
BSc in Telecommunications Engineering

TEL3214

Computer Communication Networks

Lecture 09

Applications

Eng Diarmuid O'Briain, CEng, CISSP

9-2 TEL3214 - Computer Communication Networks

Copyright © 2017 Diarmuid Ó Briain

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled "GNU Free
Documentation License".

TEL3214 Applications 07 May 2017

TEL3214 - Computer Communication Networks 9-3

Table of Contents

1. The Client-Server architecture..5

2. TCP Flow...7
2.1 TCP SOCKET CONNECTION...7
2.2 TCP WRITES AND READS...8
2.3 TCP CLOSE..10
2.4 TCP SOCKET DAEMON..11

 The TCP Socket daemon is a demonstration tool...11
2.5 TCP CLIENT..12

3. Secure Shell (SSH)...14
3.1 SSH..15
3.2 SFTP..16

4. Archiving and compressing files and directories...19
4.1 TAPE ARCHIVE (TAR) ARCHIVING..19
4.2 COMPRESSION..19

5. Hyper Text Transfer Protocol (HTTP)...23

6. Asymmetric Key Cryptography..26
6.1 KEY PAIRS...26
6.2 ASYMMETRIC KEY PROTOCOL SUMMARY...28
6.3 HOW ASYMMETRIC KEY CRYPTOGRAPHY WORKS..28
6.4 DIGITAL SIGNATURE...29
6.5 THE HYBRID SYSTEM..29

7. Key Management..30
7.1 CERTIFICATE AUTHORITIES (CA)...30
7.2 WEB OF TRUST...30
7.3 IMPLEMENTATIONS..31

8. GNU Privacy Guard..32
8.1 GENERATE A PRIVATE KEY..32
8.2 GENERATE A PUBLIC KEY..34
8.3 ENCRYPTING A FILE FOR PERSONAL USE...35
8.4 DECRYPTING THE FILE FOR PERSONAL USE..36
8.5 PASSING ENCRYPTED FILES TO ANOTHER PERSON...37
8.6 DECRYPT SECRET FILE ON SVR1..41
8.7 DIGITALLY SIGNING A FILE..42

9. Applications Lab...44

07 May 2017 Applications TEL3214

9-4 TEL3214 - Computer Communication Networks

Illustration Index
Illustration 1: Client-Server architecture..5

Illustration 2: TCP Socket connection...7

Illustration 3: TCP Writes and Reads..8

Illustration 4: TCP Close..10

Illustration 5: File transferred to user root on 10.0.2.10...18

Illustration 6: HTTP message flow..23

Illustration 7: Asymmetric Key Cryptography...27

Illustration 8: The hybrid system..28

TEL3214 Applications 07 May 2017

TEL3214 - Computer Communication Networks 9-5

1. The Client-Server architecture

A Client-Server architecture involves two parties, a Server which is a daemon running
on a computer with an open Transport Layer port. A Client requiring service connect to
that port and depending on the application share information.

Illustration 1 Has two routers acting as the Internet. On svr1 run the Server and on lap1
the client.

svr1
root@svr1:/tmp/pycore.46202/svr1.conf# cd /home/nte/TEL-3214-exercises/code
root@svr1:/home/nte/TEL-3214-exercises/code# ./ccnd.py 5050

Welcome to the TEL-3214 Computer Communication Networks daemon (ccnd)
This program is designed to give students an understanding of the
client/server architecture through a simple TCP Socket.

Starting TCP Server on 5050

Connected by ('10.0.0.20', 49655)
Sending received data back to ccnc at 10.0.0.20

07 May 2017 Applications TEL3214

Illustration 1: Client-Server architecture

9-6 TEL3214 - Computer Communication Networks

lap1
root@lap1:/tmp/pycore.46202/svr1.conf# cd /home/nte/TEL-3214-exercises/code
root@lap1:/home/nte/TEL-3214-exercises/code# ./ccnc.py 10.0.2.10 5050

Welcome to the TEL-3214 Computer Communication Networks client (ccnc)
This program is designed to give students an understanding of the
client/server architecture through a simple TCP Socket.

IP Addr: 10.0.2.10 Port# 5050

What message do you want to pass?: This is a TCP message

Sending message to server at 10.0.2.10 on port number: 5050

Received back: This is a TCP message

TEL3214 Applications 07 May 2017

TEL3214 - Computer Communication Networks 9-7

2. TCP Flow

2.1 TCP Socket Connection

To understand the Client-Server architecture it is essential to understand the
Transmission Control Protocol (TCP) flow.

Initially a TCP SYNc (SYN) message is sent from from Client to Server.

Frame 1: 74 bytes on wire (592 bits) on interface 0
Ethernet II, Src: 08:00:27:9d:3b:da Dst: 34:e6:ad:05:51:bd
Internet Protocol Version 4, Src: 192.1.1.100, Dst: 192.1.1.1
Transmission Control Protocol, Src Port: 57567, Dst Port: 5560, Seq: 0, Len: 0
 Header length: 40 bytes
 Flags: 0x002 (SYN)
 Window size value: 29200
 Checksum: 0x1034
 Options: Max segment size, SACK permitted, Tstamps, No-Operation (NOP), Window
scale

This is responded to with a TCP SYN/ACKnowledge (ACK) from the Server to the
Client.

Frame 2: 74 bytes on wire (592 bits) on interface 0
Ethernet II, Src: 34:e6:ad:05:51:bd, Dst: 08:00:27:9d:3b:da
Internet Protocol Version 4, Src: 192.1.1.1, Dst: 192.1.1.100
Transmission Control Protocol, Src Port: 5560, Dst Port: 57567, Seq: 0, Ack: 1, Len: 0
 Header length: 40 bytes
 Flags: 0x012 (SYN, ACK)
 Window size value: 28960
 Checksum: 0x52b2
 Options: Max segment size, SACK permitted, Tstamps, No-Operation (NOP), Window
scale

07 May 2017 Applications TEL3214

Illustration 2: TCP Socket connection

SYN

SYN/ACK

ACK

Client Server

$./ccnd.py
Simple TCP Socket.
Starting TCP Server on 5010

$./ccnc.py 192.1.1.1 5010
Simple TCP Socket.
IP Addr: 192.1.1.1 Port# 5010

192.1.1.1192.1.1.100

9-8 TEL3214 - Computer Communication Networks

The Client sends the Server an ACK and the parameters of the connection are agreed.

