
INTERNATIONAL CONFERENCE
ON INFORMATION & COMMUNICATION TECHNOLOGIES

(ICICT-2017)

Software Defined Networking (SDN)
Ambrose AHURRA1, Kenneth MAATHE KAMURALI2,

Diarmuid Ó BRIAIN3 , Dorothy OKELLO4

netLabs!UG, Makerere University, Kampala, Uganda

1Email: ndahura12@gmail.com, 2Email:maathek08@gmail.com,
3Email:diarmuid@obriain.com, 4Email:dkokello@cedat.mak.ac.ug

Software Defined Networking (SDN)

Ambrose AHURRA1, Kenneth MAATHE KAMURALI2,

Diarmuid Ó BRIAIN3 , Dorothy OKELLO4

netLabs!UG, Makerere University, Kampala, Uganda
1Email: ndahura12@gmail.com, 2Email:maathek08@gmail.com,

3Email:diarmuid@obriain.com, 4Email:dkokello@cedat.mak.ac.ug

Abstract: The legacy network has just about
run its last mile, advancements in cloud
computing, virtualisation and data centres
have led to an exponential growth in data
traffic that will soon over-power legacy
networks.

Software Defined Networks (SDN) are a
new networking paradigm in which there is
separation of the forwarding and control
planes. The control is migrated to a separate
entity called the SDN Controller, Leaving
the forwarding plane with bare-metal and
virtual switches (switches devoid of control
logic) to carry out packet forwarding. SDN

allows external applications to program the
network via an Application Programmable
Interface (API). The most popular SDN
protocol is OpenFlow. OpenvSwitch (OvS)
is the most widely used OpenFlow switch.

This paper will, investigate the operation
and use cases of SDN, demonstrate
programmability using the API. Through the
building of a physical testbed using
Mikrotik RB750GL switches, Raspberry Pi
single-board computers and GNU/Linux
workstations.

Key Words: SDN, OvS, Mikrotik, ODL.

1 Introduction

SDN seeks to enhance network
orchestration and management through
separation of the control and forwarding
planes. SDN can be implemented using both
virtual software switches and hardware
switches running the OpenFlow protocol.
The current networks are heavily reliant on
header encapsulation that keeps eating into
the Maximum Transfer Unit (MTU) size of
packets. The continuing advancements in
cloud computing, Internet of Things (IoT)
and Virtualisation require a network that is
highly flexible and scalable. Illustration 1
demonstrates the logical difference between
legacy networks and SDN.

The SDN architecture is demonstrated in
Illustration 2, it shows a three tiered
architecture where the infrastructure layer is
separated from the control layer. The control
layer contains the network services in the
form of a network policy that controls
infrastructure layer devices using the
OpenFlow protocol. The network policy can
be manipulated by applications in the
application layer and thereby they control
the switching functionality in the
infrastructure layer.

2 Objectives

• To build a physical testbed and
network to demonstrate how SDN
operates.

• Compare the SDN model to legacy
network models using performance
parameters such as bandwidth,
latency and reliability.

• Demonstrate programmability
through pushing flows, retrieving
network statics using the RESTful
(REST) API.

3 Methodology

3.1 OvS on Raspberry Pi

As an experimental approach the OvS is
implemented on the Raspberry Pi single
board computer. Since the Raspberry Pi has
only one on-board Ethernet interface
additional interfaces are provided using
USB to Ethernet adapters.

Requirements

Raspberry Pi 2B, GNU/Linux Minibian
jessie 2015-11-12 release Kernel 4.1.7-v7+,
USB to Ethernet adapters, OvSh 2.5.0, ODL
Beryllium SR4.

On a fresh install of the Minibian
GNU/Linux OS download the OvS.

Illustration 2: Basic SDN architecture

Illustration 1: Legacy Vs SDN network set-up

root@ovs2:~# wget http://openvswitch.org/ releases/openvswitch-2.5.0.tar.gz
root@ovs2:~# tar -xzvf openvswitch\\ 2.5.0.tar.gz
root@ovs2:~# cd openvswitch-2.5.0
root@ovs2:~# apt-get update

Install build dependencies.

root@ovs2:~# apt-get install python-simplejson python-qt4 libssl-dev python-
twisted-conch automake autoconf gcc uml-utilities libtool build-essential pkg-
config

Install the GNU/Linux headers to be used used for building OvS kernel module.

root@ovs2:~# apt-get install linux-\\ headers-3.16.0-4-rpi
root@ovs2:~# ./boot.sh
root@ovs2:~# ./configure –with linux=/lib/modules/3.16.0-4-rpi/build
root@ovs2:~# make
root@ovs2:~# make install

After the install, the kernel module is loaded
and OvS is started, a start script is passed to
the ‘rc.local’ file to always load the the
kernel module and start OvS every time the
Raspberry Pi boots. After this is complete a

check with the ‘ovs-vsctl show’ command
returned the data path of the switch.
‘modinfo openvswitch’ returns the details of
the kernel module.

