
BSc in Telecommunications Engineering

TEL3214

Computer Communication Networks

Lecture 05

Switching

Eng Diarmuid O'Briain, CEng, CISSP

5-2 TEL3214 - Computer Communication Networks

 Copyright © 2017 C²S Consulting

TEL3214 Switching 25 Mar 2017

TEL3214 - Computer Communication Networks 5-3

Table of Contents

1. BRIDGING AND SWITCHING...5
1.1 WHY USE BRIDGES...5

2. SWITCHES..6
2.1 WHY SWITCHING...6
2.2 WHEN IS SWITCHING USED...6

3. TRANSPARENT BRIDGING..7
3.1 ADDRESS RESOLUTION...8
3.2 BROADCAST STORM..9

4. SPANNING TREE PROTOCOL...10

5. CONFIGURATION OF A BRIDGE INTERFACE ON GNU/LINUX..13
5.1 BRIDGE-UTILS..13

6. SIMPLE BRIDGED NETWORK LAB...14
6.1 REVIEWING THE BRIDGES...15

7. BRIDGE WITH A LOOP..16
7.1 REVIEW BRIDGE...18

8. SWITCHING LAB...19

9. VIRTUAL LANS (VLANS)..21
9.1 REMOVING THE PHYSICAL BOUNDARIES..21
9.2 IEEE 802.1P/Q..23

10. PROVIDER TAGGING...27

11. VLANS ON GNU/LINUX..30
11.1 VLAN LOGICAL DIAGRAM..31
11.2 VLAN EXAMPLE..32
11.3 IEEE 802.1AD SUPPORT ON GNU/LINUX..38
11.4 IEEE 802.1AD SUPPORT ON GNU/LINUX AS A SWITCH..39

12. GNU/LINUX AS A SERVICE PROVIDER BRIDGE..41

13. VLAN LAB..43

25 Mar 2017 Switching TEL3214

5-4 TEL3214 - Computer Communication Networks

Illustration Index
Illustration 1: Transparent Bridging...7

Illustration 2 Broadcast storm..9

Illustration 3: Spanning Tree Protocol (STP)...10

Illustration 4: STP Path costs..11

Illustration 5: Simple bridged network...14

Illustration 6: Bridging loop..16

Illustration 7: Switching lab..19

Illustration 8: Virtual LAN...22

Illustration 9: IEEE 802.1P/Q...23

Illustration 10: IEEE 802.1Q..24

Illustration 11: VLAN tagging...24

Illustration 12: IEEE 802.1ad...26

Illustration 13: Provider tagging...27

Illustration 14: VLANs on Linux...30

Illustration 15: VLAN logical diagram..31

Illustration 16: Example VLANs...32

Illustration 17: IEEE 802.1ad on Linux..39

Illustration 18: Service provider bridge...41

Illustration 19: VLAN Lab...43

TEL3214 Switching 25 Mar 2017

TEL3214 - Computer Communication Networks 5-5

1. Bridging and Switching

A bridge is a device used to connect two or more Local Area Networks (LAN) that use
identical LAN (Medium Access Control (MAC) Layer) protocols. The bridge acts as an
address filter, picking up frames from one LAN segment (collision domain) that are
intended for a destination on another LAN segment, and passing those frames on. The
bridge does not modify the contents of the frames and does not add anything to the
frame. The bridge operates at layer 2 of the OSI model.

The original concept of a bridge was a device that would interface similar LAN
segments and would filter and forward transmissions (pass those which were for
address not on the source segment, and not pass those whose destination address is on
the source segment). So bridges maintain tables of addresses associated with each port
on the bridge. The IEEE 802.1 standard defines bridges, often called "Ethernet bridges"
or transparent bridges, and some vendors call them Ethernet switches.

In the simplest terms, a bridge forwards (sends) frames between LAN segments that are
attached to its ports using information it finds in the OSI Model Layer 2, the Data Link
Layer (actually the IEEE 802.3 MAC layer addressing), of a frame. It ignores the other
layers of the OSI Model. In other words, it looks at the destination address field,
compares the address to its address tables for all its ports. If it finds the address
associated with a port, it sends the frame out on that port. If it does not find an address,
it sends the frame out on all ports.

In a multi-bridge IEEE LAN environment, the bridges usually communicate with each
other using the IEEE 802.1d Spanning Tree Algorithm (STA) protocol or other protocol.
Bridges have a problem when an address is unknown the frame is forwarded to all ports
off the bridge. This could cause address table problems and frame propagation in multi-
LAN environments without the spanning tree algorithm capability.

In pure bridges, there are 2 types of transparent (with or without Spanning Tree)
bridging and Source Routing bridging. Bridges are most effective when there are few
links in a network. Larger networks usually use Routers where links are numerous.
Transparent bridges are normally connectionless switching devices, which means they
themselves do not help maintain connections in the network. Transparent bridges just
send frames or frames out a port, they do not route them to another device.

1.1 Why use Bridges

• Limit number of stations (contention) transmitting on specific segments.

• Limit Size of LANs.

• Limit volume of traffic (bandwidth).

• Reduces traffic across segments of a single LAN.

• Connect multiple local LANs into a single network at a local level.

25 Mar 2017 Switching TEL3214

5-6 TEL3214 - Computer Communication Networks

2. Switches

A switch is a device designed to segment LANs with one idea in mind, increase the
bandwidth. This differs from a bridge or router whose purpose is to limit the amount of
traffic flowing between LANs (a LAN will be sometimes referred to as a collision
domain).

The Layer 2 (L2) Switch interconnects LAN segments. Traffic between the LAN
segments will be switched at near wire speed.

A bridge normally will have 2 or 3 ports, where a switch will have 4, 6, or more ports for
attaching separate LANs or collision domains. 10/100/1000 Mb/s switches have two or
more 1000 Mb/s and 4 or more 10/100 Mb/s ports. Consequently, collision domains can
have more segmentation than with a bridge.

2.1 Why Switching

• Switches operate at Layer 2 of the OSI Model.

• Switching is and advance in bridging technology.

• Switches forward frames based on the MAC layer address (the actual Network
Interface Card (NIC) address).

• Switches forward frames with very low delay time (wire speed).

• Switches, in most cases, use the IEEE 802.1d Spanning Tree Protocol (STP) or
IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) allowing for redundant
switches in the network.

• Switches will forward broadcast traffic to all LANs attached to them.

2.2 When is switching used

Switching is used when segmentation/connection of several LAN segments is required
with increased bandwidth. If security among the LANs is not a significant issue then a
switch can be used rather than a router if the following services are not required;

• Support redundant paths.

• Have intelligent frame forwarding.

• Connect to a WAN.

TEL3214 Switching 25 Mar 2017

TEL3214 - Computer Communication Networks 5-7

3. Transparent Bridging

L2 Switches and Transparent Bridges use transparent bridging to create their address
lookup tables. Transparent bridging allows a switch to learn everything it needs to know
about the location of nodes on the network without the network administrator having to
statically add entries. Transparent bridging consists of five parts or steps:

• Learning

• Flooding

• Filtering

• Forwarding

• Ageing

The switch is added to the network, and the various segments are plugged into the
switch's ports. A host with the MAC 0000.8c01.aaaa (aaaa) on the first segment sends
data to a host 0000.8c01.bbbb (bbbb) on another segment 2.

The switch gets the first frame of data from aaaa. It reads the MAC address and saves it
to the lookup table for Segment 1. The switch now knows where to find aaaa any time a
frame is addressed to it. This process is called learning.

Since the switch does not know where 0000.8c01.bbbb (bbbb) is, it sends the frame to
all of the segments except the one that it arrived on (Segment 1). When a switch sends
a frame out to all segments to find a specific node, it is called flooding.

25 Mar 2017 Switching TEL3214

Illustration 1: Transparent Bridging

5-8 TEL3214 - Computer Communication Networks

The host bbbb gets the frame and sends a frame back to aaaa in acknowledgement.
The frame from bbbb arrives at the switch. Now the switch can add the MAC address of
0000.8c01.bbbb to the lookup table for Segment 2. Since the switch already knows the
address of aaaa, it sends the frame directly to it. Because aaaa is on a different segment
than bbbb, the switch must connect the two segments to send the frame. This is known
as forwarding.