Frame 3: 66 bytes on wire (528 bits) on interface 0
Ethernet II, Src: 08:00:27:9d:3b:da Dst: 34:e6:ad:05:51:bd
Internet Protocol Version 4, Src: 192.1.1.100, Dst: 192.1.1.1
Transmission Control Protocol, Src Port: 57567, Dst Port: 5560, Seq: 1, Ack: 1, Len: 0
 Header length: 32 bytes
 Flags: 0x010 (ACK)
 Window size value: 229
 Checksum: 0xf1b9
 Options: No-Operation (NOP), No-Operation (NOP), Tstamps

2.2 TCP Writes and Reads

The Client sends the server the data as a PuSH (PSH), ACK message.

Frame 4: 87 bytes on wire (696 bits), 87 bytes captured (696 bits) on interface 0
Ethernet II, Src: 08:00:27:9d:3b:da Dst: 34:e6:ad:05:51:bd
Internet Protocol Version 4, Src: 192.1.1.100, Dst: 192.1.1.1
Transmission Control Protocol, Src Port: 57567, Dst Port: 5560, Seq: 1, Ack: 1, Len: 21
 Header length: 32 bytes
 Flags: 0x018 (PSH, ACK)
 Window size value: 229
 Checksum: 0xf372
 Options: No-Operation (NOP), No-Operation (NOP), Tstamps
Data (21 bytes)
0000 54 68 69 73 20 69 73 20 61 20 54 43 50 20 6d 65 This is a TCP me
0010 73 73 61 67 65 ssage

TEL3214 Applications 07 May 2017

Illustration 3: TCP Writes and Reads

PSH, ACK

PSH, ACK

ACK

Client Server

54686973206973206120544350206d657373616765

This is a TCP message

192.1.1.1192.1.1.100

54686973206973206120544350206d657373616765

This is a TCP message

ACK

TEL3214 - Computer Communication Networks 9-9

The Server responds with an ACK of the received data.

Frame 5: 66 bytes on wire (528 bits) on interface 0
Ethernet II, Src: 34:e6:ad:05:51:bd, Dst: 08:00:27:9d:3b:da
Internet Protocol Version 4, Src: 192.1.1.1, Dst: 192.1.1.100
Transmission Control Protocol, Src Port: 5560, Dst Port: 57567, Seq: 1, Ack: 22, Len: 0
 Source port: 5560
 Destination port: 57567
 Sequence number: 1
 Acknowledgment number: 22
 Header length: 32 bytes
 Flags: 0x010 (ACK)
 Window size value: 227
 Checksum: 0xf1a6
 Options: No-Operation (NOP), No-Operation (NOP), Tstamps

The Server then resends the data back to the Client as a PSH, ACK message.

Frame 6: 87 bytes on wire (696 bits), 87 bytes captured (696 bits) on interface 0
Ethernet II, Src: 34:e6:ad:05:51:bd, Dst: 08:00:27:9d:3b:da
Internet Protocol Version 4, Src: 192.1.1.1, Dst: 192.1.1.100
Transmission Control Protocol, Src Port: 5560, Dst Port: 57567, Seq: 1, Ack: 22, Len:
21
 Header length: 32 bytes
 Flags: 0x018 (PSH, ACK)
 Window size value: 227
 Checksum: 0xf35f
 Options: No-Operation (NOP), No-Operation (NOP), Tstamps
Data (21 bytes)
0000 54 68 69 73 20 69 73 20 61 20 54 43 50 20 6d 65 This is a TCP me
0010 73 73 61 67 65 ssage

The Client sends an ACK to confirm the received data.

Frame 7: 66 bytes on wire (528 bits) on interface 0
Ethernet II, Src: 08:00:27:9d:3b:da Dst: 34:e6:ad:05:51:bd
Internet Protocol Version 4, Src: 192.1.1.100, Dst: 192.1.1.1
Transmission Control Protocol, Src Port: 57567, Dst Port: 5560, Seq: 22, Ack: 22, Len:
0
 Header length: 32 bytes
 Flags: 0x011 (FIN, ACK)
 Window size value: 229
 Checksum: 0xf18e [validation disabled]
 Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Tstamps

07 May 2017 Applications TEL3214

9-10 TEL3214 - Computer Communication Networks

2.3 TCP Close

To close the connection the Client sends a FIN, ACK message to the Server.

Internet Protocol Version 4, Src: 192.1.1.100, Dst: 192.1.1.1
Transmission Control Protocol, Src Port: 57567, Dst Port: 5560, Seq: 22, Ack: 22, Len:
0
 Header length: 32 bytes
 Flags: 0x011 (FIN, ACK)
 Window size value: 229
 Checksum: 0xf18e [validation disabled]
 Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Tstamps

This is responded to with a corresponding FIN, ACK message.

Internet Protocol Version 4, Src: 192.1.1.1, Dst: 192.1.1.100
Transmission Control Protocol, Src Port: 5560, Dst Port: 57567, Seq: 22, Ack: 23, Len:
0
 Header length: 32 bytes
 Flags: 0x011 (FIN, ACK)
 Window size value: 227
 Checksum: 0xf18f
 Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Tstamps

Finally the Client closes the connection by sending an ACK to the Server.
Frame 10: 66 bytes on wire (528 bits) on interface 0
Ethernet II, Src: 08:00:27:9d:3b:da Dst: 34:e6:ad:05:51:bd
Internet Protocol Version 4, Src: 192.1.1.100, Dst: 192.1.1.1
Transmission Control Protocol, Src Port: 57567, Dst Port: 5560, Seq: 23, Ack: 23, Len:
0
 Header length: 32 bytes
 Flags: 0x010 (ACK)
 Window size value: 229
 Checksum: 0xf18d [validation disabled]
 Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Tstamps

TEL3214 Applications 07 May 2017

Illustration 4: TCP Close

FIN, ACK

FIN, ACK

ACK

Client Server

192.1.1.1192.1.1.100

TEL3214 - Computer Communication Networks 9-11

2.4 TCP Socket Daemon

The TCP Socket daemon is a demonstration tool

The program can be given a TCP port number at the beginning or can used the
preprogrammed port of 5010.

try:
 tcp_port = sys.argv[1]
except:
 tcp_port = '5010'

It then validates the port number, i.e that it is between 5001 and 9999.

