‘R’ 151

13.1.13 Identity

Identify and label a point on a scatter-plot. Use the cursor over a point and it will identify
it.

 > x=rnorm(100,0,2)

 > y=rnorm(100,3,3)

 > plot(x,y)

 > identify(x, y, plot=TRUE)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 36: Plot - identity

152 Programming & Data Analysis with ‘R’

13.1.14 Adding equations / Greek letters to graphs

expression(): Creates or tests for objects of mode expression.

examples:

 > plot(c(0,10),c(0,10), type='n')

 > text(x=5, y=8, expression(lambda == 1.3))

 > text(x=5, y=6, expression(bar(X)[female]==0.55))

 > text(x=5, y=4, expression(y[3] ~ x^2 ~ m^-2))

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 37: Plot - expression

Programming & Data Analysis with ‘R’ 153

13.2 Boxplots
A box plot or boxplot is a method of representing statistical data on a plot. It consists of
a rectangle drawn to represent the second and third quartiles, usually with a vertical line
inside to indicate the median value. The lower and upper quartiles are shown as
horizontal lines either side of the rectangle.

Figure 37: Plot - boxplot

Considering the following example. As can be seen from the summary(v) the minimum
and maximum points are marked at 5 and 425. The median of 152 is fanked by the
lower quartile at 69.5 and the upper quartile at 272.5.

 > v = c(101,111,112,123,141,152,193,141,
 51,19,43,74,45,26,83,42,65,32,5,
 322,354,385,377,381,314,425,416,
 214,233,234,226,237,248,269,276
)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 38: Boxplot

154 Programming & Data Analysis with ‘R’

 > summary(v)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 5.0 69.5 152.0 184.9 272.5 425.0

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 39: Boxplot 2

Programming & Data Analysis with ‘R’ 155

 > boxplot(v)

13.3 Saving

13.3.1 Data

Data can be saved in a number of formats, in this case it is saved in .csv formatted fle.
In the example below the plot is saved to: 28-Sep-2018_00.38-graph_name.csv.

 > logdir = '/var/log/R/' # Make sure directory has +w rights
 > filename = 'graph_name' # Make sure directory has +w rights

 # Export output
 > writeto = paste0(logdir,"/",
 format(Sys.time(), "%d-%b-%Y_%H.%M-"),
 filename, ".csv"
)

 > write.csv(df.normal, writeto)

13.3.2 Plots

Plots can also be saved from graphical format to fle. In the example below the plot is
saved as a .png to: 28-Sep-2018_00.35-graph_name.png. The graphic can also be
saved in formats like .pdf.

 logdir = '/var/log/R/' # Make sure directory has +w rights
 filename = 'graph_name' # Make sure directory has +w rights

 # Export output
 > writeto = paste0(logdir,"/",
 format(Sys.time(), "%d-%b-%Y_%H.%M-"),
 filename, ".png"
)

 > dev.copy(png, writeto) # copies the graphics contents
 > dev.off() # Shutdown graphic to push to file.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 40: Boxplot 3

156 Programming & Data Analysis with ‘R’

13.4 Exercise 1: Making a mess

 > plot(x=1:100,y=rnorm(100))

Taking Illustration 41 apply graphical features liberally to make it as ugly as possible .

Adjust the default background colour.

 > par(bg = "green") # Set background to green

 > plot(x=1:100,y=rnorm(100),
 pch = 13, # Change icons to triangles
 cex = 2, # Enlarge icon to 200%
 lwd = 3, # Change line width
 col="orange", # Icon colour
 bg="yellow", # Icon background colour
 col.main = "orange", # Change title colour
 col.axis = "red", # Change axis colour
 col.lab = "white", # Change label colour
 font.axis = 3, # Change axis font
 font.lab = 4, # Change label font
 family = "sans", # Change font
)

Locate a point on the plot with the locator() function. Run the function and click on the
plot, it will return the location of the cursor. For the text line the shell will hold until the
point is clicked.

 > locator(1)
 $x
 [1] -16.85286

 $y
 [1] 3.984065

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 41: Plot exercise - start

Programming & Data Analysis with ‘R’ 157

 > text(locator(1), "A bit of text is here")

 > lines(locator(2),col="white",lty=1,lwd=3) # Draw a line
 > lines(locator(2),col="black",lty=1,lwd=3) # Draw a line

 > locator(2)
 $x
 [1] 52.10779 51.52666

 $y
 [1] 2.06091 -2.54633

 > points(x=rep(1,25),y=1:25, type= 'n')

 # Draw a line
 > segments(52.10779, 2.06091, 51.52666, -2.54633,col="red",lty=2,lwd=4)

 # Draw a line
 > lines(c(4.455207, 96.273600), c(-0.33893, -0.30497) ,col="yellow",lty=2,lwd=4)

 > title("Is it Saint Patricks Day") # Add a title

 > polygon(c(1,1:7,7), # Add a polygon
 c(0,1,2,1,2,1,2,1,0),
 col='blue', lwd=3
)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 42: Plot - mess

158 Programming & Data Analysis with ‘R’

13.5 Exercise 2: Create a boxplot
As has been demonstrated in section 13.2 Boxplots R comes with a boxplot() function
as in Illustration 43. Assuming there is no such function create a boxplot for the output
of the function rnorm(100,5,1.5) using the other tools available.