The next frame from aaaa to bbbb arrives at the switch. The switch now has the
address of bbbb in its tables, so it forwards the frame directly to bbbb. 0000.8c01.cccc
(cccc) sends information to the switch for aaaa. The switch looks at the MAC address
for cccc and adds it to the lookup table for Segment 1. The switch already has the
address for aaaa and determines that both nodes are on the same segment, so it does
not need to connect Segment 1 to another segment for the data to travel from cccc to
aaaa. Therefore, the switch will ignore frames travelling between nodes on the same
segment. This is filtering.

Learning and flooding continue as the switch adds nodes to the lookup tables. Most
switches have plenty of memory in a switch for maintaining the lookup tables; but to
optimise the use of this memory, they still remove older information so that the switch
doesn't waste time searching through stale addresses. To do this, switches use a
technique called ageing. Basically, when an entry is added to the lookup table for a
node, it is given a time-stamp. Each time a frame is received from a node, the time-
stamp is updated. The switch has a user-configurable timer that erases the entry after a
certain amount of time with no activity from that node. This frees up valuable memory
resources for other entries. As can be seen, transparent bridging is a great and
essentially maintenance-free way to add and manage all the information a switch needs.

In the example, two nodes share segment 1, while the switch creates independent
segments for bbbb and dddd. In an ideal LAN-switched network, every node would
have its own segment. This would eliminate the possibility of collisions and also the
need for filtering.

3.1 Address Resolution

To allow forwarding and filtering of frames at wire speed, LAN switches should be able
to decode MAC addresses very quickly. Since Central Processing Unit (CPU) based
lookups are expensive, hardware solutions may be used. Switches maintain address
tables just like transparent bridges. They learn the addresses of their neighbours, and
when a frame is to be forwarded, they first look up the address table and broadcast only
if no entry corresponding to that destination is found. Stations that have not transmitted
recently are aged out. This way a small address table can be maintained and the switch
can relearn if a station starts transmitting again.

TEL3214 Switching 25 Mar 2017

TEL3214 - Computer Communication Networks 5-9

3.2 Broadcast Storm

In the example shown in the diagram, even if one of the switches fails, the network will
continue to function. The loop provides redundancy, effectively eliminating a single point
of failure. However it introduces a new problem. With all of the switches now connected
in a loop, a frame from a node could quite possibly come to a switch from two different
segments. For example, imagine that 0000.8c01.bbbb (bbbb) is connected to Switch A,
and needs to communicate with 0000.8c01.aaaa (aaaa) on Segment B. Switch A does
not know who aaaa is, so it floods the frame.

The frame travels via Segment A or Segment C to the other two switches (B and C).
Switch B will add bbbb to the lookup table it maintains for Segment A, while Switch C
will add it to the lookup table for Segment C. If neither switch has learned the address
for aaaa yet, they will flood Segment B looking for aaaa.

Each switch will take the frame sent by the other switch and flood it back out again
immediately, since they still don't know who aaaa is. Switch A will receive the frame
from each segment and flood it back out on the other segment. This causes a broadcast
storm as the frames are broadcast, received and rebroadcast by each switch, resulting
in potentially severe network congestion.

25 Mar 2017 Switching TEL3214

Illustration 2 Broadcast storm

5-10 TEL3214 - Computer Communication Networks

4. Spanning Tree Protocol

To prevent broadcast storms and other unwanted side effects of looping, Digital
Equipment Corporation (DEC) created the Spanning Tree Protocol (STP), which has
been standardised as the IEEE 802.1d specification by the IEEE. Essentially, a spanning
tree uses STA, which senses that the switch has more than one way to communicate
with a node, determines which way is best and blocks out the other path(s). It also
keeps track of the other path(s), just in case the primary path is unavailable.

Each switch is assigned a group of IDs, one for the switch itself and one for each port on
the switch. The switch's identifier, called the Bridge ID (BID), is 8 bytes long and
contains a bridge priority (2 bytes) along with one of the switch's MAC addresses (6
bytes). Each port ID is 16 bits long with two parts: a 6-bit priority setting and a 10-bit
port number.

A path cost value is given to each port. The cost is typically based on a guideline
established as part of IEEE 802.1d and further enhanced with IEEE 802.1w Rapid STP
(RSTP). According to the original specification, cost is 1,000 Mb/s (1 gigabit per
second) divided by the bandwidth of the segment connected to the port. Therefore, a 10
Mb/s connection would have a cost of (1,000/10) 100.

TEL3214 Switching 25 Mar 2017

Illustration 3: Spanning Tree Protocol (STP)

TEL3214 - Computer Communication Networks 5-11

To compensate for the speed of networks increasing beyond the Gb/s range, the
standard cost has been modified over time. The new values are:

Data rate STP Cost - 802.1d RSTP Cost - 802.1w

4 Mb/s 250 5000000

10 Mb/s 100 2000000

16 Mb/s 62 1250000

100 Mb/s 19 200000

1 Gb/s 4 20000

2 Gb/s 3 10000

10 Gb/s 2 2000

Illustration 4: STP Path costs
It should also be noted that the path cost can be an arbitrary value assigned by a
network administrator in most switches, instead of one of the standard cost values.

Each switch begins a discovery process to choose which network paths it should use for
each segment. This information is shared between all the switches by way of special
network frames called Bridge Protocol Data Units (BPDU). The BPDU consists of:

• Root BID

• This is the BID of the current root bridge.

• Path cost to root bridge

• This determines how far away the root bridge is. For example, if the data
has to travel over three 100 Mb/s segments to reach the root bridge, then
the cost is (19 + 19 + 0) 38. The segment attached to the root bridge will
normally have a path cost of zero.

• Sender BID

• This is the BID of the switch that sends the BPDU.

• Port ID

• This is the actual port on the switch that the BPDU was sent from.

A root bridge is chosen based on the results of the BPDU process between the
switches. Initially, every switch considers itself the root bridge. When a switch first
powers up on the network, it sends out a BPDU with its own BID as the root BID. When
the other switches receive the BPDU, they compare the BID to the one they already
have stored as the root BID. If the new root BID has a lower value, they replace the
saved one. But if the saved root BID is lower, a BPDU is sent to the new switch with this
BID as the root BID. When the new switch receives the BPDU, it realises that it is not the
root bridge and replaces the root BID in its table with the one it just received. In this way
the switch that has the lowest BID is elected by the other switches as the root bridge.

25 Mar 2017 Switching TEL3214

5-12 TEL3214 - Computer Communication Networks

Based on the location of the root bridge, the other switches determine which of their
ports has the lowest path cost to the root bridge. These ports are called root ports, and
each switch (other than the current root bridge) must have one.

The switches determine who will have designated ports. A designated port is the
connection used to send and receive frames on a specific segment. By having only one
designated port per segment, all looping issues are resolved.

Designated ports are selected based on the lowest path cost to the root bridge for a
segment. Since the root bridge will have a path cost of 0, any ports on it that are
connected to segments will become designated ports. For the other switches, the path
cost is compared for a given segment. If one port is determined to have a lower path
cost, it becomes the designated port for that segment. If two or more ports have the
same path cost, then the switch with the lowest BID is chosen.

Once the designated port for a network segment has been chosen, any other ports that
connect to that segment become non-designated ports. They block network traffic from
taking that path so it can only access that segment through the designated port.

Each switch has a table of BPDUs that it continually updates. The network is now
configured as a single spanning tree, with the root bridge as the trunk and all the other
switches as branches. Each switch communicates with the root bridge through the root
ports, and with each segment through the designated ports, thereby maintaining a loop-
free network. In the event that the root bridge begins to fail or have network problems,
STP allows the other switches to immediately reconfigure the network with another
switch acting as Root Bridge. This process gives a company the ability to have a
complex network that is fault-tolerant and yet fairly easy to maintain.