tcp_port = tcp_port.strip()

try:
 tcp_port = int(tcp_port)
except:
 print "\nPort number is not valid use the following format"
 print sys.argv[0], "[<port 5001-9999 | 5010>]"
 sys.exit()

if tcp_port < 5001 or tcp_port > 9999:
 print "\nPort number is not valid use the following format"
 print sys.argv[0], "[<port 5001-9999 | 5010>]"
 sys.exit()

print "Starting TCP Server on", tcp_port, "\n"

If all is OK the program then attempts to create a socket on the selected port number
and remain open for all IP addresses on the system.

s = None
for sai in socket.getaddrinfo(ip_addr, tcp_port, socket.AF_UNSPEC, socket.SOCK_STREAM,
0, socket.AI_PASSIVE):
 addr_family, sock_type, proto, canonical_name, sock_addr = sai
 try:
 s = socket.socket(addr_family, sock_type, proto)
 except socket.error as msg:
 s = None
 continue
 try:
 s.bind(sock_addr)
 s.listen(1)
 except socket.error as msg:
 s.close()
 s = None
 continue
 break
if s is None:
 print 'could not open socket'
 sys.exit(1)

07 May 2017 Applications TEL3214

9-12 TEL3214 - Computer Communication Networks

If an client binds to the socket, then a message is printed out telling of the connection. It
receives until the client selects the enter key when it sends the data right back to the
client. Once complete the connection is closed.

 conn, addr = s.accept()
print 'Connected by', addr
while 1:
 data = conn.recv(1024)
 if not data: break
 print "Sending received data back to ccnc at", addr[0], "\n"
 conn.send(data)
conn.close()

2.5 TCP Client

The client gets the IP address and Port number of the server from the initial running of
the command.

try:
 ip_addr = sys.argv[1]
 tcp_port = sys.argv[2]
except:
 print "\nIncorrect format"
 print sys.argv[0], "<ip addr> <port 5001-9999 | 5010>"
 sys.exit()

It then validates the IP address.

def is_valid_ipv4_address(ip_addr):

 try:
 socket.inet_pton(socket.AF_INET, ip_addr)
 except socket.error:
 return False

 return True

def is_valid_ipv6_address(ip_addr):

 try:
 socket.inet_pton(socket.AF_INET6, ip_addr)
 except socket.error:
 return False

 return True

if (is_valid_ipv4_address(ip_addr) == False and is_valid_ipv6_address(ip_addr) ==
False):
 print "\nIP address is not valid use the following format"
 print sys.argv[0], "<ip addr> <port 5001-9999 | 5010>"
 sys.exit()

TEL3214 Applications 07 May 2017

TEL3214 - Computer Communication Networks 9-13

After testing the IP address it validates the given Port number.

tcp_port = tcp_port.strip()

try:
 tcp_port = int(tcp_port)
except:
 print "\nPort number is not valid use the following format"
 print sys.argv[0], "<ip addr> <port 5001-9999 | 5010>"
 sys.exit()

if tcp_port < 5001 or tcp_port > 9999:
 print "\nPort number is not valid use the following format"
 print sys.argv[0], "<ip addr> <port 5001-9999 | 5010>"
 sys.exit()

print "IP Addr: ", ip_addr, "Port#", tcp_port, "\n"

The client then asks the user for a message.

message = raw_input('What message do you want to pass?: ')

It then attempts to bind with the Socket.

s = None
for sai in socket.getaddrinfo(ip_addr, tcp_port, socket.AF_UNSPEC, socket.SOCK_STREAM,
0, socket.AI_PASSIVE):
 addr_family, sock_type, proto, canonical_name, sock_addr = sai
 try:
 s = socket.socket(addr_family, sock_type, proto)
 except socket.error as msg:
 s = None
 continue
 try:
 s.connect(sock_addr)
 except socket.error as msg:
 s.close()
 s = None
 continue
 break
if s is None:
 print 'could not open socket'
 sys.exit(1)

If this is successful then the message is sent to the server.

print "\nSending message to server at", ip_addr, "on port number:", tcp_port
s.sendall(message)

A reply is received from the server, it is the message repeated back and is then printed
to the Client terminal.

data = s.recv(1024)
s.close()

print '\nReceived back: ', data

07 May 2017 Applications TEL3214

9-14 TEL3214 - Computer Communication Networks

3. Secure Shell (SSH)

Secure Shell (SSH) is the connectivity tool for remote login. It encrypts all traffic to
eliminate eavesdropping, connection hijacking, and other attacks. In addition, SSH
provides a large suite of secure tunnelling capabilities, several authentication methods,
and sophisticated configuration options.

SSH consists of the following tools:

• Server side consists of:

◦ SSH Daemon (sshd)

◦ Secure File Transfer Protocol (sftp-server)

◦ ssh-agent creates a socket and then checks the connections from ssh.

• Remote operations are carried out using:

◦ ssh for remote login

◦ sftp

◦ Secure Copy (scp).

• Key management is achieved with

◦ ssh-add

◦ ssh-keysign

◦ ssh-keyscan

◦ ssh-keygen.

TEL3214 Applications 07 May 2017

TEL3214 - Computer Communication Networks 9-15

3.1 SSH

Looking at an example of a connection from the Client lap1 to the Server svr1. Note the
user gets full shell access to the Server.

root@lap1:/root# ssh nte@10.0.2.10
The authenticity of host '10.0.2.10 (10.0.2.10)' can't be established.
RSA key fingerprint is 53:c2:a2:55:1d:ed:de:16:2a:33:1a:42:7c:e9:4a:84.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '10.0.2.10' (RSA) to the list of known hosts.
nte@10.0.2.10's password: nte

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

nte@svr1:~$ id
uid=1001(nte) gid=1001(nte) groups=1001(nte),27(sudo),128(wireshark)

nte@svr1:~$ ip -4 addr list
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
31: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state
UP group default qlen 1000
 inet 10.0.2.10/24 scope global eth0
 valid_lft forever preferred_lft forever

07 May 2017 Applications TEL3214

9-16 TEL3214 - Computer Communication Networks

3.2 SFTP

SFTP is a really useful tool for securely transferring files to and from Servers. In the
example a 10 MB is created on the Client lap1 and is transferred to the Server svr1.

lap1
Create a 10 MB file as a test file and confirm its existence and size.