 > a = rnorm(100,5,1.5)
 > boxplot(a)

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 43: Boxplot exercise

Programming & Data Analysis with ‘R’ 159

Answer:

 > a = rnorm(100,5,1.5)
 > mean_a = mean(a)
 > sd_a = sd(a)
 > min_a = min(a)
 > max_a = max(a)

 > plot(c(0, 0, min_a, min_a), # Plot area
 c(0,max_a,max_a,0),
 ylim = c(0,10), xaxt = 'n', yaxt = 'n',
 type = 'n', xlab = '', ylab = ''
)

 > segments(1, min_a, # Dotted line line
 1, max_a,
 col="black",lty=2,lwd=1
)

 > segments(0.9,max_a, # Top line
 1.1, max_a,
 col="black",lwd=1
)

 > segments(0.9,min_a, # Bottom line
 1.1,min_a,
 col="black",lwd=1
)

 > polygon(c(0.8, 1.2, 1.2, 0.8), # Draw polygon
 c(mean_a - sd_a,mean_a - sd_a, mean_a + sd_a,mean_a + sd_a),
 border = "black",
 col = "white",
 lwd=1
)

 > segments(0.8,mean_a, 1.2, mean_a, # Draw middle line
 col="black",lwd=4
)

 > axis(2, at=c(1,2,3,4,5,6,7,8), labels=c(1,2,3,4,5,6,7,8))

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 44: Boxplot answer

160 Programming & Data Analysis with ‘R’

13.6 Multiple graphs

13.6.1 par() function again

With the par() function, the options mfrow=c(nrows, ncols) can be included to create a
matrix of nrows x ncols plots that are flled in by row. mfcol=c(nrows, ncols) flls in the
matrix by columns. To plot the model model.1 in the example will shufe through four
plots.

• Residuals vs Fitted
• Normal Q-Q
• Scale-Location
• Residuals vs Leverage

 > x = c(1,2,2,3,2,3,4,3,4,5,3)

 > y = c(4,8,6,3,5,7,9,2,1,7,4)

 > model.1 = lm(y ~ x)

 > plot(model.1)

 Hit <Return> to see next plot:
 Hit <Return> to see next plot:
 Hit <Return> to see next plot:
 Hit <Return> to see next plot:

However by adjusting the graphical parameters it is possible to create a top-level
graphical plot area that will include the four plots on the one main plot area. As there are
four plots then a 2 x 2 main plot frame is required.

 > x = c(1,2,2,3,2,3,4,3,4,5,3)

 > y = c(4,8,6,3,5,7,9,2,1,7,4)

 > model.1 = lm(y ~ x)

 > par(mfrow=c(2,2)) # Adding this line creates the top-level plot area

 > plot(model.1)

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 161

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 45: Multiple graphs

162 Programming & Data Analysis with ‘R’

13.7 Exercise 3a: Setting graph parameters
Using these data, create a publication quality graph like this.

HINT: to get the axis tick marks on the inside use the tck argument in your plot call (e.g.
tck=0.03).

 > x = 1:20

 > y = seq(from=3, to=7, length.out=20)+rnorm(20,0,2)

Answer:

 > x = 1:20
 > y = seq(from=3, to=7, length.out=20)+rnorm(20,0,2)
 > plot(x,y, type='n',
 xlab = 'Years since establishment',
 ylab = 'Population size (x 1000)',
 xaxt = 'n', yaxt = 'n',
 bty = 'l',
 xlim = c(0,20),
 ylim = c(0,10),
 font.lab=2
)

 > points(x,y, pch=21, bg="black", cex=2)

 > axis(1, seq(0,20,5),las=2, tck = 0.02)

 > axis(2, seq(0,10,2), tck = 0.02)

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 46: Exercise - setting graph parameters

Programming & Data Analysis with ‘R’ 163

13.8 Exercise 3b: Setting graph parameters
Add a second plot using these additional data.

 > x = 1:20
 > proportion.females = runif(20,0.3,0.7)
 > y = proportion.females
 > plot(x,y, type='l',
 xlab = 'Years since establishment',
 ylab = 'Proportion of females in the population',
 xaxt = 'n', yaxt = 'n',
 bty = 'l',
 lty = 2,
 xlim = c(0,20),
 ylim = c(0,1),
 font.lab=2
)

 > axis(1, seq(0,20,5),las=2, tck = 0.02)

 > axis(2, seq(0,1,0.2),tck = 0.02)

 > text(x=1, y=0.98, "b", cex=1.5)

 > text(x=10, y=0.15, expression(bar(X)[female]==0.55), cex=1.3)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 47: Exercise - setting graph parameters 2

164 Programming & Data Analysis with ‘R’

Create a multiple frame to hold both graphs.

mtext(): Write Text into the Margins of a Plot.

 # Data to be plotted
 > x = 1:20
 > y = seq(from=3, to=7, length.out=20)+rnorm(20,0,2)
 > z = runif(20,0.3,0.7)

 # First graphic area (left side)
 > par(fig=c(0,0.5,0,1))

 # Plot the points on first graph
 > plot(x,y, type='n',
 xlab = '',
 ylab = 'Population size (x 1000)',
 xaxt = 'n', yaxt = 'n',
 bty = 'l',
 xlim = c(0,20),
 ylim = c(0,10),
 font.lab=2
)

 # Redefine the points
 > points(x,y, pch=21, bg="black", cex=2)

 # Add the first graph axis
 > axis(1, seq(0,20,5),tck = 0.02)
 > axis(2, seq(0,10,2), tck = 0.02)

 # Add the "a" and the function term to 1st graph
 > text(x=1, y=9.8, "a", cex=1.5)
 > text(x=10, y=9, expression(lambda == 1.3), cex=1.5)

 # Second graphic area (right side)
 > par(fig=c(0.5,1,0,1), new=T)

 # Plot the dashed line
 > plot(x,z, type='l',
 xlab = '',
 ylab = 'Proportion of females in the population',
 xaxt = 'n', yaxt = 'n',
 bty = 'l',
 lty = 2,
 xlim = c(0,20),
 ylim = c(0,1),
 font.lab=2
)

 # Add in the axis graphs
 > axis(1, seq(0,20,5),tck = 0.02)
 > axis(2, seq(0,1,0.2),tck = 0.02)

 # Add the "b" and the function term to 2nd graph
 > text(x=1, y=0.98, "b", cex=1.5)
 > text(x=10, y=0.15, expression(bar(X)[female]==0.55), cex=1.3)

 # Add the common text under both graphs
 > mtext("Years since establishment", side = 1, line = -2, outer = TRUE, cex=1.3)

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 165

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 48: Exercise - setting graph parameters 3

166 Programming & Data Analysis with ‘R’

13.9 Exercise 4a: Prediction plots
Using the model lm(begging~sex+food+sex*food, data = owl)

Extract predictions (with their standard errors) for both males and females, for a range
of food values from 20-30 using the predict() function.

