

TEL-3214 Computer Communication Networks

Diarmuid Ó Briain CEng, FIEI, FIET, CISSP

Diarmuid O'Briain

- Defence Forces
 - Communications and Information Services Corps
- US Robotics
 - Technical Trainer
- 3Com
 - Network Engineering Manager
- UTStarcom
 - Technical Services Manager
- Ripple Communications Limited
 - Chief Technical Officer
- Dublin and Carlow Institutes of Technology
 - Associate Lecturer
- Makerere University
 - College of Engineering, Design, Art, and Technology
 - Associate Lecturer

MAKERERE UNIVERSITY

Diarmuid O'Briain

- Chartered Engineer (CEng)
- Fellow of Engineers Ireland (FIEI)
- Fellow of the Institution of Engineering & Technology (FIET)
- Member Uganda Institute of Professional Engineers (MUIPE)

UGANDA INSTITUTION OF PROFESSIONAL ENGINEERS

Diarmuid Ó Briain

Course webpage

http://www.obriain.com/training/TEL3214/

Department of Electrical and Computer Engineering, College of Engineering, Design, Art and Technology, Makerere University

C²S Consulting | Training | TEL3214

Home Blog Primers Training Papers Links About

TEL3214 - Computer Communications Networks

Last updated: :	28-12-2015 21:00
-----------------	------------------

Course sections

- Lecture set 1 Introduction to Computer Networks
- Lecture set 2 Internetworking Models
- Lecture set 3 Transmission Media: Copper and Fibre
- Lecture set 4 Establishing Network Training Emulation (NTE)
- Lecture set 5 Switching
- Lecture set 6 Internet Protocol
- Lecture set 7 Routing
- Lecture set 8 Wireless LAN
- Lecture set 9 Applications
- Lecture set 10 Network Security
- Lecture set 11 Firewalls
- Lecture set 12 Software Defined Networking

TEL3214 Computer Communication Networks

Lecture 01

Introduction to Networking

Diarmuid Ó Briain CEng, FIEI, FIET, CISSP

OSI Layer

7	Application	File, Print, database & Application services	
6	Presentation	Data encryption, compression & translation services	
5	Session	Dialogue control	
4	Transport	End to End connection	
3	Network	Routing	
2	Data Link	Framing, Bridging, Switching	
1	Physical	Physical network topology	

The Functions of Networking

- Demand for high speed Internet access.
- The data and telecommunications industries struggle with the continuous demand for ever increasing speeds.
- Those working in the field also require knowledge of technologies that were traditionally separated.

- Communications activity associated with distributing or exchanging information.
- Telecommunications technology of communications at a distance that permits information to be created anywhere and used everywhere with little delay.
- Today it, involves
 - Data: digital and analogue.
 - Voice: spoken word.
 - Video: telecommunication imaging.

- Must have a message
- Message must have a transmitter
- Message must have a medium
- Message must be understood
- Message must have some level of security

Source SystemDestination SystemSource > Transmitter > Transmission > Receiver > Destination123456Workstation/PCMedium

Data System Utilisation	Addressing	Multiplexing Capacity Congestion Control	
Interfacing	Routing	Router / Server / Media Control / Protocol	
Signal Generation	Recovery	Repeater/Amplifier; Propagation; Interoperable	
Synchronisation	Message Formatting	Signal Begins & Ends	
Exchange Management	Security	Nature and Timing of Signal	
Error Detection & Correction	Network Manageme <mark>nt</mark>	Signal Distortion Bit Error	
Flow Control		Routing Delivery Error Feedback	

What is a network ?

Components of a Network

Resource-Sharing

- Data and Applications
- Resources
- Network Storage
- Backup Devices

- E-Mail
 - Users can communicate information electronically in a timely manor not only to other users on the same network but also to other users outside the network.
- Web Browser
 - This application allows access to the Intranet websites.
- Instant Messaging
 - Such applications allow users to send instant messages to other users, using applications like AOL Yahoo or MSN messenger.
- Collaboration
 - Working together as individuals or groups is accomplished much more easily when those persons collaborating are part of a network. Individuals can create their part of a data file and transmit it to a central resource for compilation.
- Database
 - Databases allow users on a network to store information in central locations (file servers) so that others on the network can easily retrieve selected information in formats that are most useful to them.

- While networks can be defined and compared in a number of ways, a commonly used set of characteristics can be used to describe various network types.
 - Cost
 - Security
 - Availability
 - Scalability
 - Reliability
 - Topology

- There are also a number of applications that provide administrators of networks with a means to monitor the network
 - Packet Sniffer or Network Analyzer
 - Computer software application or computer hardware that can intercept and log traffic passing over a digital network or part of a network.
 - Network Management
 - Involves configuring, monitoring and troubleshooting, and also upgrading as networks grow to accommodate more users and communication requirements.
 - HP Openview (HPOV)

Common Topologies - Bus

Common Topologies - Ring

Diarmuid Ó Briain

Common Topologies - Star

Common Topologies – Star Bus

Diarmuid Ó Briain

Common Topologies – Tree

Common Topologies - Mesh

- Partially Connected
- Fully Connected

- Simplex
 - Information flows in only one direction.
- Half-duplex
 - Information flows in two directions, but only in one direction at a time.
- Full-duplex
 - Information flows in two directions at the same time.

Data Transmission

- Successful transmission of data depends on:
 - The quality of the signal being transmitted.
 - Characteristics of the transmission medium.