root@lap1:/tmp/pycore.54569/lap1.conf# dd if=/dev/zero of=10mb_file_test_file
bs=10485760 count=1
1+0 records in
1+0 records out
10485760 bytes (10 MB) copied, 0.0223468 s, 469 MB/s

Creates a file full of zeros.

root@lap1:/tmp/pycore.54569/lap1.conf# ls -la 10mb_file_test_file
-rw-rw-rw- 1 root root 10485760 Mar 9 19:48 10mb_file_test_file

Connect to the Server svr1, review the available commands.

root@lap1:/tmp/pycore.54569/lap1.conf# sftp root@10.0.2.10
root@10.0.2.10's password:
The authenticity of host '10.0.2.10 (10.0.2.10)' can't be established.
RSA key fingerprint is 59:f3:a4:7e:f6:25:04:9f:1c:b4:6f:84:50:1a:b2:70.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '10.0.2.10' (RSA) to the list of known hosts.
root@10.0.2.10's password: root
Connected to 10.0.2.10.

TEL3214 Applications 07 May 2017

TEL3214 - Computer Communication Networks 9-17

sftp> ?
Available commands:
bye Quit sftp
cd path Change remote directory to 'path'
chgrp grp path Change group of file 'path' to 'grp'
chmod mode path Change permissions of file 'path' to 'mode'
chown own path Change owner of file 'path' to 'own'
df [-hi] [path] Display statistics for current directory or
 filesystem containing 'path'
exit Quit sftp
get [-Ppr] remote [local] Download file
reget remote [local] Resume download file
reput [local] remote Resume upload file
help Display this help text
lcd path Change local directory to 'path'
lls [ls-options [path]] Display local directory listing
lmkdir path Create local directory
ln [-s] oldpath newpath Link remote file (-s for symlink)
lpwd Print local working directory
ls [-1afhlnrSt] [path] Display remote directory listing
lumask umask Set local umask to 'umask'
mget As per get but wildcards for multiple
downloads
mkdir path Create remote directory
mput As per put but wildcards for multiple uploads
progress Toggle display of progress meter
put [-Ppr] local [remote] Upload file
pwd Display remote working directory
quit Quit sftp
rename oldpath newpath Rename remote file
rm path Delete remote file
rmdir path Remove remote directory
symlink oldpath newpath Symlink remote file
version Show SFTP version
!command Execute 'command' in local shell
! Escape to local shell
? Synonym for help

Change to the working directory of svr1 and create a directory there.
sftp> cd /tmp/pycore.54569/svr1.conf
sftp> mkdir Big_File
sftp> cd Big_File
sftp> pwd
Remote working directory: /tmp/pycore.54569/svr1.conf/Big_File

Check the local directory and file.
sftp> lpwd
Local working directory: /tmp/pycore.54569/lap1.conf

sftp> lls
10mb_file_test_file defaultroute.sh var.log var.run

Transfer the file to the new directory on svr1.
sftp> put 10mb_file_test_file
Uploading 10mb_file_test_file to
/tmp/pycore.54569/svr1.conf/Big_File/10mb_file_test_file
10mb_file_test_file 100% 10MB 10.0MB/s 00:00

07 May 2017 Applications TEL3214

9-18 TEL3214 - Computer Communication Networks

sftp> ls
10mb_file_test_file

sftp> exit

TEL3214 Applications 07 May 2017

Illustration 5: File transferred to user root on 10.0.2.10

TEL3214 - Computer Communication Networks 9-19

4. Archiving and compressing files and directories

4.1 Tape Archive (TAR) archiving

GNU tar is the GNU version of the tar archiving utility. Originally that was the tape
archive. It is useful to tar up a directory and all the directories and file therein as a
single file, the tar archive file. The GNU tar program can do this. The resultant file is
generally called a tarball. Using the file 10mb_file_test_file in the Big_File directory
on svr1.

root@svr1:/tmp/pycore.54569/svr1.conf# ls Big_File/
10mb_file_test_file

root@svr1:/tmp/pycore.54569/svr1.conf# tar -cf Big_File.tar Big_File

root@svr1:/tmp/pycore.54569/svr1.conf# file Big_File.tar
Big_File.tar: POSIX tar archive (GNU)

Review a tar archive with the -t or --list option to see a table of contents for the archive.

root@svr1:/tmp/pycore.54569/svr1.conf# tar -tf Big_File.tar
Big_File/
Big_File/10mb_file_test_file

Remove the original directory.

root@svr1:/tmp/pycore.54569/svr1.conf# rm -r Big_File

Extract the archive and confirm the directory is recovered.

root@svr1:/tmp/pycore.54569/svr1.conf# tar -xf Big_File.tar

root@svr1:/tmp/pycore.54569/svr1.conf# ls Big_File
10mb_file_test_file

4.2 Compression

4.2.1 GNU ZIP (GZIP)

The tar archive can be compressed to reduce file size. For example gzip which reduces
the size of files using Lempel-Ziv coding (LZ77) can be applied to the tarball. tar has the
ability to incorporate compression functions as well as archiving and perform both
functions with the same command.

root@svr1:/tmp/pycore.54569/svr1.conf# gzip Big_File.tar

root@svr1:/tmp/pycore.54569/svr1.conf# ls -l | grep Big_File
drwxr-xr-x 2 root root 4096 Mar 9 19:56 Big_File
-rw-rw-rw- 1 root root 10346 Mar 9 20:08 Big_File.tar.gz

07 May 2017 Applications TEL3214

9-20 TEL3214 - Computer Communication Networks

To reverse this process use the gunzip command.

root@svr1:/tmp/pycore.54569/svr1.conf# gunzip Big_File.tar.gz

root@svr1:/tmp/pycore.54569/svr1.conf# ls -l | grep Big_File
drwxr-xr-x 2 root root 4096 Mar 9 19:56 Big_File
-rw-rw-rw- 1 root root 10496000 Mar 9 20:08 Big_File.tar

4.2.2 BZIP2

An alternative approach is to use the bzip2 utility which uses the Burrows-Wheeler
block sorting text compression algorithm, and Huffman coding. bzip2 compression is
generally considerably better that the more conventional LZ77/LZ78-based
compressors.

root@svr1:/tmp/pycore.54569/svr1.conf# bzip2 Big_File.tar

root@svr1:/tmp/pycore.54569/svr1.conf# ls -l | grep Big_File
drwxr-xr-x 2 root root 4096 Mar 9 19:56 Big_File
-rw-rw-rw- 1 root root 180 Mar 9 20:08 Big_File.tar.bz2