root@ovs2:~# ovs-vsctl show e65a62f4-53a6-481d-a395-4f2419d80ce9
root@ovs2:~# modinfo openvswitch
filename: /lib/modules/4.1.7 v7+/kernel/net/openvswitch/openvswitch.ko
license: GPL
description: Open vSwitch switching datapath
srcversion: F83021F5CFFAB96ADDA1C75
depends:
intree: Y
vermagic: 4.1.7-v7+ SMP preempt mod_unload modversions ARMv7

3.2 OpenvSwitch on Mikrotik RB75GL

For a more realistic examination of SDN
and OpenFlow, industry standard switching
hardware was chosen. The inbuilt router OS
of the RB750GL was replaced by the open
source router firmware called OpenWrt as
demonstrated in Illustration 4, Using the
‘Chaos calmer’ release and with the OvS
kernel module loaded, the RB750GL was
converted into an OpenFlow enabled
switch.

Brief description of the RB750GL

As can be seen in Error: Reference source
not found the RB750GL is single switch
Small Office – Home Office (SOHO) device
with an Atheros switch and Central

Illustration 3: RB750GL Layout

Processing Unit (CPU). It has five Gigabit
Ethernet ports.

Requirements

RouterBoard 750GL, OpenWrt Chaos
Calmer release, OpenvSwitch opkg
package.

OpenWrt is booted onto the router using a
Trivial File Transfer Protocol (TFTP) server
and router Nand flashed using the
wget2nand utility as demonstrated in
Illustration 4.

The OpenFlow module is then installed.

root@OpenWrt:~# opkg update
root@OpenWrt:~# opkg install openvswitch-common openvswitch-ipsec /openvswitch-
switch

Confirming the OvS is running properly, this can be seen with the return of the OvS
Datapath ID.

root@OpenWrt:~# ovs-vsctl show
90039771-aa22-42ed-926d-3b773d7d30ab
root@OpenWrt:~#

Finally the network is set up by configuring all the five interfaces. Each port is configured
as a single port as follows;

Ethernet/Poe
config switch_vlan
 option device 'switch0'
 option vlan '1'
 option ports '0t 1'
Ethernet 2
config switch_vlan
 option device 'switch0'
 option vlan '2'
 option ports '0t 2'

The rest of the ports are configured in a similar fashion. The resulting interfaces are named
following the convention eth0.vlan_id. The OvS is configured as follows;

Create bridge
root@OpenWrt:~# ovs-vsctl add-br bro
Adding interfaces to the bridge
root@OpenWrt:~# ovs-vsctl add-port bro eth0.2
root@OpenWrt:~# ovs-vsctl add-port bro eth0.3
root@OpenWrt:~# ovs-vsctl add-port bro eth0.4
root@OpenWrt:~# ovs-vsctl add-port bro eth0.5

Illustration 4: OpenWrt

Checking the OvS configuration results in the following output:

root@OpenWrt:~# ovs-vsctl show 03d9485f-a5de-4d04-81eb-ce642031a96b
 Bridge bro

 Controller "tcp:192.168.5.10"
 Port "eth0.2"
 Interface "eth0.2"
 Port "eth0.3"
 Interface "eth0.3"
 Port bro
 Interface bro
 type: internal
 Port "eth0.4"
 Interface "eth0.4"
 Port "eth0.5"
 Interface "eth0.5"

Check the kernel module. (Ttsubo, n.d)

root@OpenWrt:~# modinfo openvswitch
module: /lib/modules/3.10.49/openvswitch.ko
license: GPL
depends: libcrc32c, gre

4 Technology description

OpenFlow is the protocol that enables the
SDN controller to talk to both virtualised
and hardware switches. The communication
path is via a Secure Sockets Layer (SSL)
channel on the Transmission Control
Protocol (TCP) port 6633 as demonstrated
in Illustration 5.

Illustration 5: OpenFlow communications

The SDN controller pushes flows into the
flow table to enable communication among
the hosts. (Software Defined Networking
(SDN), n.d.)

5 Developments

The OpenFlow protocol is now on version
1.4 while the OvS is on version 2.7.0. The
ODL has had six releases currently on
Carbon. Universities like Stanford
University have already deployed SDN. The
list of vendors producing OpenFlow enabled
Hardware for vitualisation and Data Centre
applications has grown including among
others HPE, IBM, Extreme Networks.

6 Results

An initial laboratory network was
established first using the Raspberry Pi OvS
and then the Mikrotik OpenFlow switch and
several hosts. ODL displays the network
with the hosts as in Illustration 6.

Illustration 6: ODL network topology

6.1 Programming the Switch

The most basic way of pushing flows to the
Switches in the Forwarding plane is using
the curl utility in GNU/Linux.

Here are the details of the fields for cURL
command.

--user <user-name>:<password>:

Specifies the username and password to use
for ODL authentication.

-H Accept: <response-content-type>:

Specifies the content type that is expected in
the response body for the request. Usually
Accept: application/xml.

-H Content-type: <request-content-type>:

Specifies the content of the request body.
Usually Content-type: <application/xml>.

-X <request-type>:

Specifies the type of request you want to
send to ODL. For example: PUT, GET or
DELETE a flow.