- Data rate
- Bandwidth
- Noise
- Error rate

Major Computer Components

- 1. DIMM memory sockets
- 2. Secondary EIDE channel connector
- 3. Microprocessor
- 4. Power supply
- 5. Power input connector
- 6. Battery socket
- 7. 3.3-V power input connector
- 8. Diskette drive interface connector
- 9. Primary EIDE channel connector
- 10. Control panel connector
- 11. System board jumpers
- 12. ISA expansion card connectors
- 13. PCI expansion card connectors

Major Computer Components

- 1. Power supply cooling fan
- 2. Cooling fan
- 3. Power input
- 4. PS/2 mouse connector
- 5. Keyboard connector
- 6. USB ports
- 7. Serial port
- 8. Parallel port
- 9. Monitor port

• The following are commonly used computer measurement terms:

- Binary digit (bit)
 - The smallest unit of data in a computer. A bit equals 1 or 0 in the binary format in which data is processed by computers.
- Byte (B)
 - A byte is a unit of measure used to describe the size of a data file, the amount of space on a disk or other storage medium, or the amount of data being sent over a network. 1 B = 8 bits of data.

- Kilobit (kb) 10³
- Megabit (Mb) 10⁶
- Gigabit (Gb) 109
- Terabit (Tb)
- Petabit (Pb)

Name	SI Meaning 🥏	Binary meaning	Size difference	
Kilobyte (kB)	$10^3 = 1000^1$	$2^{10} = 1024^{1}$	2.40%	
Megabyte (MB)	$10^6 = 1000^2$	$2^{20} = 1024^2$	4.86%	
Gigabyte (GB)	$10^9 = 1000^3$	$2^{30} = 1024^3$	7.37%	
Terabyte (TB)	$10^{12} = 1000^4$	$2^{40} = 1024^4$	9.95%	
Petabyte (PB)	$10^{15} = 1000^5$	$2^{50} = 1024^{5}$	12.59%	

Speed (Hertz)

- Kilohertz (kHz) 10³
- Megahertz (MHz) 10⁶
- Gigahertz (GHz) 109

- Computer processors are getting faster all the time.
 - 1980's typically ran under 10 MHz (the original IBM Pc was 4.77 MHz).
 - Today Gigahertz (GHz).

- NVRAM
 - Non-volatile random access memory (NVRAM) is the general name used to describe any type of random access memory which does not lose its information when power is turned off.
- Flash memory
 - Flash memory is non-volatile computer memory that can be electrically erased and reprogrammed. Flash memory costs far less than byte-programmable EEPROM and therefore has become the dominant technology wherever a significant amount of non-volatile, solid-state storage is needed.
- Switches and routers tend to use flash instead of a hard drive, the cost is higher and the capacity is less, but this is more than offset by the gain in reliability.

- An operating system (OS)
 - set of computer programs that manage the hardware and software.
 - processes raw system and user input
 - allocates resources and managing tasks
 - controlling and allocating memory
 - prioritising system requests
 - controlling input and output devices
 - facilitating networking and managing file systems
 - platform for application software.

• Process management

- Every program running on a computer, be it background services or applications, is a process. Modern operating systems enable concurrent execution of many processes at once via multitasking even with one CPU.
- Memory management
 - Current computer architectures arrange the computer's memory in a hierarchical manner, starting from the fastest registers, CPU cache, random access memory and disk storage.
- Disk and file systems
 - Modern file systems comprise a hierarchy of directories. While the idea is conceptually similar across all general-purpose file systems, some differences in implementation exist. Two noticeable examples of this are the character used to separate directories, and case sensitivity.

- Networking
- Security
- Graphical user interfaces
 - X Server
- Device drivers

• UNIX®

- UNIX is a computer operating system originally developed in the 1960s and 1970s by a group of AT&T employees at Bell Labs including Ken Thompson, Dennis Ritchie and Douglas Mcllroy
- Today's UNIX systems are split into various branches, developed over time by AT&T as well as various commercial vendors and non-profit organisations.
- Examples include: Sun Solaris, HP UX, SCO UNIX, BSD UNIX.

• Linux

- Linux is a UNIX-like computer operating system family, as well as one of the most prominent examples of free software and open source development; its underlying source code can be modified, used, and redistributed by anyone, freely.
- Examples include: Ubuntu, Debian, Redhat

• Mac OS X

- Mac OS X is a line of proprietary, graphical operating systems developed, marketed, and sold by Apple Inc., the latest of which is pre-loaded on all currently shipping Macintosh computers.
- Mac OS X is the successor to the original Mac OS, which had been Apple's primary operating system since 1984.
- Unlike its predecessor, Mac OS X is a UNIX-like operating system.
- BSD
 - Berkeley Software Distribution (BSD, sometimes called Berkeley UNIX) is the UNIX derivative distributed by the University of California, Berkeley, starting in the 1970s.

- BSD should not be used to refer to the different BSD like operating system around today.
- Instead they should be called BSD like or BSD descendants.

- Microsoft Windows
 - Microsoft Windows is the name of several families of proprietary software operating systems by Microsoft.
 - Microsoft first introduced an operating environment named Windows in November 1985 as an add-on to MS-DOS in response to the growing interest in graphical user interfaces (GUI).
 - Microsoft Windows eventually came to dominate the world's personal computer market, overtaking OS/2 and Mac OS which had been introduced earlier.

Thank you

Diarmuid Ó Briain CEng, FIEI, FIET, CISSP