The reverse process is similar to what has been seen for gunzip.

root@svr1:/tmp/pycore.54569/svr1.conf# bunzip2 Big_File.tar.bz2

root@svr1:/tmp/pycore.54569/svr1.conf# ls -l | grep Big_File
drwxr-xr-x 2 root root 4096 Mar 9 19:56 Big_File
-rw-rw-rw- 1 root root 10496000 Mar 9 20:08 Big_File.tar

4.2.3 XZ

Another approach is to use the xz utility which is a lossless data compression program
and file format based on the Lempel–Ziv–Markov chain algorithm (LZMA).

root@svr1:/tmp/pycore.54569/svr1.conf# xz Big_File.tar

root@svr1:/tmp/pycore.54569/svr1.conf# ls -l | grep Big_File
drwxr-xr-x 2 root root 4096 Mar 9 19:56 Big_File
-rw-rw-rw- 1 root root 1764 Mar 9 20:08 Big_File.tar.xz

The reverse process is similar to what has been seen for gunzip.

root@svr1:/tmp/pycore.54569/svr1.conf# unxz Big_File.tar.xz

root@svr1:/tmp/pycore.54569/svr1.conf# ls -l | grep Big_File
drwxr-xr-x 2 root root 4096 Mar 9 19:56 Big_File
-rw-rw-rw- 1 root root 10496000 Mar 9 20:08 Big_File.tar

TEL3214 Applications 07 May 2017

TEL3214 - Computer Communication Networks 9-21

4.2.4 TAR/GZIP/BZ/XZ

Fortunately the tar utility offers the ability to both archive and compress in one
operation, here is an example using gzip. Note the file extension for a gzipped archives
is either .tar.gz or simply .tgz. The z switch in the command instructs that the directory
be archived and gzipped.

root@svr1:/tmp/pycore.54569/svr1.conf# tar -czvf Big_File.tar.gz Big_File
Big_File/
Big_File/10mb_file_test_file

root@svr1:/tmp/pycore.54569/svr1.conf# file Big_File.tar.gz
Big_File.tar.gz: gzip compressed data, last modified: Wed Mar 9 20:23:18
2016, from Unix

A similar process can be achieved for bzip2, the end extension being .tar.bz2 or .tbz2
by convention. The j switch is used to archive and bzip2.

root@svr1:/tmp/pycore.54569/svr1.conf# tar -cjvf Big_File.tar.bz2 Big_File
Big_File/
Big_File/10mb_file_test_file

root@svr1:/tmp/pycore.54569/svr1.conf# file Big_File.tar.bz2
Big_File.tar.bz2: bzip2 compressed data, block size = 900k

To compress with xz can also be achieved within the tar utility, the end extension being
.tar.xz or .txz with the .J switch.

root@svr1:/tmp/pycore.54569/svr1.conf# tar -cJvf Big_File.tar.xz Big_File
Big_File/
Big_File/10mb_file_test_file

root@svr1:/tmp/pycore.54569/svr1.conf# file Big_File.tar.xz
Big_File.tar.xz: XZ compressed data

4.2.5 ZIP

zip/unzip is a compression and file packaging utility found in Unix, VMS, MSDOS,
OS/2, Windows 9x/NT/XP, Minix, Atari, Macintosh, Amiga, and Acorn RISC OS. It is
analogous to a combination of the Unix commands tar and compress and is compatible
with Phil Katz's ZIP for Windows systems called PKZIP or WinZIP. ZIP can also archive
a group of files directly. Here zip recursively archives and compresses the directory
Big_File and its contents.

root@svr1:/tmp/pycore.54569/svr1.conf# zip -r Big_File.zip Big_File
updating: Big_File/ (stored 0%)
updating: Big_File/10mb_file_test_file (deflated 100%)

07 May 2017 Applications TEL3214

9-22 TEL3214 - Computer Communication Networks

To recover the files from the compressed archive use unzip.

root@svr1:/tmp/pycore.54569/svr1.conf# unzip Big_File.zip
Archive: Big_File.zip
 creating: Big_File/
 inflating: Big_File/10mb_file_test_file

4.2.6 Comparing compression tools

Comparing the relative sizes of the archive and the three compressed versions. When
the requirement is very fast compression, the gzip was the best option, it has also very
small memory footprint, making it ideal for systems with limited memory. bzip2 creates
about 15% smaller files than gzip on average however it compresses at a slower rate
than gzip. For decompression a similar picture emerges with gzip the fastest. bzip2 is
a lot slower taking four to twelve times more time to decompress than gzip. The newer
xz is now showing to be slightly better performance in terms of compression than the
others. zip exhibits similar performance to gzip.

root@svr1:/tmp/pycore.54569/svr1.conf# ls -la | grep Big_File.
-rw-rw-rw- 1 root root 10496000 Mar 9 20:08 Big_File.tar
-rw-rw-rw- 1 root root 180 Mar 9 20:24 Big_File.tar.bz2
-rw-rw-rw- 1 root root 10333 Mar 9 20:23 Big_File.tar.gz
-rw-rw-rw- 1 root root 1752 Mar 9 20:26 Big_File.tar.xz
-rw-rw-rw- 1 root root 10542 Mar 9 20:28 Big_File.zip

Download the Big_File.tar files from svr1 to lap1. Note sizes and download times.

root@lap1:/tmp/pycore.54569/lap1.conf# sftp root@10.0.2.10
root@10.0.2.10's password: root
Connected to 10.0.2.10.

sftp> mget Big_File.*
Fetching Big_File.tar to /tmp/pycore.54569/svr1.conf/Big_File.tar
Big_File.tar 100% 10MB 10.0MB/s 00:00
Fetching Big_File.tar.bz2 to /tmp/pycore.54569/svr1.conf/Big_File.tar.bz2
Big_File.tar.bz2 100% 1764 1.7KB/s 00:00
Fetching Big_File.tar.gz to /tmp/pycore.54569/svr1.conf/Big_File.tar.gz
Big_File.tar.gz 100% 10KB 10.1KB/s 00:00
Fetching Big_File.tar.xz to /tmp/pycore.54569/svr1.conf/Big_File.tar.xz
Big_File.tar.xz 100% 1764 1.7KB/s 00:00
Fetching Big_File.zip to /tmp/pycore.54569/svr1.conf/Big_File.zip
Big_File.zip 100% 10KB 10.3KB/s 00:00

TEL3214 Applications 07 May 2017

TEL3214 - Computer Communication Networks 9-23

5. Hyper Text Transfer Protocol (HTTP)

The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed,
collaborative, hypermedia information systems. It's most common application is the
mechanism of data communication for the World Wide Web.