 # Add libraries
 > library(scales)

 # Import the data
 > owl = read.csv('owl_data.csv')

 > owl.lm = lm(begging ~ sex + food + sex * food, data = owl)

 > male_predict = data.frame(sex=rep('Male',11), food=10:20)
 > female_predict = data.frame(sex=rep('Female',11), food=10:20)

 > male_out = predict.lm(owl.lm, male_predict, se.fit=T)
 > female_out = predict.lm(owl.lm,female_predict, se.fit=T)

 # Plot 1

 # Generate the first plot
 > plot(x=seq(10,20),y=male_out$fit,type='n',
 xlab='Time since last meal',
 ylab='Begging rate',
 bty='l', ylim=c(8,25), cex.lab=1.2
)

 # Add lines to plot
 > lines(x=seq(10,20),male_out$fit,
 type='b', pch=16, col='blue'
)

 > lines(x=seq(10,20),female_out$fit,
 type='b', pch=16, col='red'
)

 # Plot 2: Add Standard Errors (SE) lines on the plot

 # Add SE lines for males
 > lines(x=seq(10,20),male_out$fit+male_out$se.fit,
 type='l', col='blue', lty=2
)

 > lines(x=seq(10,20),male_out$fit-male_out$se.fit,
 type='l', col='blue', lty=2
)

 # Add SE lines for females
 > lines(x=seq(10,20),female_out$fit+female_out$se.fit,
 type='l', col='red', lty=2
)

 > lines(x=seq(10,20),female_out$fit-female_out$se.fit,
 type='l', col='red', lty=2
)

 # Plot 3: now add SE polygons

 # Add SEs for males
 > polygon(x=c(10:20, 20:10),
 y=c(male_out$fit+male_out$se.fit,
 rev(male_out$fit-male_out$se.fit)),
 col=alpha("blue", 0.3), border="blue"

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 167

)

 # Add SEs for females
 > polygon(x=c(10:20, 20:10),
 y=c(female_out$fit+female_out$se.fit,
 rev(female_out$fit-female_out$se.fit)),
 col=alpha("red", 0.3), border="red"
)

 # Add text to the plot
 > text(16,19,'Male', cex=1.5, col='blue')
 > text(15,9,'Female', cex=1.5, col='red')

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 49: Exercise - prediction plots

168 Programming & Data Analysis with ‘R’

13.10 Exercise 4b: Prediction plots
Modify the previous model to a Poisson distribution.

glm(begging~sex+food+sex*food, data=owl, family=poisson)

Repeat exercise 4a, but using the predictions from the model based on a poisson
distribution.

HINT:check if your predictions are at the log scale and need to be exponentiated. check
the predict function argument type. This needs to be set to response.

 # Add libraries
 > library(scales)

 # Import the data
 > owl = read.csv('owl_data.csv')

 > owl.lm = glm(begging ~ sex+food+sex*food, data=owl, family=poisson)

 > male_predict = data.frame(sex=rep('Male',11), food=10:20)
 > female_predict = data.frame(sex=rep('Female',11), food=10:20)

 > female_out = predict.glm(owl.lm, male_predict, se.fit=T, type="response")
 > male_out = predict.glm(owl.lm,female_predict, se.fit=T, type="response")

 # Plot 1

 # Generate the first plot
 > plot(x=seq(10,20),y=male_out$fit,type='n',
 xlab='Time since last meal',
 ylab='Begging rate',
 bty='l', ylim=c(0,60), cex.lab=1.2
)

 # Add lines to plot
 > lines(x=seq(10,20),male_out$fit,
 type='b', pch=16, col='blue'
)

 > lines(x=seq(10,20),female_out$fit,
 type='b', pch=16, col='red'
)

 # Plot 2: Add Standard Errors (SE) lines on the plot

 # Add SE lines for males
 > lines(x=seq(10,20),male_out$fit+male_out$se.fit,
 type='l', col='blue', lty=2
)

 > lines(x=seq(10,20),male_out$fit-male_out$se.fit,
 type='l', col='blue', lty=2
)

 # Add SE lines for females
 > lines(x=seq(10,20),female_out$fit+female_out$se.fit,
 type='l', col='red', lty=2
)

 > lines(x=seq(10,20),female_out$fit-female_out$se.fit,
 type='l', col='red', lty=2
)

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 169

 # Plot 3: now add SE polygons

 # Add SEs for males
 > polygon(x=c(10:20, 20:10),
 y=c(male_out$fit+male_out$se.fit,
 rev(male_out$fit-male_out$se.fit)),
 col=alpha("blue", 0.3), border="blue"
)

 # Add SEs for females
 > polygon(x=c(10:20, 20:10),
 y=c(female_out$fit+female_out$se.fit,
 rev(female_out$fit-female_out$se.fit)),
 col=alpha("red", 0.3), border="red"
)

 # Add text to the plot
 > text(16,40,'Female', cex=1.5, col='red')
 > text(15,9,'Male', cex=1.5, col='blue')

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 50: Exercise - prediction plots 2

170 Programming & Data Analysis with ‘R’

13.11 Exercise 5: Visualising plot data
Import the bird_egg.csv fle.

Plot the relationship between eggs (y) and age (x) for clutch 1 (blue points) & clutch 2
(red points) and save it as a pdf fle.

HINT: jitter() could help visualise the points here eggs is the response variable (y) and
age the explanatory (x).

EXTRA: extract predictions from a model where age and clutch (and their interaction)
explain the number of eggs. Plot these predictions with their standard errors over the
scatter-plot above.