TEL3214 Switching 25 Mar 2017

TEL3214 - Computer Communication Networks 5-13

5. Configuration of a Bridge interface on GNU/Linux

GNU/Linux through the bridge-utils offers the functionality to create an internal Ethernet
switch and put selected interfaces into it. Control of the bridge is via the brctl command.
This command gives the configuration options expected of a typical Ethernet switch. It
supports functionality like Spanning Tree Protocol (STP). As NTE uses GNU/Linux as
the basis for all devices bridging can be achieved through bridge-utilities.

5.1 bridge-utils

 # brctl --help
 Usage: brctl [commands]
 commands:
 addbr <bridge> add bridge
 delbr <bridge> delete bridge
 addif <bridge> <device> add interface to bridge
 delif <bridge> <device> delete interface from
bridge
 hairpin <bridge> <port> {on|off} turn hairpin on/off
 setageing <bridge> <time> set ageing time
 setbridgeprio <bridge> <prio> set bridge priority
 setfd <bridge> <time> set bridge forward delay
 sethello <bridge> <time> set hello time
 setmaxage <bridge> <time> set max message age
 setpathcost <bridge> <port> <cost> set path cost
 setportprio <bridge> <port> <prio> set port priority
 show [<bridge>] show a list of bridges
 showmacs <bridge> show a list of mac addrs
 showstp <bridge> show bridge stp info
 stp <bridge> {on|off} turn stp on/off

25 Mar 2017 Switching TEL3214

5-14 TEL3214 - Computer Communication Networks

6. Simple bridged network lab

Build a simple network on the NTE emulator.

Build as in Illustration 5 with two switches n5 and n6. n4 is a hub which allows for
packet tracing of all traffic between n5 and n6.

Perform a ping from Host n1 to Host n3 while monitoring the network with Tshark
monitoring from Host n2. Tshark prints a description of the contents of packets on the
network interface of n6 with the description preceded by a time stamp, as hours,
minutes, seconds, and fractions of a second since midnight.

root@n1:/tmp/pycore.41149/n1.conf# ping -c1 10.0.22
PING 10.0.22 (10.0.0.22) 56(84) bytes of data.
64 bytes from 10.0.0.22: icmp_seq=1 ttl=64 time=0.035 ms

--- 10.0.22 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.035/0.035/0.035/0.000 ms

Capturing on 'eth0'
1 0.000000 10.0.0.20 -> 10.0.0.22 ICMP 98 Echo request id=0x0018, seq=1/256, ttl=64
2 0.000015 10.0.0.22 -> 10.0.0.20 ICMP 98 Echo reply id=0x0018, seq=1/256, ttl=64
3 5.002660 00:00:00:aa:00:00 -> 00:00:00:aa:00:02 ARP 42 Who has 10.0.0.22? Tell
10.0.0.20
4 5.002661 00:00:00:aa:00:02 -> 00:00:00:aa:00:00 ARP 42 Who has 10.0.0.20? Tell
10.0.0.22
5 5.002679 00:00:00:aa:00:02 -> 00:00:00:aa:00:00 ARP 42 10.0.0.22 is at
00:00:00:aa:00:02
6 5.002680 00:00:00:aa:00:00 -> 00:00:00:aa:00:02 ARP 42 10.0.0.20 is at
00:00:00:aa:00:00

TEL3214 Switching 25 Mar 2017

Illustration 5: Simple bridged network

TEL3214 - Computer Communication Networks 5-15

6.1 Reviewing the bridges

 # brctl show
 bridge name bridge id STP enabled interfaces
 b.4.26 8000.0a388d18a46b no veth2.0.26
 veth4.5.26
 veth4.6.26
 b.5.26 8000.1a089586bfc5 no veth1.0.26

veth5.4.26
 b.6.26 8000.1228663b99b8 no veth3.0.26

veth6.4.26

6.1.1 Review bridge

Now that the bridge is created review it.
 root@NTE-i386:~# sudo brctl showmacs b.4.26
 port no mac addr is local? ageing timer
 1 0a:38:8d:18:a4:6b yes 0.00
 2 8a:bb:4a:15:9c:5e yes 0.00
 3 a2:56:5d:c8:0c:b9 yes 0.00

 root@NTE-i386:~# sudo brctl showmacs b.5.26
 port no mac addr is local? ageing timer
 1 1a:08:95:86:bf:c5 yes 0.00
 2 1e:80:83:c9:57:3f yes 0.00

 root@NTE-i386:~# sudo brctl showmacs b.6.26
 port no mac addr is local? ageing timer
 1 12:28:66:3b:99:b8 yes 0.00
 2 ea:ef:21:4c:67:99 yes 0.00

25 Mar 2017 Switching TEL3214

5-16 TEL3214 - Computer Communication Networks

7. Bridge with a loop

So what happens if a loop is introduced and the neetwork is started. Well the system
pretty much comes to a halt. Why? because STP is off on each device.

Review the switches.

root@NTE-i386:~# brctl show

bridge name bridge id STP enabled interfaces
b.4.29 8000.12f0b2666390 no veth2.0.29

veth4.5.29
veth4.6.29

b.5.29 8000.2243edabfea4 no veth1.0.29
veth5.4.29
veth5.6.29

b.6.29 8000.66d04659b2ec no veth3.0.29
veth6.4.29
veth6.5.29

Enable STP in each of the two switches. (Note: b.45.29 is actually a hub and therefore
STP is not relevant, it forwards on all ports anyhow).

root@NTE-i386:~# brctl stp b.4.29 on
root@NTE-i386:~# brctl stp b.6.29 on

TEL3214 Switching 25 Mar 2017

Illustration 6: Bridging loop

TEL3214 - Computer Communication Networks 5-17

Consider a frame extracted at n2 using Wireshark.
Frame: 52 bytes on wire (416 bits), on interface 0
 Interface id: 0 (veth2.0.29)
 Encapsulation type: Ethernet (1)
 Arrival Time: Feb 20, 2016 07:27:05.825613000 GMT
 Epoch Time: 1455953225.825613000 seconds
 Frame Number: 1
 Frame Length: 52 bytes (416 bits)
 Capture Length: 52 bytes (416 bits)
IEEE 802.3 Ethernet
 Destination: Spanning-tree-(for-bridges)_00 (01:80:c2:00:00:00)
 Address: Spanning-tree-(for-bridges)_00 (01:80:c2:00:00:00)
 0. = LG bit: Globally unique address
 1 = IG bit: Group address
(multicast/broadcast)
 Source: 36:ac:5e:6f:00:73
 Address: 36:ac:5e:6f:00:73
 1. = LG bit: Locally administered address
 0 = IG bit: Individual address (unicast)
 Length: 38
Logical-Link Control
 DSAP: Spanning Tree BPDU (0x42)
 0100 001. = SAP: Spanning Tree BPDU
 0 = IG Bit: Individual
 SSAP: Spanning Tree BPDU (0x42)
 0100 001. = SAP: Spanning Tree BPDU
 0 = CR Bit: Command
 Control field: U, func=UI (0x03)
 000. 00.. = Command: Unnumbered Information (0x00)
 11 = Frame type: Unnumbered frame (0x03)
Spanning Tree Protocol
 Protocol Identifier: Spanning Tree Protocol (0x0000)
 Protocol Version Identifier: Spanning Tree (0)
 BPDU Type: Configuration (0x00)
 BPDU flags: 0x00
 0... = Topology Change Acknowledgment: No
 0 = Topology Change: No
 Root Identifier: 32768 / 0 / 12:f0:b2:66:63:90
 Root Bridge Priority: 32768
 Root Bridge System ID Extension: 0
 Root Bridge System ID: 12:f0:b2:66:63:90 (12:f0:b2:66:63:90)
 Root Path Cost: 0
 Bridge Identifier: 32768 / 0 / 12:f0:b2:66:63:90
 Bridge Priority: 32768
 Bridge System ID Extension: 0
 Bridge System ID: 12:f0:b2:66:63:90 (12:f0:b2:66:63:90)
 Port identifier: 0x8003
 Message Age: 0
 Max Age: 20
 Hello Time: 2
 Forward Delay: 2