Hypertext is structured text that uses logical links (hyperlinks) between nodes containing
text. HTTP is the protocol to exchange or transfer hypertext.

Th coordination for HTTP standards and development is the Internet Engineering Task
Force (IETF) and the World Wide Web Consortium (W3C). It is standardised as
Requests for Comments (RFC). The first definition of HTTP/1.1, the version of HTTP in
common use, occurred in RFC 2068 in 1997. This RFC was superseded by RFC 2616
in 1999.

HTTP functions as a request–response protocol in the client–server computing model. A
typical client is a web browser a HTTP daemon (apache2 for example) running on a
hosting server.

The client submits an HTTP GET request message to the server. The server returns a
HTTP 200/OK response message to the client. The 200/OK message contains
completion status information about the request as well as the requested content in the
message body.

5.1.1 HTTP User Agent (UA)

A web browser is an example of a user agent (UA). However it is not the only user agent
type. Other types include web crawlers, the indexing software used by search providers,
mobile apps to name just a few.

07 May 2017 Applications TEL3214

9-24 TEL3214 - Computer Communication Networks

5.1.2 HTTP example

For the NTE hosts there is only shell access. However GNU/Linux has a general
purpose distributed information browser for the World Wide Web called lynx the
operated on the shell without resorting to a graphical interface.

Connect from lap1 to svr1 using lynx. The default apache2 page is presented to the
browser.

root@lap1:/tmp/pycore.46202/lap1.conf# lynx 10.0.2.10
Looking up '10.0.2.10' first

 Your Terminal type is unknown!
 Enter a terminal type: [vt100] <CR>

 svr1 web server

 This is the default web page for this server.

 The web server software is running but no content has been added, yet.

 Eth0 - ['10.0.2.10/24', '2001:2::10/64']

TEL3214 Applications 07 May 2017

Illustration 6: HTTP message flow

HTTP, GET

HTTP, OK, data

Client Server

10.0.2.1010.0.0.100

TEL3214 - Computer Communication Networks 9-25

5.1.3 HTTP on the wire

Now look at the traffic on the Internet corresponding to this connection. There is an initial
GET / HTTP from lap1 at 10.0.0.20 to svr1 at 10.0.2.10.

Internet Protocol Version 4, Src: 10.0.0.20, Dst: 10.0.2.10
Transmission Control Protocol, Src Port: 54117, Dst Port: 80, Seq: 1, Ack: 1, Len: 253
Hypertext Transfer Protocol
 GET / HTTP/1.0\r\n
 Host: 10.0.2.10\r\n
 Accept: text/html, text/plain, text/sgml, text/css, app/xhtml+xml,
/;q=0.01\r\n
 Accept-Encoding: gzip, compress, bzip2\r\n
 Accept-Language: en\r\n
 User-Agent: Lynx/2.8.9dev.1 libwww-FM/2.14 SSL-MM/1.4.1 GNUTLS/3.3.8\r\n
 \r\n

The webserver responds with a HTTP/1.1 200 OK message containing the requested
webpage.

Internet Protocol Version 4, Src: 10.0.2.10, Dst: 10.0.0.20
Transmission Control Protocol, Src Port: 80, Dst Port: 54117, Seq: 1, Ack: 254, Len:
500
Hypertext Transfer Protocol
 HTTP/1.1 200 OK\r\n
 Date: Fri, 26 Feb 2016 18:33:12 GMT\r\n
 Server: Apache/2.4.10 (Debian)\r\n
 Last-Modified: Fri, 26 Feb 2016 18:32:10 GMT\r\n
 ETag: "115-52cb08464d460"\r\n
 Accept-Ranges: bytes\r\n
 Content-Length: 277\r\n
 Connection: close\r\n
 \r\n
 Data (277 bytes)

0000 3c 68 74 6d 6c 3e 3c 62 6f 64 79 3e 3c 21 2d 2d <html><body><!--
0010 20 67 65 6e 65 72 61 74 65 64 20 62 79 20 75 74 generated by ut
0020 69 6c 69 74 79 2e 70 79 3a 48 74 74 70 53 65 72 ility.py:HttpSer
0030 76 69 63 65 20 2d 2d 3e 0a 3c 68 31 3e 73 76 72 vice -->.<h1>svr
0040 31 20 77 65 62 20 73 65 72 76 65 72 3c 2f 68 31 1 web server</h1
0050 3e 0a 3c 70 3e 54 68 69 73 20 69 73 20 74 68 65 >.<p>This is the
0060 20 64 65 66 61 75 6c 74 20 77 65 62 20 70 61 67 default web pag
0070 65 20 66 6f 72 20 74 68 69 73 20 73 65 72 76 65 e for this serve
0080 72 2e 3c 2f 70 3e 0a 3c 70 3e 54 68 65 20 77 65 r.</p>.<p>The we
0090 62 20 73 65 72 76 65 72 20 73 6f 66 74 77 61 72 b server softwar
00a0 65 20 69 73 20 72 75 6e 6e 69 6e 67 20 62 75 74 e is running but
00b0 20 6e 6f 20 63 6f 6e 74 65 6e 74 20 68 61 73 20 no content has
00c0 62 65 65 6e 20 61 64 64 65 64 2c 20 79 65 74 2e been added, yet.
00d0 3c 2f 70 3e 0a 3c 6c 69 3e 65 74 68 30 20 2d 20 </p>.eth0 -
00e0 5b 27 31 30 2e 30 2e 32 2e 31 30 2f 32 34 27 2c ['10.0.2.10/24',
00f0 20 27 32 30 30 31 3a 32 3a 3a 31 30 2f 36 34 27 '2001:2::10/64'
0100 5d 3c 2f 6c 69 3e 0a 3c 2f 62 6f 64 79 3e 3c 2f].</body></
0110 68 74 6d 6c 3e html>

07 May 2017 Applications TEL3214

9-26 TEL3214 - Computer Communication Networks

6. Asymmetric Key Cryptography

Asymmetric key cryptography or public key cryptography is a relatively new
cryptographic approach where the use of asymmetric key algorithms instead of or in
addition to symmetric key algorithms is used as an enhancement to security.