 > install.packages('scales')

 # Add libraries
 > library(scales)

 # Import the data
 > bird = read.csv('bird_egg.csv')

 > names(bird)
 #[1] 'individual' 'year' 'clutch' 'age' 'eggs' 'dist_food'
 #[7] 'fail_fledge'

 # Plot the points and
 > x1 = bird[bird[,3]==1,4] # Plot the 'age' for the 1st clutch
 > y1 = bird[bird[,3]==1,5] # Plot the 'eggs' for the 1st clutch
 > x2 = bird[bird[,3]==2,4] # Plot the 'age' for the 2nd clutch
 > y2 = bird[bird[,3]==2,5] # Plot the 'eggs' for the 2nd clutch

 # Plot the eggs as a DV for age as the IV for 1st clutch
 > plot(x1,y1,col='blue',
 xlab='Age', ylab='Eggs'
)

 # Plot the eggs as a DV for age as the IV for 2nd clutch
 > points(x2,y2, col='red')

 # Add a small amount of noise to the vector.
 > points(jitter(x1),jitter(y1), col='blue')
 > points(jitter(x2),jitter(y2), col='red')

 # Get data for clutch 1 & 2 (poisson)
 > bird1 = bird[bird[,3] < 3,]
 > mod1 = glm(eggs~age * as.factor(clutch),
 data=bird1, family='poisson'
)
 > summary(mod1)

 # Extract dataframe for 'age' and 'clutch'
 > new_data1 = data.frame(age=1:10, clutch=rep(1,10))
 > new_data2 = data.frame(age=1:10, clutch=rep(2,10))

 # Get predictions
 > pred_clutch1 = predict.glm(mod1, new_data1, se.fit=T, type='response')
 > pred_clutch2 = predict.glm(mod1, new_data2, se.fit=T, type='response')

 # Add clutch1 prediction

 # Add lines
 > lines(x = 1:10, y = pred_clutch1$fit,
 lty = 1, lwd = 2, col = 'blue'

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

http://www.obriain.com/training/R/datasets/bird_egg.csv

Programming & Data Analysis with ‘R’ 171

)

 # Add blue filled in pologon area
 > polygon(x = c(1:10, 10:1),
 y = c(pred_clutch1$fit+pred_clutch1$se.fit,
 rev(pred_clutch1$fit-pred_clutch1$se.fit)),
 col = alpha('blue',0.3), border='blue'
)

 # Add clutch2 prediction

 # Add lines
 > lines(x = 1:10, y = pred_clutch2$fit,
 lty = 1, lwd = 2, col = 'red'
)

 # Add red filled in pologon area
 > polygon(x = c(1:10, 10:1),
 y = c(pred_clutch2$fit+pred_clutch2$se.fit,
 rev(pred_clutch2$fit-pred_clutch2$se.fit)),
 col = alpha('red',0.3), border='red'
)
 }
 # Add labels
 > text(x = 6, y = 5.5, 'Clutch 1',
 cex = 1.5, col = 'blue'
)

 > text(x = 6, y = 2, 'Clutch 2',
 cex = 1.5, col = 'red'
)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 51: Exercise - visualising plot data

172 Programming & Data Analysis with ‘R’

13.12 Exercise 6: Pretty plot
From the data xy_data_quadplotex.csv produce a graph. The model is y ~ x + x 2.

HINT: Get the ftted values for the model prediction.

 # Look at the data
 > read.csv('xy_data_quadplotex.csv')
 x y
 1 1 3.9257408
 2 2 1.9763139
 3 3 3.1513985
 4 4 2.6076583
 5 5 5.0019918
 6 6 5.7526961
 7 7 6.3944896
 8 8 5.4130619
 9 9 9.4346628
 10 10 9.7635863
 11 11 8.9396002
 12 12 7.2992594
 13 13 9.1645094
 14 14 8.1535297
 15 15 7.9302138
 16 16 9.4534872
 17 17 6.2583997
 18 18 6.5865369
 19 19 5.7238197
 20 20 6.0263360
 21 21 3.0479905
 22 22 3.3684445
 23 23 4.5477625
 24 24 3.1443438
 25 25 -0.3731705
 26 26 0.9693107
 27 27 -5.7287515
 28 28 -3.4355719
 29 29 -2.9714692
 30 30 -7.3180748

 # Import the data
 > xy = read.csv('xy_data_quadplotex.csv')

 # Create the initial plot with values
 > plot(x,y)

 # Create linear model
 > mod.1 = lm(xy$y ~ xy$x + I(xy$x^2))
 > y.fit = fitted(mod.1)

 # Draw the fit line on plot
 > lines(xy$x,y.fit, lwd=2)

 > get.y = matrix(c(xy$x,y.fit), ncol=2)

 # Show area under curve for range 1 - 7
 > x1.range <- 1:7
 > y1.range <- get.y[get.y[,1]>=1 & get.y[,1]<=7,2]

 # Show area under curve for range 7 - 20
 > x2.range <- 7:20
 > y2.range <- get.y[get.y[,1]>=7 & get.y[,1]<=20,2]

 # Show area under curve for range 20 - 30
 > x3.range <- 20:30

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

http://www.obriain.com/training/R/datasets/xy_data_quadplotex.csv

Programming & Data Analysis with ‘R’ 173

 > y3.range <- get.y[get.y[,1]>=20 & get.y[,1]<=30,2]

 # Add shading area under the curve for x - 1 - 7
 > polygon(c(1,x1.range,7),
 c(min(y),y1.range,min(y)), density=20,
 col="green", angle=45, border=NA
)

 # Add shading area under the curve for x - 7 - 20
 > polygon(c(7,x2.range,20),
 c(min(y),y2.range,min(y)), density=20,
 col="red", angle=45, border=NA
)

 # Add shading area under the curve for x - 20 - 30
 > polygon(c(20,x3.range,30), c(min(y),y3.range,min(y)), density=20, col="yellow",
angle=45, border=NA)

 # Add labeling to each shaded area
 > text(3.5,-3, "Treatment\nA", cex=1)
 > text(12.5,-3, "Treatment\nB", cex=1)
 > text(24,-3, "Treatment\nC", cex=1)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 52: Exercise - pretty plot