25 Mar 2017 Switching TEL3214

5-18 TEL3214 - Computer Communication Networks

7.1 Review bridge

Now that the bridge is created review it.
 root@NTE-i386:~# sudo brctl showmacs b.4.29
 port no mac addr is local? ageing timer
 2 12:f0:b2:66:63:90 yes 0.00
 3 36:ac:5e:6f:00:73 yes 0.00
 1 3e:53:b4:a5:c6:ed yes 0.00

 root@NTE-i386:~# sudo brctl showmacs b.5.29
 port no mac addr is local? ageing timer
 1 22:43:ed:ab:fe:a4 yes 0.00
 2 26:ae:6f:53:fc:84 yes 0.00
 1 3e:53:b4:a5:c6:ed no 0.86
 3 f2:e1:fb:cb:c7:86 yes 0.00

 root@NTE-i386:~# sudo brctl showmacs b.6.29
 port no mac addr is local? ageing timer
 3 3e:53:b4:a5:c6:ed no 0.15
 1 66:d0:46:59:b2:ec yes 0.00
 3 92:55:07:58:7a:03 yes 0.00
 2 b6:c9:d0:0b:4e:f9 yes 0.00

TEL3214 Switching 25 Mar 2017

TEL3214 - Computer Communication Networks 5-19

8. Switching Lab

• Build the network as shown in Illustration 7.

• Enable STP in n5, n6 and n7.

• Ping from n1 to n2, n3 and n8 to confirm connectivity.

• Use Tcpdump, Tshark and Wireshark to monitor activity on n2.

root@n1:/tmp/pycore.33410/n1.conf# ping -c1 192.168.1.2
PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data.
64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=0.058 ms

--- 192.168.1.2 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.058/0.058/0.058/0.000 ms

25 Mar 2017 Switching TEL3214

Illustration 7: Switching lab

5-20 TEL3214 - Computer Communication Networks

root@n1:/tmp/pycore.33410/n1.conf# ping -c1 192.168.1.3
PING 192.168.1.3 (192.168.1.3) 56(84) bytes of data.
64 bytes from 192.168.1.3: icmp_seq=1 ttl=64 time=0.071 ms

--- 192.168.1.3 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.071/0.071/0.071/0.000 ms

root@n1:/tmp/pycore.33410/n1.conf# ping -c1 192.168.1.8
PING 192.168.1.8 (192.168.1.8) 56(84) bytes of data.
64 bytes from 192.168.1.8: icmp_seq=1 ttl=64 time=0.065 ms

--- 192.168.1.8 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.065/0.065/0.065/0.000 ms

TEL3214 Switching 25 Mar 2017

TEL3214 - Computer Communication Networks 5-21

9. Virtual LANs (VLANs)

A virtual LAN, commonly known as a VLAN, is a logically segmented network mapped
over physical hardware. The IEEE 802.1q standard is the predominant protocol.

Early VLANs where often configured to reduce the size of the collision domain in a large
single Ethernet segment to improve performance. When Ethernet switches made this a
non-issue (because they have no collision domain), attention turned to reducing the size
of the broadcast domain at the MAC layer. Another purpose of a virtual network is to
restrict access to network resources without regard to physical topology of the network,
although the strength of this method is debatable.

VLANs operate at layer 2 of the OSI model. Although often a VLAN is configured to map
directly to an IP network, or subnet, which gives the appearance it is involved in layer 3.

Switch to switch links and switch to router links are called trunks. A router serves as the
backbone for traffic going across different VLANs.

9.1 Removing the Physical Boundaries

Conceptually, VLANs provide greater segmentation and organisational flexibility. VLAN
technology allows network managers to group switch ports and users connected to
them into logically defined communities of interest. These groupings can be co-workers
within the same department, a cross-functional product team, or diverse users sharing
the same network application or software (such as LibreOffice users). Grouping these
ports and users into communities of interest, referred to as VLAN organisations, can be
accomplished within a single switch, or more powerfully, between connected switches
within the enterprise. By grouping ports and users together across multiple switches,
VLANs can span single building infrastructures, interconnected buildings, or even Wide
Area Networks (WAN). VLANs completely remove the physical constraints of
workgroup communications across the enterprise.

25 Mar 2017 Switching TEL3214

5-22 TEL3214 - Computer Communication Networks

VLANs provide the ability for any organisation to be physically dispersed throughout the
company while maintaining its group identity. For example, engineering personnel can
be located on the manufacturing floor, in the research and development centre, in the
Professional Services demonstration centre, and in the corporate offices, while at the
same time all members reside on the same virtual network, sharing traffic only with each
other. The graphic above illustrates a typical VLAN architecture that places these
employees closer to their assigned areas of management and the people with whom
they interact, while maintaining communication integrity within their respective
organisation. Today's VLANs better match the way that companies are organised, and
allow network managers to more closely align the network to the way that employees
work and communicate.

TEL3214 Switching 25 Mar 2017

Illustration 8: Virtual LAN

TEL3214 - Computer Communication Networks 5-23

9.2 IEEE 802.1P/Q

The IEEE 802.1Q specification is the standard method for inserting VLAN membership
information into Ethernet frames. A tag field containing VLAN information can be
inserted into an Ethernet frame. If a port has an IEEE 802.1Q compliant device attached
(such as another switch), these tagged frames can carry VLAN membership information
between switches, thus letting a VLAN span multiple switches.

Note that VLAN functionality is shared in the IEEE 802.1 two bytes 3 priority bits. These
3 bits define 8 classes, the highest priority is 7 for say network-critical traffic such as
routing, values 5 and 6 for say delay-sensitive applications such as video and VoIP. The
0 value is used as a best-effort default, invoked automatically when no other value has
been set.

The priority function of IEEE 802.1 is known as IEEE 802.1P and the VLAN function as
IEEE 802.1Q while combined they are referred to as IEEE 802.1P/Q.

25 Mar 2017 Switching TEL3214

Illustration 9: IEEE 802.1P/Q

5-24 TEL3214 - Computer Communication Networks

9.2.1 IEEE 802.1Q

The diagram above shows a frame traversing the VLAN. Step 1 the host with MAC: bbb
puts a frame on the wire for MAC: aaa. The Switch SW_B determines the frame belongs
to VLAN 10, either by the protocol within the frame or in this example the port it is
received on. In Step 2 the SW_B switch then encapsulates the frame with an IEEE
802.1Q tag and a Frame Check Sequence (FCS), this tag is then used to identify the
VLAN the frame is from on all IEEE 802.1Q enabled switches. The tagged frame is then
passed on the trunk to the SW_A switch. In Step 3 the SW_A determines the frame is
for VLAN 10, removes the tag and puts the frame out the ports associated with VLAN
10. Step 4 The workstation with the MAC: aaa receives an untagged frame.

TEL3214 Switching 25 Mar 2017

Illustration 10: IEEE 802.1Q

Illustration 11: VLAN tagging

Trunk

VLAN 20

VLAN 10
SW_B

IP: 10.1.1.2
MAC: bbb

802.1Q
 VID 10

Ethernet frame using 802.1Q VLAN tag

VLAN 20

VLAN 10
SW_A

IP: 10.1.1.1
MAC: aaa

Ethernet
aaa | bbb

IP
10.1.1.1 | 10.1.1.2

Ethernet
aaa | bbb

IP
10.1.1.1 | 10.1.1.2 Payload Payload

Ethernet
aaa | bbb

IP
10.1.1.1 | 10.1.1.2 Payload

Tag addedTag removed

Step 1

Step 2Step 3

Step 4

TEL3214 - Computer Communication Networks 5-25

Now dissecting further what happens within the switch. Each VLAN has a bridge
configured for it. The interface considered to be the trunk between the switches has sub-
interfaces configured, one for each VLAN. These sub-interfaces perform the tagging
and untagging. The sub-interfaces are added to their respective bridges. Each other
port considered to be an access port is added to the bridge associated with the VLAN
for that port. In the example therefore eth1 is added to the bridge br_vlan10 and
eth2 to br_vlan20.