Public key cryptography unlike symmetric key algorithms does not require a secure
initial exchange of one or more secret keys to both sender and receiver. Instead a
mathematically related key pair is created, a secret private key and a public key the
latter which is published. These keys allow protection of the authenticity of a message
by creating a digital signature of a message using the private key, which can be
validated using the public key. It also allows for the protection of the messages
confidentiality and integrity, by public key encryption, encrypting the message using the
public key, which can only be decrypted using the private key.

Public key cryptography is employed by many cryptographic algorithms and
cryptosystems. It is used in standards such as Transport Layer Security (TLS)/Secure
Sockets Layer (SSL), Pretty Good Privacy (PGP), and GNU Privacy Guard (GnuPG).

6.1 Key pairs

The generation of key pairs requires the use of intractable problems called trapdoor
functions which are functions that are easy to compute in one direction, yet believed to
be difficult to compute in the opposite direction without special information, called the
"trapdoor".

An intractable problem is a problem for which there is no efficient means of solving.
These aren't necessarily problems for which there is no solution. Instead, these are
problems that take too long to analyse all the options. The public key cryptographic
intractable problems used to date are based either on factoring prime numbers or
discrete logarithms.

Looking at an example:

Take a prime number m = 29 as the modulus (public key). The primitive roots of 29 are:
2, 3, 8, 10, 11, 14, 15, 18, 19, 21, 26, 27.

So taking and a base b = 10 (the trapdoor)

Alice chooses a secret y = 8 (Private Key).

Alice sends Bob w = by mod m = 108 mod 29 = 25
Bob chooses a secret z = 11 (Private Key).

Bob sends Alice x = bz mod m = 1011 mod 29 = 2
Alice computes s = xy mod m = 28 mod 29 = 24

Bob computes s = wz mod m = 2511 mod 29 = 24

Alice and Bob now share a secret, in this case 24 without it being transferred across the
transmission path and without either Alice or Bob sharing their private keys.

TEL3214 Applications 07 May 2017

TEL3214 - Computer Communication Networks 9-27

6.1.1 Diffie-Hellman key protocol

In 1976 Whitfield Diffie and Martin Hellman, who, influenced by Ralph Merkle's work on
public-key distribution went down the discrete log route when developing what became
known as Diffie-Hellman key exchange method.

6.1.2 El Gamal

El Gamal is based on Diffie-Hellman method. It was described by Taher Elgamal in
1985. It is used in the free GNU Privacy Guard software, recent versions of PGP, and
other cryptosystems.

6.1.3 RSA

In 1977 Ronald Rivest, Adi Shamir and Len Adleman developed an algorithm using
factoring of prime numbers. This algorithm became known as RSA.

Taking two large prime numbers we will call ‘B’ and ‘Q’. Multiply these numbers to
generate ‘N’:

N = B * Q

Select another number ‘e’ such that:

1. e < N
2. e and (N -1)(Q – 1) are relatively prime (no common factors except 1)

Find a number ‘p’ such that:

(ep - 1) mod(B - 1)(Q - 1) = 0

Distribute ‘e’ and ‘N’ as the public key and keep ‘p’ as the private key.

For Alice to send an encrypted message she sends:

{CT} = {PT}e mod N

Bob receives and retrieves the message by:

{PT} = {CT}p mod N

6.1.4 Elliptic curve cryptography (ECC)

Another intractable problem that is used is the assumption that finding the discrete
logarithm of an elliptic curve element is infeasible. The size of the elliptic curve
determines the difficulty of the problem. It is believed that a smaller group can be used to
obtain the same level of security as RSA-based systems. Using a small group reduces
storage and transmission requirements.

07 May 2017 Applications TEL3214

9-28 TEL3214 - Computer Communication Networks

6.2 Asymmetric Key Protocol summary

Algorithm Name Mode Block size Keys Other

RSA Ron Rivest, Adi Shamir
& Len Adleman

Factoring Variable 1024 – 2048

Diffie Hellamn Whitfield Diffie &
Martin Hellman

Discrete Log Variable Variable Only used for key exchange

ECC Elliptical Curve
Cryptography

Discrete Log Variable 80 → 512 160 bits key is equivalent to
1024 bits in RSA

6.3 How Asymmetric Key Cryptography works

Illustration 7: Asymmetric Key Cryptography

Alice and Bob wish to communicate with each other so they each have a public key and
a private key. Alice has a copy of Bob’s public and Bob has a copy of Alice’s public key.

Alice wishes to send a message to Bob so she encrypts it with Bob’s public key KB(PUB)

and forwards it to him. Bob extracts the message using his private key KB(PRI).

Bob wishes to respond with a message of his own to Alice so he encrypts it with Alice’s
public key KA(PUB) and forwards it to her. Alice extracts the message using her private
key KA(PRI).

This scheme offers confidentiality of transmission from Alice to Bob and from Bob to
Alice. This scheme does not however address the issues of integrity or non-repudiation.

TEL3214 Applications 07 May 2017

TEL3214 - Computer Communication Networks 9-29

6.4 Digital Signature

Apart from confidentiality of data another application of public-key cryptography is
digital signature. Digital signature schemes can be used for sender authentication and
non-repudiation. In such a scheme a user who wants to send a message computes a
digital signature of this message and then sends this digital signature together with the
message to the intended receiver. Digital signature schemes have the property that
signatures can only be computed with the knowledge of a private key. To verify that a
message has been signed by a user and has not been modified the receiver only needs
to know the corresponding public key.

6.5 The hybrid system

Illustration 8: The hybrid system

This is an enhancement of the system on the previous page where Digital Signatures
have been added to provide authentication, integrity and non-repudiation as well as
confidentiality.

Alice and Bob wish to communicate with each other so they each have a public key and
a private key. Alice has a copy of Bob’s public and Bob has a copy of Alice’s public key.

Alice wishes to send a message to Bob so she generates a symmetric key KAB(SYM) which
she encrypts with Bob’s public key KB(PUB) and forwards it to him. Bob extracts KAB(SYM)

from the message using his private key KB(PRI).