174 Programming & Data Analysis with ‘R’

13.13 Exercise 7: Icon and colour table
 # Add the plot
 > plot(x = c(0,1.2),y = c(0,25),
 col = "white", xlab = "", ylab = "",
 xaxt = "n",yaxt = "n"
)

 # Add points for icons
 > points(x = rep(0.1,25),
 y = 1:25,pch = 1:25,
 cex = 1.2
)

 # Add text for icons
 > text(x = rep(0.1,25),
 y = 1:25,paste("pch",1:25),
 pos = 4, offset = 1
)

 # Add points for colour
 > points(x = rep(0.4,8),
 y = 10:17,col = 1:8,
 pch = 16, cex = 3
)

 # Add text for colour
 > text(x = rep(0.4,8),y = 10:17,
 paste("colour",1:8),pos = 4,
 offset = 1
)

 # Add lines
 > segments(x0 = rep(0.7,20),y0 = 11:16,
 x1 = rep(0.9,20),lty = 1:6,
 lwd = 1.3,col = "black"
)

 # Add text to lines
 > text(x = rep(0.9,20),y = 11:16,
 paste("lty",1:6),pos = 4,
 offset = 1
)

 # Add title text

 > title_msg = "Exercise 7: reproduce & save this plot for future reference"

 > mtext(title_msg,
 side = 3, outer = TRUE, line = -2.2:-2, font = 2
)

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 175

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 53: Exercise - useful table

176 Programming & Data Analysis with ‘R’

14. Generalised Linear Mixed Models (GLMM)

Taking the earlier prediction:

 > owl = read.csv('owl_data.csv')

 > owl.lm = lm(begging ~ sex + food + sex * food, data = owl)

The assumption was that the residuals were random and had no relationship with each-
other. However it could be observed for example that there is a higher possibility of the
residuals below the model line being say male in blue and above the line being female.
Thus there is non-independence of the residuals and this needs to be accounted for.
One way is to do separate ANCOVA for set, male and female.

However this could get impractical quite quickly. Imagine if there were samples taken
from a number of sources and for practical reasons there were more samples taken
from certain sources than others. Now there is non-independence between the samples
taken from each source and because of the diferent ratios of samples from each it must
be accounted for in the linear models.

• nlme: Non-linear Mixed-Efects Models (NLME). This generic function fts a
non-linear mixed-efects model in the formulation described in Lindstrom and
Bates (1990) but allowing for nested random efects. The within-group errors are
allowed to be correlated and/or have unequal variances.

• nlme: Fit Linear Mixed-Efects Models (LMM). Fit a LMM to data, via the
Restricted (or Residual, or Reduced) Maximum Likelihood (REML).

Import the owl_data.csv fle. There are four models. The frst two are standard Linear
Models. The second two models ft the same model as the lm() function, however they
must have at least one random efect, in this case the (1|nest) argument. If you want to
ft another type of distribution you use glmer() and set the family argument. It is
demonstrated below for the family poisson however in this case it would fail to converge
as the dataset is not suitable for that distribution.

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 54: Non-independence of residuals

http://www.obriain.com/training/R/datasets/owl_data.csv

Programming & Data Analysis with ‘R’ 177

 # Install packages (Unhash the first time to install packages)
 # install.packages('nlme')
 # install.packages('lme4')

 # Load libraries
 > library(nlme)
 > library(lme4)

 # Generate models
 > mod.lm = lm(begging ~ food + sex + food * sex + I(food^2), data = owl)

 > mod.glm = glm(owl.lm = lm(begging ~ sex + food + sex * food, data = owl)(food^2),
 data=owls, family=gaussian
)

 > mod.lme = lme(owl.lm = lm(begging ~ sex + food + sex * food, data = owl)(food^2),
 random =~ 1|nest, data = owl
)

 > mod.lmer = lmer(begging ~ food + sex + food * sex + I(food^2) + (1|nest),
 data = owl
)

 > mod.glmer = glmer(begging ~ food + sex + food * sex + I(food^2) + (1|nest),
 data=owl, family=poisson
)

 > par(mfrow=c(2,2))

 > plot(mod.lm)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 55: Generalised Mixed Models

178 Programming & Data Analysis with ‘R’

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 56: Plot - Fitting Linear Models

Programming & Data Analysis with ‘R’ 179

 > par(mfrow=c(2,2))

 > plot(mod.glm)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 57: Plot - Fitting Generalised Linear Models

180 Programming & Data Analysis with ‘R’

 > plot(mod.lme)

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 58: Plot - Linear Mixed-Efects Models

Programming & Data Analysis with ‘R’ 181

 > plot(mod.lmer)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 59: Plot - Fit Linear Mixed-Efects Models

182 Programming & Data Analysis with ‘R’

15. Qualitative Data Analysis with R

15.1 Introduction
As has already been shown the R programming language is very powerful for
quantitative analysis, but what or Qualitative analysis? R has a R Qualitative Data
Analysis (RQDA) for qualitative text and PDF document analysis.

It is particularly useful for inductive thematic analysis however for deductive analysis it
is necessary to upload Categories and Codes one by one. RQDA Code Builder resolves
this.

This document demonstrates how to use RQDA() and the RQDA Code Builder on a
GNU/Linux platform. R and RQDA() can be used on other platforms like Microsoft
Windows and as the RQDA Code Builder is Python3 based it can easily be adapted for
other platform implementations.

It is necessary to have python3 installed on the platform. Use the Software Manager for
your GNU/Linux favour or install using apt from the shell terminal.

 $ sudo apt install python3
 $ sudo apt-get install python-yaml

Confrm the install and the version of python3.

 $ python3 --version
 Python 3.5.2

15.2 Qualitative Content Analysis
Qualitative Content Analysis follows a procedure (Flick, 2014):

1. Deciding the research question
2. Selecting material
3. Building a coding frame
4. Segmentation
5. Trial coding
6. Evaluating and modifying the coding frame
7. Main analysis
8. Presenting and interpreting the fndings.