A frame arrives as eth1 and is passed to the bridge br_vlan10 and as a result is
forwarded to the sub-interface eth0.10 where an IEEE 802.1Q tag is added to the
frame and it is forwarded to the physical interface eth0. The frame leaving eth0 is
therefore tagged.

Here is an example of a frame captured on the wire on a trunk between two switches
using IEEE 802.1Q. Note the Ethernet type field has a value of 0x8100 indicating that
the next field is IEEE 802.1Q VLAN. This field contains the value 000000001010
(10) which is the VLAN tag and it follows with a type field of 0x0800 indicating that the
next field is the IP header.
 Frame: 102 bytes on wire (816 bits)
 Ethernet II, Src: d4:ca:6d:61:dd:89, Dst: 00:12:3f:dc:ab:47
 Destination: 00:12:3f:dc:ab:47
 Source: d4:ca:6d:61:dd:89
 Type: 802.1Q Virtual LAN (0x8100)
 802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 10
 000. = Priority: Best Effort (default) (0)
 ...0 = CFI: Canonical (0)
 0000 0000 1010 = ID: 10
 Type: IP (0x0800)
 Internet Protocol Version 4, Src: 10.10.10.40, Dst: 10.10.10.30
 Internet Control Message Protocol

9.2.2 IEEE 802.1ad

One of the difficulties presented by IEEE 802.1Q is the fact that tags cannot be stacked.
Imagine a service provider wants to use VLANs to separate services to different
customers. As the provider used VLAN tags for that purpose it prevents the customers
using VLANs themselves as IEEE 802.1Q does not support VLANs within VLANs. IEEE
802.1ad is an amendment to the IEEE 802.1Q VLAN standard. It provides for the
stacking of VLANs within VLANs which is called names such as provider stacking,
stacked VLANs, Q-in-Q or simply QinQ. IEEE 802.ad allows for multiple VLAN headers
to be inserted into a single frame an essential capability for implementing Metro
Ethernet. QinQ allows multiple VLAN tags in an Ethernet frame; together these tags
constitute a tag stack.

25 Mar 2017 Switching TEL3214

5-26 TEL3214 - Computer Communication Networks

This first example demonstrates the use of IEEE 802.1ad instead of IEEE 802.1Q where
there is no stacking of VLANs. Here the Ethernet type field contains 0x88a8 such that
the next field is treated as IEEE 802.1ad. Like the earlier example for IEEE 802.1Q this
field contains a VLAN ID of 000000001010 (10) and a type field of 0x0800 to
indicate that the next field is the IP header.

 Frame: 102 bytes on wire (816 bits)
 Ethernet II, Src: d4:ca:6d:61:dd:89, Dst: 00:12:3f:dc:ab:47
 Destination: 00:12:3f:dc:ab:47
 Source: d4:ca:6d:61:dd:89
 Type: 802.1ad Provider Bridge (Q-in-Q) (0x88a8)
 IEEE 802.1ad, ID: 10
 000. = Priority: 0
 ...0 = DEI: 0
 0000 0000 1010 = ID: 10
 Type: IP (0x0800)
 Internet Protocol Version 4, Src: 10.10.10.40, Dst: 10.10.10.30
 Internet Control Message Protocol

TEL3214 Switching 25 Mar 2017

Illustration 12: IEEE 802.1ad

01111110 01111110D.MAC S.MAC Type:0800 Payload FCS

01111110 01111110D.MAC S.MAC Type:88a8 Payload FCSQ.Tag

01111110 01111110D.MAC S.MAC Type:88a8 Payload FCSInner

Q.Tag

Outer

Q.Tag

Type:0800

Type:0800

TEL3214 - Computer Communication Networks 5-27

10. Provider tagging

Considering the graphic the traffic in the trunks will be treated by ISP_1 and ISP_2 as
access ports despite they containing VLAN tags already. In fact ISP_1 and ISP_2
ignore these tags as they are customer tags (C-tags).

Before forwarding to the other ISP switch each switch adds a provider tag (S-tag) of
1001. Thus the C-tag is stacked inside the S-tag from the provider. This can be seen by
considering the frame capture from the wire between ISP_1 and ISP_2 below. In this
packet a customer IEEE 802.1Q VLAN is outer labelled with an ISP IEEE 802.1ad (Q-
in-Q) S-tag of 001111101001 (1001). The Ethernet type field indicates 0x88a8 the
next header containing an IEEE 802.1ad tag. This headers type field indicates that the
next header is 0x8100 IEEE 802.1Q. This headers type field in turn contains a type field
of 0x0800 indicating the next header is the IP header. So in this example a customer
IEEE 802.1Q tag is stacked by an IEEE 802.1ad S-tag.

25 Mar 2017 Switching TEL3214

Illustration 13: Provider tagging

Trunk

VLAN 20

VLAN 10
SW_B

10.10.10.30/24

01111110 Ethernet
Dst MAC, Src MAC

802.1ad
S-tag 10

IP
Dst IP, Src IP Payload 01111110

01111110 Ethernet
Dst MAC, Src MAC

IP
Dst IP, Src IP Payload 01111110802.1Q

 VID 10

Ethernet frame using 802.1Q VLAN tag

Ethernet frame using 802.1ad VLAN tag

10.10.10.20/24

VLAN 20

VLAN 10
SW_A

10.10.10.40/24

10.10.10.10/24
Analyser

5-28 TEL3214 - Computer Communication Networks

 Frame: 106 bytes on wire (848 bits)
 Ethernet II, Src: d4:ca:6d:61:dd:89, Dst: 00:12:3f:dc:ab:47
 Destination: 00:12:3f:dc:ab:47
 Source: d4:ca:6d:61:dd:89
 Type: 802.1ad Provider Bridge (Q-in-Q) (0x88a8)
 IEEE 802.1ad, ID: 1001
 000. = Priority: 0
 ...0 = DEI: 0
 0011 1110 1001 = ID: 1001
 Type: 802.1Q Virtual LAN (0x8100)
 802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 10
 000. = Priority: Best Effort (default) (0)
 ...0 = CFI: Canonical (0)
 0000 0000 1010 = ID: 10
 Type: IP (0x0800)
 Internet Protocol Version 4, Src: 10.10.10.40, Dst: 10.10.10.30
 Internet Control Message Protocol

Now consider the frame below where the customer tag is also IEEE 802.1ad. The
Ethernet type field is 0x88a8 indicating the next header is IEEE 802.1ad Q-in-Q. In this
header two tags can be seen, a provider S-tag of 001111101001 (1001) with a
customer C-tag of 000000001010 (10). This headers type field is 0x0800 indicating
the next header is the IP header.

 Frame: 106 bytes on wire (848 bits)
 Ethernet II, Src: d4:ca:6d:61:dd:89, Dst: 00:12:3f:dc:ab:47
 Destination: 00:12:3f:dc:ab:47
 Source: d4:ca:6d:61:dd:89
 Type: 802.1ad Provider Bridge (Q-in-Q) (0x88a8)
 IEEE 802.1ad, S-VID: 1001, C-VID: 10
 000. = Priority: 0
 ...0 = DEI: 0
 0011 1110 1001 = ID: 1001
 000. = Priority: 0
 ...0 = DEI: 0
 0000 0000 1010 = ID: 10
 Type: IP (0x0800)
 Internet Protocol Version 4, Src: 10.10.10.40, Dst: 10.10.10.30
 Internet Control Message Protocol

TEL3214 Switching 25 Mar 2017

TEL3214 - Computer Communication Networks 5-29

This packet shows a customer IEEE 802.1ad (Q-in-Q) label as an inner C-tag
000000010100 (20) which is also outer labelled with an ISP IEEE 802.1ad (Q-in-Q)
S-tag 001111101001 (1001).