-d <request-body>:

Specifies the request body (like Flow,
Group, Meter, and so on). This is required
for a PUT or POST request only. (“cURL
utility,” n.d.)

$ cURL –user <username>:<password> -H <header1> -H <header2> -X <request-type>
<url> -d '<request-body>'

Tests carried out on the network yielded the
following results. Bandwidth testing on the
Raspberry Pi OvS.

From Table 1, it is evident that the
Raspberry Pi is not robust enough to be
used as a yardstick for judging SDN. To
this end, Table 2, shows results from the
more capable Mikrotik OpenFlow switch.

Table 1: Raspberry Pi OpenvSwitch Performance

Transmission Speeds in Mbits/sec

TCP UDP

Window
size

Transfer Speed Window
size

Transfer Speed

85.0KB 5.38MB 3.8 208KB 1.25 MB 1.05

128KB 4.75MB 3.79 256KB 1.25 MB 1.05

256KB 4.88MB 3.79 512KB 1.25 MB 1.05

Table 2: Mikrotik OpenFlow Switch Performance

Transmission Speeds in Mbits/sec

TCP UDP

Window
Size

Transfer Speed Window
Size

Transfer Speed

85.3KB 519 MB 434 208KB 1.25 MB 1.05

128KB 615 MB 516 256KB 1.25 MB 1.05

256KB 607 MB 509 512KB 1.25 MB 1.05

It is prudent to compare the bandwidth
performance of the Mikrotik OpenFlow
switch and a legacy Mikrotik switch.

Table 3, shows the results from the legacy
switch.

Table 3: Legacy Mikrotik Switch Performance

Transmission Speeds in Mbits/sec

TCP UDP

Window
Size

Transfer Speed Window
Size

Transfer Speed

85.3KB 112 MB 94.1 208KB 1.25 MB 1.05

128KB 112 MB 94.1 256KB 1.25 MB 1.05

256KB 112 MB 94.2 512KB 1.25 MB 1.05

7 Business Benefits

 Some of the use cases for SDN include;

Network Access Control (NAC), SDN
offers granular level control to set varying
privileges for different users and devices in
campus networks and or enterprises. (“Six
Campus Networks SDN Use Cases That
You Need to Know About,” n.d.)

Network virtualisation, creation of
abstracted virtual networks on top of
physical hardware in the cloud or in large
enterprises reducing reducing the
deployment time.

Application aware routing is vital in
scenarios where data from different
applications needs to be separated, treated
differently especially delay sensitive
applications.

Mobile Network Virtualisation is the
Ability to virtualise a mobile network thus
allowing multiple operators to share
common hardware/infrastructure for
multiple networks and allowing different
operators to control their own slice of the
network. Some deployments will not
necessarily employ complete end-to-end
virtualisation but might instead choose to
virtualise parts of the network.
(“Most Common SDN & NFV Use Cases
Defined,” n.d.)

8 Conclusion

SDN is a concept that is still taking at the
pioneering stage in the networking field.
From our investigation it is clear that
OpenFlow networks can more than hold
their own in terms of hardware
performance. However, the real value of
SDN lies in its ability to simplify both
physical and virtual network orchestration
and therefore support the development of
elastic network to complement elastic
compute and elastic storage as the basis for
the Cloud Integrated Network of the future
(Weldon, M. K, 2016).

9 Bibliography
cURL utility. (n.d.). [reference]. Retrieved April 4, 2017,
from http://www.brocade.com/content/html/en/user-
guide/bvc-14-user-guide/GUID-647D854E-84AD-42C0-
983D-71464A0DA918.html.

Most Common SDN & NFV Use Cases Defined (n.d.).
Retrieved April 3, 2017, from
https://www.sdxcentral.com/sdn-nfv-use-cases/

Opendaylight. (n.d.). Retrieved from
https://media.readthedocs.org/pdf/opendayli ht/stable-
beryllium/opendaylight.pdf

Six Campus Networks SDN Use Cases That You Need to
Know About. (n.d.). Retrieved April 3, 2017, from
https://www.sdxcentral.com/articles/contributed/sdn-use-
cases-campus-networks/2013/07/

Software Defined Networking (SDN). (n.d.). Retrieved
April 4, 2017, from http://vtmedia.eu/index-2.html

Ttsubo. (n.d.). RouterBOARD (RB750GL)の
OpenFlowOpenvSwitch. Retrieved March 1, 2017, from
http://ttsubo.hatenablog.com/entry/2014/11/02/221447

Weldon, M. K. (2016). The future X network: a Bell Labs
perspective. Crc Press.

	Software Defined Networking (SDN)
	Software Defined Networking (SDN)
	Key Words: SDN, OvS, Mikrotik, ODL.
	1 Introduction
	2 Objectives
	3 Methodology
	3.1 OvS on Raspberry Pi
	Requirements

	3.2 OpenvSwitch on Mikrotik RB75GL
	Brief description of the RB750GL
	Requirements

	4 Technology description
	5 Developments
	6 Results
	6.1 Programming the Switch

	7 Business Benefits
	8 Conclusion
	9 Bibliography