15.3 Coding
Assuming that steps 1 and 2 are completed and the next step is the building of a coding
frame. There are two approaches, inductive and deductive.

The inductive approach has codes extracted directly from the source data. As the
researcher reads through each source fle (interviews, papers, etc..), he or she
highlights key lines and creates a code for it. These codes are added and modifed as
the researcher reads through all the source material. The codes are then bundled into
codes of common category. RDQA() is very suitable for this approach.

The deductive approach involves the researcher developing codes and categories in
advance, in a scheme. These codes are then applied to the source data. As RDQA()

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

file:///home/dobriain/Dropbox/FOSS/R/Diarmuid_Notes/rqda/RQDA-Code-Builder_v1.4.tgz
https://cloud.r-project.org/web/packages/RQDA/index.html
https://cloud.r-project.org/web/packages/RQDA/index.html

Programming & Data Analysis with ‘R’ 183

expects codes to be added one by one through the graphical interface this is difcult.
Application of the rqda_code_builder.py program described here helps to fx this.

15.4 Starting RQDA()
Create a directory as a parent for the project and open a command shell in it. Within the
parent directory create a Sources directory. Place the source fles in the Sources
directory. In this example you can see two source fles but typically this would be many
fles associated with interviews, observation logs, etc..

 $ mkdir Sources

 $ ls Sources
 Colours_of_Health_and_Sickness_Sociocult.txt
 Psychological_Properties_Of_Colours.txt

Run the 'R' program.

 $ R --quiet

 >

15.4.1 Add the RQDA library

Add the RDQA() library, this is the program that allows the researcher to analyse the
data.

 > library(RQDA)
 Loading required package: RSQLite
 Loading required package: gWidgetsRGtk2
 Loading required package: RGtk2
 Loading required package: gWidgets
 Loading required package: cairoDevice
 Loading required package: DBI

 Use 'RQDA()' to start the programme.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 60: Sources directory

184 Programming & Data Analysis with ‘R’

The graphical tool starts.

15.4.2 Create a Project

In the Graphical User Interface (GUI):

• Click New Project.
• Enter a name in the desired path: Colour_project.rqda. - Click OK.

A new project fle appears in the directory.

You may also notice in the R shell that the following command is executed.

 > [1] "~/Colour_project.rqda"

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 61: RQDA() GUI

Illustration 62: Project SQLite database

Programming & Data Analysis with ‘R’ 185

Name the coder
Select the Settings tab and defne the Name of Coder in the frst box.

15.4.3 Import source fles to the project

The next step is to import source data. This can be achieved either through the GUI one
by one, or in bulk using the R function write.FileList() in the R shell.

Using the GUI
To use the GUI, select:

• The Files tab followed by the Import button.
• Browse to each fle in turn and select.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 63: RQDA() interface

186 Programming & Data Analysis with ‘R’

Using the R shell
An alternative mechanism is to use the R shell. This command using the
addFilesFromDir() function selects the fles in the Sources directory that match the
pattern. In this case all fles that end in the pattern .txt.

Execute the command:

 > addFilesFromDir('Sources', pattern = "*.txt$")

If you now check the GUI by clicking the Files tab, you will notice that the fles from the
Sources directory have been imported. Alternatively use the getFiles() function in the R
shell to confrm.

 > getFiles()
 [1] "Colours_of_Health_and_Sickness_Sociocult.txt"
 [2] "Psychological_Properties_Of_Colours.txt"
 attr(,"class")
 [1] "RQDA.vector" "fileName"

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 64: RQDA() fles

Programming & Data Analysis with ‘R’ 187

15.5 Coding

15.5.1 Inductive approach

RQDA() is very suitable for the inductive approach however it takes signifcant time.

Select each document in turn from the Files tab, a popup appears with the text from the
source fle selected.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 65: RQDA() fles 2

188 Programming & Data Analysis with ‘R’

Illustration 66: RQDA() Codes

On the main GUI click the Codes tab and as a line is read that requires coding select
Add and create the code. For example, to add a code Black, click Add. Enter the new
code in the box provided and click OK. With text highlighted, select the appropriate
code, i.e. Black and click Mark.

As can be seen each line is tagged.

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 67: RQDA() Codes 2

Programming & Data Analysis with ‘R’ 189

15.5.2 Deductive approach

Unfortunately there does not appear to be a mechanism to import codes into the
RQDA() database in bulk. For the deductive approach a researcher may have tens or
even hundreds of categories and codes, it could be necessary to bulk upload. Extract
the fles from the RQDA-Code-Builder.tgz archive fle which will give all the fles
including the database from this example as well as the rqda_code_builder.py. Move
this fle to the parent directory of the Sources directory.

The RQDA Code Builder (rqda_code_builder.py) program resolves this.

YAML file
YAML Ain't Markup Language (YAML) is a human-readable data serialisation
language that is commonly used for confguration fles, but can be used in many
applications where data is being stored or transmitted. It is an ideal format for mapping
of categories and codes.

The example project demonstrates how to deduct the following code schema as a
YAML fle in the same directory:

 $ cat RQDA_codes.yaml
 RQDA_codes.yaml

 Colour:
 - 'Red'
 - 'Green'
 - 'Yellow'
 - 'Grey'
 - 'Black'
 - 'White'
 - 'Black'
 - 'Blue'
 - 'Pink'
 - 'Brown'
 - 'Purple'

 Psychological Properties:
 - 'Physical'
 - 'Intellectual'
 - 'Emotional'
 - 'Balance'
 - 'Spiritual'

 Floral Metaphors:
 - 'Daisy'
 - 'Juicy'
 - 'Apple'
 - 'Berry'
 - 'Flower'
 - 'Peach'

 Human Characteristics:
 - 'Divinity'
 - 'Eternity'
 - 'Infinity'

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 68: RQDA() Code Builder

http://www.obriain.com/training/R/code/RQDA-Code-Builder.tgz

190 Programming & Data Analysis with ‘R’

Executing the RQDA Code Builder
Before executing the RQDA Code Builder it is important to shut down the RQDA()
application by clicking on the X in the top right corner and selecting OK to the Really
EXIT? question.