 Frame: 106 bytes on wire (848 bits)
 Ethernet II, Src: d4:ca:6d:61:dd:89, Dst: 00:12:3f:dc:ab:47
 Destination: 00:12:3f:dc:ab:47
 Source: d4:ca:6d:61:dd:89
 Type: 802.1ad Provider Bridge (Q-in-Q) (0x88a8)
 IEEE 802.1ad, S-VID: 1001, C-VID: 20
 000. = Priority: 0
 ...0 = DEI: 0
 0011 1110 1001 = ID: 1001
 000. = Priority: 0
 ...0 = DEI: 0
 0000 0001 0100 = ID: 20
 Type: IP (0x0800)
 Internet Protocol Version 4, Src: 10.10.10.40, Dst: 10.10.10.30
 Internet Control Message Protocol

25 Mar 2017 Switching TEL3214

5-30 TEL3214 - Computer Communication Networks

11. VLANs on GNU/Linux

iproute2 supports IEEE 802.1Q VLAN and IEEE 802.1ad VLAN Stacking. IEEE 802.1Q
or IEEE 802.1ad traffic received on the eth0 interface will have the VLAN tag removed
and the frame passed to the VLAN interface. Traffic passing out the sub-interface will
have the IEEE 802.1Q or IEEE 802.1ad tag added. Create the sub-interfaces with the
following commands. These create sub-interfaces for VLAN ID 10 and VLAN ID 20 on
the eth0 interface and gives them labels of eth0.10 and eth0.20.

TEL3214 Switching 25 Mar 2017

Illustration 14: VLANs on Linux

Trunk

VLAN 20

VLAN 10
SW_B

10.10.10.30/24

01111110 Ethernet
Dst MAC, Src MAC

802.1ad
S-tag 10

IP
Dst IP, Src IP Payload 01111110

01111110 Ethernet
Dst MAC, Src MAC

IP
Dst IP, Src IP Payload 01111110802.1Q

 VID 10

Ethernet frame using 802.1Q VLAN tag

Ethernet frame using 802.1ad VLAN tag

20.20.20.30/24

10.10.10.10/24

Analyser

(eth0.10)

(eth0.20)20.20.20.20/24

TEL3214 - Computer Communication Networks 5-31

11.1 VLAN Logical diagram

Consider the Illustration 15 above. On the left is a server with two sub-interfaces
configured on eth0, namely eth0.10 and eth0.20. On these sub-interfaces the IP
addresses 10.10.10.10/24 and 20.20.20.20/24 are configured respectfully.

On the right is the VLAN switch. It too has two sub-interfaces configured on eth0,
namely eth0.10 and eth0.20. It also has two bridges created br_vlan10 and br_vlan20.
Within br_vlan10 the sub-interface eth0.10 and the physical interface eth1 while in
br_vlan20 is the sub-interface eth0.20 and the physical interface eth2.

Now trace a ping from the workstation 10.10.10.30 to 10.10.10.10 on the server. The
ICMP request is passed to interface eth1 on the switch, it passes through br_vlan10 and
on to sub-interface eth0.10 where an 802.1q tag of 10 is inserted between the Ethernet
and IP headers in the frame. This tag differentiates the frame from frames in the other
VLAN. The tagged frame enters eth0 on the server and due the the 802.1q tag of 10 is
passed to sub-interface eth0.10 where the tag is removed. The frame is passed to the
internal layer 3 interface within the server that has IP address 10.10.10.10.

25 Mar 2017 Switching TEL3214

Illustration 15: VLAN logical diagram

br_vlan10

br_vlan20

Switch

eth2

eth1

eth0 eth0.20

eth0.10

20.20.20.30/24

10.10.10.30/24

eth0eth0.20

eth0.10

Server

20.20.20.20/24

10.10.10.10/24

Wireshark
Analyser

VLAN tagging
and untagging

occurs here

5-32 TEL3214 - Computer Communication Networks

11.2 VLAN Example

The following network was built as shown, except vlan2 was selected as a server. This
is because the detault ethernet bridge in NTE does not support iproute2. Right click on
the server icon and select Configure. Remove the default IP addresses and change the
icon to lanswitch.gif. Additionally select View > Show > Interface names so the
interfaces can be associated with their connections.

11.2.1 Load 802.1q kernel module in NTE

Confirm that the 8021q kernel module is loaded and if not then load it.

 root@NTE-i386:~# lsmod |grep 8021q
 root@NTE-i386:~# modprobe 8021q
 root@NTE-i386:~# lsmod |grep 8021q
 8021q 18824 0
 garp 13025 1 8021q

11.2.2 Configure s-vlan1 for VLANs

Check the interfaces on the Server.

root@vlan1:~# ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode
DEFAULT group default
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
mode DEFAULT group default qlen 1000
 link/ether 00:00:00:aa:00:00 brd ff:ff:ff:ff:ff:ff

TEL3214 Switching 25 Mar 2017

Illustration 16: Example VLANs

TEL3214 - Computer Communication Networks 5-33

Add sub-interfaces for each VLAN expected on the physical eth0 interface.

root@vlan1:~# ip link add link eth0 name eth0.10 type vlan id 10
root@vlan1:~# ip link add link eth0 name eth0.20 type vlan id 20

root@vlan1:~# ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode
DEFAULT group default
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
mode DEFAULT group default qlen 1000
 link/ether 00:00:00:aa:00:00 brd ff:ff:ff:ff:ff:ff
3: eth0.10@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default link/ether 00:00:00:aa:00:00 brd ff:ff:ff:ff:ff:ff
4: eth0.20@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default link/ether 00:00:00:aa:00:00 brd ff:ff:ff:ff:ff:ff

Add IP addresses to the sub-interfaces.

root@vlan1:~# ip addr add 10.10.10.10/24 dev eth0.10
root@vlan1:~# ip addr add 20.20.20.20/24 dev eth0.20

Bring up the interface and its new sub-interfaces.

root@vlan1:~# ip link set dev eth0 up
root@vlan1:~# ip link set dev eth0.10 up
root@vlan1:~# ip link set dev eth0.20 up

Confirm sub-interfaces are up.

root@vlan1:~# ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode
DEFAULT group default
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
mode DEFAULT group default qlen 1000
 link/ether 00:00:00:aa:00:00 brd ff:ff:ff:ff:ff:ff
3: eth0.10@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state UP mode
DEFAULT group default link/ether 00:00:00:aa:00:00 brd ff:ff:ff:ff:ff:ff
4: eth0.20@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state UP mode
DEFAULT group default link/ether 00:00:00:aa:00:00 brd ff:ff:ff:ff:ff:ff

25 Mar 2017 Switching TEL3214

5-34 TEL3214 - Computer Communication Networks

11.2.3 Configure the switch s-vlan2

Check the interfaces on vlan2.

root@vlan2:~# ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode
DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
mode DEFAULT group default qlen 1000 link/ether 00:00:00:aa:00:02 brd
ff:ff:ff:ff:ff:ff
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
mode DEFAULT group default qlen 1000 link/ether 00:00:00:aa:00:03 brd
ff:ff:ff:ff:ff:ff
4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
mode DEFAULT group default qlen 1000 link/ether 00:00:00:aa:00:05 brd
ff:ff:ff:ff:ff:ff

Add sub-interfaces on the vlan2 interface facing vlan1.

root@vlan2:~# ip link add link eth0 name eth0.10 type vlan id 10
root@vlan2:~# ip link add link eth0 name eth0.20 type vlan id 20

Confirm the sub-interfaces were added.

root@vlan2:~# ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode
DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0.10@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default link/ether 00:00:00:aa:00:02 brd ff:ff:ff:ff:ff:ff
3: eth0.20@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default link/ether 00:00:00:aa:00:02 brd ff:ff:ff:ff:ff:ff
4: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
mode DEFAULT group default qlen 1000 link/ether 00:00:00:aa:00:02 brd
ff:ff:ff:ff:ff:ff
5: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
mode DEFAULT group default qlen 1000 link/ether 00:00:00:aa:00:03 brd
ff:ff:ff:ff:ff:ff
6: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
mode DEFAULT group default qlen 1000 link/ether 00:00:00:aa:00:05 brd
ff:ff:ff:ff:ff:ff