The fle that the RQDA() program uses to store data is an SQLite database. It is the fle
that was created at the beginning when the project was opened (Colour_project.rqda).
The RQDA Code Builder reads the YAML formatted schema and uploads it to the
database. It also creates a Structured Query Language (SQL) log of each SQL
command it executes and more importantly develops a set of R commands that match
text blocks to the codes. It has the following switches:

 -c|--coder [Name] - Define coder, must match that from RQDA() settings.

 -d|--database [DB] - Define path to SQLite3 database file.

 -y|--yaml [YAML] - Define path to YAML code file.

Execute the command, check it is version 1.4 or greater and execute with the relevant
switches as demonstrated.

 $ cat rqda_code_builder.py | grep '# Version' | awk {'print $4'}
 1.4

 $./rqda_code_builder.py -c JohnnyResearcher -d Colour_project.rqda -y RQDA_codes.yaml

 RQDA Code Builder

 Connecting to the SQLite3 database Colour_project.rqda.
 Connected to the SQLite3 database Colour_project.rqda. Uploading..

 Upload completed

 A full list of SDL commands executed can be seen in the 'RQDA_SQL.log' file.
 You can restart the RQDA() library with the following command in the R shell:

 > RQDA()

Restart RQDA() as instructed.

 > RQDA()

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 69: RQDA() Exit

Programming & Data Analysis with ‘R’ 191

Two new fles are created, RQDA_SQL.log which is a log of the SQL commands
executed on the database as well as RQDA_R_search_cmds.R which is a list of
commands that will be executed in the R shell to apply the deductive codes to the
source fles.

Applying the RQDA 'R' search commands
To apply the RQDA search commands execute the following command in the R shell.
This bulk executes the commands in the RQDA_R_search_cmds.R fle on all the
source fles.

 > source('RQDA_R_search_cmds.R')

15.6 Reviewing Coding
Before diving into the coding within the various source fles, review the coding statistics.
It can be seen from this extract that 385 code blocks were applied to the source texts.

 > getCodingTable()
 rowid cid fid codename filename
 1 4 1 2 Physical Psychological_Properties_Of_Colours.txt
 2 5 1 2 Physical Psychological_Properties_Of_Colours.txt
 3 6 1 2 Physical Psychological_Properties_Of_Colours.txt
 4 7 1 2 Physical Psychological_Properties_Of_Colours.txt
 5 8 1 2 Physical Psychological_Properties_Of_Colours.txt
 6 9 1 2 Physical Psychological_Properties_Of_Colours.txt

 382 385 24 1 Eternity Colours_of_Health_and_Sickness_Sociocult.txt
 383 386 24 1 Eternity Colours_of_Health_and_Sickness_Sociocult.txt
 384 387 25 1 Infinity Colours_of_Health_and_Sickness_Sociocult.txt
 385 388 25 1 Infinity Colours_of_Health_and_Sickness_Sociocult.txt
 index1 index2 CodingLength
 1 399 534 135
 2 4109 4197 88
 3 4739 4842 103
 4 848 977 129
 5 1454 1587 133
 6 4257 4394 137

 382 3189 3301 112
 383 15902 16020 118
 384 3189 3301 112
 385 15902 16020 118

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 70: RQDA() Search commands and Log fles

192 Programming & Data Analysis with ‘R’

15.7 Reviewing the coded blocks
Selecting the Codes tab from the RQDA() GUI and select any particular code. In this
case Brown was selected. Click on the Coding button and a popup appears with each
instance of sentences within the source fles where the word Brown or brown appeared,
such sentences were tagged with the Brown tag. The popup also shows for each block
the source fle from where the sentence appeared.

This performs an initial deductive coding. There may be quirks however, what if one
interviewee kept referring to Beige but the researcher wanted to code it as Brown? or
the researcher has a code Colour and some of the transcripts were transcribed in
American English. In this case sentences with Color should be coded with Colour.

Carry out additional coding of sentences like this.

First fnd the CID of the Code for Brown. Select the Codes tab, click on the Brown code
and its CID can be seen at the top of the pane as shown by the red circle in Illustration
72.

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 71: Reviewing the coded blocks

Programming & Data Analysis with ‘R’ 193

Execute the following two lines in the R shell and they will be added to the main coding
already performed.

 > codingBySearch("Beige",fid=getFileIds(),cid=21,seperator="[.!?]")

 > codingBySearch("beige",fid=getFileIds(),cid=21,seperator="[.!?]")

15.8 Visualising categories
There are some tools built into RQDA() for visualisation. For example using the D3.js
JavaScript library for manipulating data. D3 helps bring data to life visually using
Hypertext Markup Language (HTML), Scalable Vector Graphics (SVG), and Cascading
Style Sheets (CSS).

15.8.1 Installing d3Network

On the R Shell install D3.js and activate the d3Network within R.

 > install.packages('d3Network')

 > library(d3Network)

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 72: Find the CID of a code

194 Programming & Data Analysis with ‘R’

15.8.2 Visualising Categories

Select the Categories tab, highlight a Category or many Categories using the ctrl button
and right click. Scroll down to the Plot selected code categories with d3. A HTML page
will pop-up with diagrams like these:

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Illustration 73: Plot selected code categories with d3

Programming & Data Analysis with ‘R’ 195

15.9 Summary
There are a lot more features to R and RQDA() that can aid qualitative research. The
additional RQDA Code Builder program (rqda_code_builder.py) allows the researcher
to deductively pre-build a code schema and apply it automatically.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

Illustration 74: d3 plot

196 Programming & Data Analysis with ‘R’

16. Bibliography

Bates, Douglas,. Maechler, Martin., Bolker, Ben., Walker, Steve. (2015). Fitting Linear Mixed-
Efects Models Using lme4. Journal of Statistical Software, 67(1), 1-48.
doi:10.18637/jss.v067.i01.

Crawley, J. Michael. (2012). The R Book, Second Edition. Wiley. 7 Nov 2012. ISBN: 978-0-470-
97392-9.

Dalgaard, Peter. (2008). Introductory Statistics with R, Second Edition. Springer. 15 Aug 2008
ISBN-13: 978-0-387-79053-4.

Gandrud, Christopher. (2015). d3Network: Tools for creating D3 JavaScript network, tree,
dendrogram, and Sankey graphs from R[online]. Available at:
https://CRAN.R-project.org/package=d3Network. R package version 0.5.2.1.

Huang, Ronggui. (2018). RQDA: R-based Qualitative Data Analysis [online]. Available at:
http://rqda.r-forge.r-project.org. R package version 0.3-1.

Low, Matt and Hiron, Matthew. (2018). Programming & Statistics in the R Computer Language
(Course slides). Department of Ecology, Swedish University of Agricultural Sciences, Uppsala,
Sweden, Sep 2018.

Pinheiro J, Bates D, DebRoy S, Sarkar D and R Core Team (2018). nlme: Linear and Nonlinear
Mixed Efects Models [online]. Available at: https://CRAN.R-project.org/package=nlme. R
package version 3.1-137.

R Core Team (2018). R: A language and environment for statistical computing. R Foundation for
Statistical Computing [online]. Available: https://www.R-project.org. Vienna, Austria.

Short, Tom. (2011). R Reference Card. EPRI PEAC, 07 Nov 2011.

Teetor, Paul. (2011). R Cookbook. O'Reilly Media Inc. Mar 2011. ISBN: 978-0-596-80915-7.
March 2011.

Uwe Flick. (2014). An Introduction to Qualitative Research. 5th Edition. ISBN: 978-1-4462-
6778-3. Sage Publications Ltd. 20 Jan 2014.

Wickham, Hadley (2018). scales: Scale Functions for Visualisation [online]. Available at: https://
CRAN.R-project.org/package=scales. R package version 1.0.0.

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 197

17. GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document "free" in the sense of freedom: to assure everyone the efective
freedom to copy and redistribute it, with or without modifying it, either commercially or
non-commercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifcations
made by others.

This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The "Document", below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as
"you". You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A "Modifed Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifcations and/or translated into another
language.

A "Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document's overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License. If a section does not ft the above defnition of Secondary

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

http://fsf.org/

198 Programming & Data Analysis with ‘R’

then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in
a format whose specifcation is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent fle format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modifcation by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of
text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed for
human modifcation. Examples of transparent image formats include PNG, XCF and
JPG. Opaque formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, "Title Page"
means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to
the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specifc section name mentioned below,
such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To
"Preserve the Title" of such a section when you modify the Document means that it
remains a section "Entitled XYZ" according to this defnition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no efect on
the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 199

notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for
copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document's license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to ft legibly, you should put the
frst ones listed (as many as ft reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which the
general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you
use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

200 Programming & Data Analysis with ‘R’

4. MODIFICATIONS
You may copy and distribute a Modifed Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modifed Version under
precisely this License, with the Modifed Version flling the role of the Document, thus
licensing distribution and modifcation of the Modifed Version to whoever possesses a
copy of it. In addition, you must do these things in the Modifed Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifcations in the Modifed Version, together with at least
fve of the principal authors of the Document (all of its principal authors, if it has
fewer than fve), unless they release you from this requirement.

• C. State on the Title page the name of the publisher of the Modifed Version, as
the publisher.

• D. Preserve all the copyright notices of the Document.

• E. Add an appropriate copyright notice for your modifcations adjacent to the
other copyright notices.

• F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modifed Version under the terms of this License, in
the form shown in the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document's license notice.

• H. Include an unaltered copy of this License.

• I. Preserve the section Entitled "History", Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modifed Version
as given on the Title Page. If there is no section Entitled "History" in the
Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modifed
Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access
to a Transparent copy of the Document, and likewise the network locations
given in the Document for previous versions it was based on. These may be
placed in the "History" section. You may omit a network location for a work that
was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the
Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part of
the section titles.

• M. Delete any section Entitled "Endorsements". Such a section may not be
included in the Modifed Version.

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 201

• N. Do not retitle any existing section to be Entitled "Endorsements" or to confict
in title with any Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modifed Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modifed Version's license notice. These titles
must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but
endorsements of your Modifed Version by various parties—for example, statements of
peer review or that the text has been approved by an organisation as the authoritative
defnition of a standard.

You may add a passage of up to fve words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modifed
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modifed
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defned in section 4 above for modifed versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodifed, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but diferent contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled "History" in the various
original documents, forming one section Entitled "History"; likewise combine any
sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You
must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow
the rules of this License for verbatim copying of each of the documents in all other
respects.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

202 Programming & Data Analysis with ‘R’

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
"aggregate" if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation's users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document's Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modifcation, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation and the
original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or
"History", the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and fnally terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to 60 days after the
cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifes you of the violation by some reasonable means, this is the
frst time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

Programming & Data Analysis with ‘R’ 203

terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may difer in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifes that a particular numbered version of this License "or any later version"
applies to it, you have the option of following the terms and conditions either of that
specifed version or of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version number of this
License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifes that a proxy can decide which future
versions of this License can be used, that proxy's public statement of acceptance of a
version permanently authorises you to choose that version for the Document.

11. RELICENSING
"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for
anybody to edit those works. A public wiki that anybody can edit is an example of such
a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means
any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license
published by Creative Commons Corporation, a not-for-proft corporation with a
principal place of business in San Francisco, California, as well as future copyleft
versions of that license published by that same organisation.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works
that were frst published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-
BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

02 Oct 2018 Programming & Data Analysis with ‘R’ Data Analytics

http://www.gnu.org/copyleft/

204 Programming & Data Analysis with ‘R’

Data Analytics Programming & Data Analysis with ‘R’ 02 Oct 2018