Bring the sub-interfaces to a state of UP.

root@vlan2:~# ip link set dev eth0.10 up
root@vlan2:~# ip link set dev eth0.20 up

TEL3214 Switching 25 Mar 2017

TEL3214 - Computer Communication Networks 5-35

Confirm the sub-interfaces have come UP.

root@vlan2:~# ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode
DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0.10@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state UP mode
DEFAULT group default link/ether 00:00:00:aa:00:02 brd ff:ff:ff:ff:ff:ff
3: eth0.20@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state UP mode
DEFAULT group default link/ether 00:00:00:aa:00:02 brd ff:ff:ff:ff:ff:ff
4: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
mode DEFAULT group default qlen 1000 link/ether 00:00:00:aa:00:02 brd
ff:ff:ff:ff:ff:ff
5: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
mode DEFAULT group default qlen 1000 link/ether 00:00:00:aa:00:03 brd
ff:ff:ff:ff:ff:ff
6: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
mode DEFAULT group default qlen 1000 link/ether 00:00:00:aa:00:05 brd
ff:ff:ff:ff:ff:ff

Create bridges for each VLAN.

root@vlan2:~# brctl addbr br_vlan10
root@vlan2:~# brctl addbr br_vlan20

Add the sub-interfaces and the appropriate interfaces on vlan2 to their respective
bridges.

root@vlan2:~# brctl addif br_vlan10 eth0.10 eth1
root@vlan2:~# brctl addif br_vlan20 eth0.20 eth2

Bring the bridges to a state of UP.

root@vlan2:~# ip link set dev br_vlan10 up
root@vlan2:~# ip link set dev br_vlan20 up

25 Mar 2017 Switching TEL3214

5-36 TEL3214 - Computer Communication Networks

Confirm that the interfaces, sub-interfaces and bridges are in a state of UP.

root@vlan2:~# ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode
DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0.10@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state UP mode
DEFAULT group default link/ether 00:00:00:aa:00:02 brd ff:ff:ff:ff:ff:ff
3: eth0.20@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state UP mode
DEFAULT group default link/ether 00:00:00:aa:00:02 brd ff:ff:ff:ff:ff:ff
4: br_vlan10: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state UP mode DEFAULT
group default link/ether 00:00:00:aa:00:02 brd ff:ff:ff:ff:ff:ff
5: br_vlan20: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state UP mode DEFAULT
group default link/ether 00:00:00:aa:00:02 brd ff:ff:ff:ff:ff:ff
6: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
mode DEFAULT group default qlen 1000 link/ether 00:00:00:aa:00:02 brd
ff:ff:ff:ff:ff:ff
7: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
mode DEFAULT group default qlen 1000 link/ether 00:00:00:aa:00:03 brd
ff:ff:ff:ff:ff:ff
8: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP

TEL3214 Switching 25 Mar 2017

TEL3214 - Computer Communication Networks 5-37

11.2.4 Test the VLAN

Establish a ping from n2 to 20.20.20.20 which is on vlan20@eth0 on host vlan1.
Capture the traffic on shark1.
Frame: 102 bytes on wire (816 bits), on interface 0
Ethernet II, Src: 00:00:00_aa:00:06, Dst: 00:00:00_aa:00:00
 Destination: 00:00:00_aa:00:00
 Source: 00:00:00_aa:00:06
 Type: 802.1Q Virtual LAN (0x8100)
802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 20
 000. = Priority: Best Effort (default) (0)
 ...0 = CFI: Canonical (0)
 0000 0001 0100 = ID: 20
 Type: IP (0x0800)
Internet Protocol Version 4, Src: 20.20.20.30, Dst: 20.20.20.20
 Version: 4
 Header Length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00: Not-
ECT)
 Total Length: 84
 Identification: 0x5b1c (23324)
 Flags: 0x02 (Don't Fragment)
 Fragment offset: 0
 Time to live: 64
 Protocol: ICMP (1)
 Header checksum: 0x8f33
 Source: 20.20.20.30
 Destination: 20.20.20.20
Internet Control Message Protocol
 Type: 8 (Echo (ping) request)
 Code: 0
 Checksum: 0xf83a [correct]
 Identifier (BE): 20 (0x0014)
 Identifier (LE): 5120 (0x1400)
 Sequence number (BE): 1 (0x0001)
 Sequence number (LE): 256 (0x0100)
 [Response frame: 2]
 Timestamp from icmp data: Feb 20, 2016 08:55:17.339026000 GMT
 Data (48 bytes)

25 Mar 2017 Switching TEL3214

5-38 TEL3214 - Computer Communication Networks

11.3 IEEE 802.1ad support on GNU/Linux

Support for IEEE 802.1ad was incorporated in the GNU/Linux kernel from Kernel
version 3.10. Check the kernel version of your system and if less that 3.10, download
the latest stable kernel, compile and use it. Also check the version of iproute*
installed, it needs to be a version 3.10 or higher.
 # uname -r
 3.16.0-4-586

 # dpkg -l iproute*

 root@NTE-i386:~# dpkg -l iproute*
 Desired=Unknown/Install/Remove/Purge/Hold
 | Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/Trig-pend
 |/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
 ||/ Name Version Architecture Description
 +++-==============-============-============-=================================
 ii iproute 1:3.16.0-2 all transitional dummy package for ip
 ii iproute2 3.16.0-2 i386 networking and traffic control to
 un iproute2-doc <none> <none> (no description available)

Configure interfaces as shown already with the addition of proto 802.1ad when
creating the sub-interfaces.
 # ip link add link eth0 name eth0.10 type vlan proto 802.1ad id 10
 # ip link add link eth0 name eth0.20 type vlan proto 802.1ad id 20
 # ip addr add 10.10.10.10/24 dev eth0.10
 # ip addr add 20.20.20.20/24 dev eth0.20
 # ip link set dev eth0 up
 # ip link set dev eth0.10 up
 # ip link set dev eth0.20 up

Monitor the trunk link and notice that the GNU/Linux workstation is now terminating
directly in the IEEE 802.1ad C-tag interfaces on the eth0 sub-interfaces.

 Frame: 102 bytes on wire (816 bits)
 Ethernet II, Src: 00:12:3f:dc:ab:47, Dst: d4:ca:6d:61:dd:89
 Destination: d4:ca:6d:61:dd:89
 Source: 00:12:3f:dc:ab:47
 Type: 802.1ad Provider Bridge (Q-in-Q) (0x88a8)
 IEEE 802.1ad, ID: 10
 000. = Priority: 0
 ...0 = DEI: 0
 0000 0000 1010 = ID: 10
 Type: IP (0x0800)
 Internet Protocol Version 4, Src: 10.10.10.10, Dst: 10.10.10.30
 Internet Control Message Protocol

TEL3214 Switching 25 Mar 2017

TEL3214 - Computer Communication Networks 5-39

11.4 IEEE 802.1ad support on GNU/Linux as a switch

In this case GNU/Linux workstation will operate as a bridge with a VLAN interface.

Create the VLAN subinterfaces to deal with the incoming trunk interface containing the
VLANs on physical interface eth0.
 # ip link add link eth0 name eth0.10 type vlan proto 802.1ad id 10
 # ip link add link eth0 name eth0.20 type vlan proto 802.1ad id 20
 # ip link set dev eth0 up
 # ip link set dev eth0.10 up
 # ip link set dev eth0.20 up

Bring up the interfaces that connect to the LANs.
 # ip link set dev eth1 up
 # ip link set dev eth2 up
 # ip link set dev eth3 up
 # ip link set dev eth4 up

Create bridges to link the VLANs to their appropriate interfaces.
 # brctl addbr br_vlan_10
 # brctl addbr br_vlan_20

Assign interfaces to the various bridges.
 # brctl addif br_vlan_10 eth0.10 eth1 eth2
 # brctl addif br_vlan_20 eth0.20 eth3 eth4

Bring up the bridges.
 # ip link set dev br_vlan_10 up
 # ip link set dev br_vlan_20 up

25 Mar 2017 Switching TEL3214

Illustration 17: IEEE 802.1ad on Linux

Trunk

VLAN 20

VLAN 10
SW_B

10.10.10.30/24

01111110 Ethernet
Dst MAC, Src MAC

802.1ad
S-tag 10

IP
Dst IP, Src IP

Payload 01111110

Ethernet frame using 802.1ad VLAN tag

10.10.10.20/24

VLAN 20

VLAN 10
SW_A

10.10.10.40/24

10.10.10.10/24
Analyser

eth1

eth0
eth2

eth3
eth4

5-40 TEL3214 - Computer Communication Networks

Review the packets on the wire.
 Frame: 74 bytes on wire (592 bits)
 Ethernet II, Src: d4:ca:6d:61:dd:89, Dst: 00:0c:42:8b:73:e4
 Destination: 00:0c:42:8b:73:e4
 Source: d4:ca:6d:61:dd:89
 Type: 802.1Q Virtual LAN (0x8100)
 802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 10
 000. = Priority: Best Effort (default) (0)
 ...0 = CFI: Canonical (0)
 0000 0000 1010 = ID: 10
 Type: IP (0x0800)
 Internet Protocol Version 4, Src: 10.10.10.30, Dst: 10.10.10.40
 Internet Control Message Protocol

TEL3214 Switching 25 Mar 2017

TEL3214 - Computer Communication Networks 5-41

12. GNU/Linux as a Service Provider bridge

Create a sub-interface on eth0 to handle the VLAN S-tag 1001 and bring the physical
and sub-interface up.
 # ip link add link eth0 name eth0.1001 type vlan proto 802.1ad id 1001
 # ip link set dev eth0 up
 # ip link set dev eth0.1001 up

Bring up the eth1 interface which will be connected to the trunk from SW_A.
 # ip link set dev eth1 up

Create a bridge br_vlan_1001 and put the eth0.1001 sub-interface and eth1 into
it. Then bring the bridge up.
 # brctl addbr br_vlan_1001
 # brctl addif br_vlan_1001 eth0.1001 eth1
 # ip link set dev br_vlan_1001 up

25 Mar 2017 Switching TEL3214

Illustration 18: Service provider bridge

VLAN 20

VLAN 10SW_B

10.10.10.30/24

10.10.10.10/24

TrunkS-Tag 1001Trunk

VLAN 20

SW_A
ISP_1 ISP_2

C-Tag 20
C-Tag 10

VLAN 10

01111110 Ethernet
Dst MAC, Src MAC

802.1ad
S-tag 1001

IP
Dst IP, Src IP Payload 01111110802.1Q

 VID 10

01111110 Ethernet
Dst MAC, Src MAC

802.1ad
S-tag 1001, C-tag 10

IP
Dst IP, Src IP Payload 01111110

Analyser

10.10.10.20/24

10.10.10.40/24

Ethernet frame using 802.1ad outer S-tag and 802.1Q inner VLAN tag

Ethernet frame using 802.1ad outer S-tag and inner C-tag

eth0

eth1

5-42 TEL3214 - Computer Communication Networks

Now monitor the traffic on the wire between the provider switches. Note the double tag
with an S-tag of 1001 and a C-tag of 10.

 Frame: 78 bytes on wire (624 bits)
 Ethernet II, Src: d4:ca:6d:61:dd:89, Dst: 00:0c:42:8b:73:e4
 Destination: 00:0c:42:8b:73:e4
 Source: d4:ca:6d:61:dd:89
 Type: 802.1Q Virtual LAN (0x8100)
 802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 1001
 000. = Priority: Best Effort (default) (0)
 ...0 = CFI: Canonical (0)
 0011 1110 1001 = ID: 1001
 Type: 802.1ad Provider Bridge (Q-in-Q) (0x88a8)
 IEEE 802.1ad, ID: 10
 000. = Priority: 0
 ...0 = DEI: 0
 0000 0000 1010 = ID: 10
 Type: IP (0x0800)
 Internet Protocol Version 4, Src: 10.10.10.30, Dst: 10.10.10.40
 Internet Control Message Protocol

TEL3214 Switching 25 Mar 2017

TEL3214 - Computer Communication Networks 5-43

13. VLAN Lab

Name Device Interface IPv4 IPv6 Connected to

vlan1 VLAN Switch eth0 hub1

vlan10@eth0 vlan2

vlan20@eth0 vlan2

eth1 n1

eth2 n2

vlan2 VLAN Switch eth0 hub1

vlan10@eth0 vlan1

vlan20@eth0 vlan1

eth1 n3

eth2 n4

hub1 hub e0 vlan1

e1 vlan2

e2 shark1

n1 host eth0 10.10.10.70/24 2001:1::70/64 vlan1

n2 host eth0 10.10.10.80/24 2001:2::80/64 vlan1

n4 host eth0 10.10.10.40/24 2001:1::40/64 vlan2

n3 host eth0 10.10.10.50/24 2001:1::50/64 vlan2

shark1 analyser eth0 hub1

Build the network in Illustration 19 and detailed in the associated table.

25 Mar 2017 Switching TEL3214

Illustration 19: VLAN Lab

5-44 TEL3214 - Computer Communication Networks

Note: that switches vlan1 and vlan2 are servers that have their icons changes to
lanswitch.gif and their IP addresses removed. This is to have the required iproute2
support as discussed earlier.

From the hosts n1, n2, n3 and n4 use ping and ping6 to check for connectivity between
hosts and fill out the truth table below with a checkmark for success and an X for failure.

Are the results as you expect them ? In the space below provide an explaination for your
results.

10.10.10.40/24 10.10.10.50/24 10.10.10.70/24 10.10.10.80/24

10.10.10.40/24

10.10.10.50/24

10.10.10.70/24

10.10.10.80/24

2001:1::40/64 2001:1::50/64 2001:1::70/64 2001:2::80/64

2001:1::40/64

2001:1::50/64

2001:1::70/64

2001:2::80/64

Analyse the packets on the wire at hub1, can you confirm the VLAN tagging.

Rebuild the lab and this time configure 802.1ad VLANs.

Instead of
ip link add link eth0 name eth0.10 type vlan id 10
ip link add link eth0 name eth0.10 type vlan id 10

use

ip link add link eth0 name eth0.10 type vlan proto 802.1ad id 10
ip link add link eth0 name eth0.10 type vlan proto 802.1ad id 10

Confirm the frame type on the wire with Wireshark.

TEL3214 Switching 25 Mar 2017

	1. Bridging and Switching
	1.1 Why use Bridges

	2. Switches
	2.1 Why Switching
	2.2 When is switching used

	3. Transparent Bridging
	3.1 Address Resolution
	3.2 Broadcast Storm

	4. Spanning Tree Protocol
	5. Configuration of a Bridge interface on GNU/Linux
	5.1 bridge-utils

	6. Simple bridged network lab
	6.1 Reviewing the bridges
	6.1.1 Review bridge

	7. Bridge with a loop
	7.1 Review bridge

	8. Switching Lab
	9. Virtual LANs (VLANs)
	9.1 Removing the Physical Boundaries
	9.2 IEEE 802.1P/Q
	9.2.1 IEEE 802.1Q
	9.2.2 IEEE 802.1ad

	10. Provider tagging
	11. VLANs on GNU/Linux
	11.1 VLAN Logical diagram
	11.2 VLAN Example
	11.2.1 Load 802.1q kernel module in NTE
	11.2.2 Configure s-vlan1 for VLANs
	11.2.3 Configure the switch s-vlan2
	11.2.4 Test the VLAN

	11.3 IEEE 802.1ad support on GNU/Linux
	11.4 IEEE 802.1ad support on GNU/Linux as a switch

	12. GNU/Linux as a Service Provider bridge
	13. VLAN Lab