Alice encrypts the message she wants to send using the shared symmetric key KAB(SYM)

and forwards it to Bob, she also generates a message digest from the message and
using her own private key KA(PRI) to encrypt the hash forwards the encrypted hash to
Bob.

07 May 2017 Applications TEL3214

9-30 TEL3214 - Computer Communication Networks

Bob uses the symmetric key KAB(SYM) to decrypt the message, this ensures the
confidentiality of the message. He also generates a message digest of it, he then takes
the encrypted message digest received and decrypts it using Alice’s public key KA(PUB).
He now compares the message digest received from Alice with the version he created
and they should be the same. If so he is assured of the message integrity.

Finally he can acknowledge the receipt by taking the message digest and encrypting it
with his private key KB(PRI) and forwarding it to Alice. Alice decrypts it using Bob’s public
key KB(PUB) and the output should be identical to the message digest Alice herself
created. This verifies the receiver’s integrity as well as assuring Alice that Bob received
the message.

7. Key Management

One of the obvious issues with the asymmetric key cryptography is how to make the
public keys available. For this we need a Public Key Infrastructure (PKI). This is a set of
hardware, software, people, policies, and procedures needed to create, manage,
distribute, use, store, and revoke digital certificates.

7.1 Certificate Authorities (CA)

CAs are web sites that publish the key bound to a given user. This is achieved using the
CA's own key, so that trust in the user key relies on one's trust in the validity of the CA's
key. The mechanism that binds keys to users is called the Registration Authority (RA),
which might or might not be separate from the CA. The key-user binding are
established, depending on the level of assurance the binding has, by software or under
human supervision.

The term trusted third party (TTP) may also be used for certificate authority (CA).
Moreover, PKI is itself often used as a synonym for a CA implementation.

The ITU-T standard for Certificate Authority is included within the X.509 system.

7.2 Web of Trust

An alternative approach to the problem of public authentication of public key information
is the web of trust scheme, which uses self-signed certificates and third party
attestations of those certificates. PGP and GnuPG are examples of implementations of
the web of trust model. They allow the use of e-mail digital signatures for self-publication
of public key information; it is relatively easy to implement one's own Web of Trust.

TEL3214 Applications 07 May 2017

TEL3214 - Computer Communication Networks 9-31

7.3 Implementations

7.3.1 Privacy Enhanced Mail (PEM)

PEM was an early IETF proposal for securing email using public key cryptography. It
has never seen wide deployment as it depended on prior deployment of a hierarchical
public key infrastructure (PKI) with a single root. Deployment of such a PKI proved
impossible due to cost and legal liability of the root CAs became understood. It was also
seen as not a good idea to impose central authority to e-mail.

• RFC 1421 PEM: Part I: Message Encryption and Authentication Procedures

• RFC 1422 PEM: Part II: Certificate-Based Key Management

• RFC 1423 PEM: Part III: Algorithms, Modes, and Identifiers

• RFC 1424 PEM: Part IV: Key Certification and Related Services.

7.3.2 Pretty Good Privacy (PGP)

PGP was created by Philip Zimmermann in 1991, it is a program that provides
cryptographic privacy and authentication. PGP is used for signing, encrypting and
decrypting e-mails to increase the security of e-mail communications.

PGP follows the OpenPGP standard (RFC 4880) for encrypting and decrypting data.

PGP uses a serial combination of hashing, data compression, symmetric-key
cryptography, and public-key cryptography. Each public key is bound to a user name
and/or an e-mail address. The first version of this system was a web of trust, however
current versions of PGP encryption include both web of trust and certificate authority
options through an automated key management server.

7.3.3 Secure/Multi-purpose Internet Mail Extensions (S/MIME)

MIME is the standard that extends the format of e-mail to support:

• Text in character sets other than ASCII

• Non-text attachments

• Message bodies with multiple parts

• Header information in non-ASCII character sets.

S/MIME is a standard for adding cryptographic signature and encryption services to
MIME data.

S/MIME is defined in RFC 2633. S/MIME was originally developed by RSA Data
Security. However it is now managed by the IETF.

07 May 2017 Applications TEL3214

9-32 TEL3214 - Computer Communication Networks

8. GNU Privacy Guard

GnuPG is a complete and free implementation of the OpenPGP standard as defined by
RFC4880 (also known as PGP). GnuPG allows to encrypt and sign data and
communication, features a versatile key management system as well as access
modules for all kinds of public key directories. GnuPG, also known as GPG, is a
command line tool with features for easy integration with other applications. A wealth of
frontend applications and libraries are available. Version 2 of GnuPG also provides
support for S/MIME and Secure Shell (ssh).

GnuPG is Free Software (meaning that it respects your freedom). It can be freely used,
modified and distributed under the terms of the GNU General Public License .

Project Gpg4win provides a Windows version of GnuPG stable. It is nicely integrated
into an installer and features several front-ends as well as English and German
manuals.

8.1 Generate a private key

Most people make their keys valid until infinity, which is the default option. If this is done
don't forget to revoke the key when it is no longer in use.

Make sure that the name on the key is not a pseudonym, and that it matches the name
in the users passport, or other government issued photo-identification! Additional e-mail
addresses can be added to the key later.

A passphrase will be asked for twice. Usually, a short sentence or phrase that isn't easy
to guess can be used. Next a request will be made to tap on the keyboard or do any of
the things normally done on the computer in order for randomisation to take place. This
is done so that the encryption algorithm has more human-entered elements, which,
combined with the passphrase entered above, will result in the user's private key.

Key-ID of the created key is: 6E64AF4C

TEL3214 Applications 07 May 2017

TEL3214 - Computer Communication Networks 9-33

$ gpg --gen-key

gpg (GnuPG) 1.4.16; Copyright (C) 2013 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

gpg: directory `/home/alovelace/.gnupg' created
gpg: new configuration file `/home/alovelace/.gnupg/gpg.conf' created
gpg: WARNING: options in `/home/alovelace/.gnupg/gpg.conf' are not yet active during
this run
gpg: keyring `/home/alovelace/.gnupg/secring.gpg' created
gpg: keyring `/home/alovelace/.gnupg/pubring.gpg' created
Please select what kind of key you want:
 (1) RSA and RSA (default)
 (2) DSA and Elgamal
 (3) DSA (sign only)
 (4) RSA (sign only)
Your selection? 1
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048) 2048
Requested keysize is 2048 bits
Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0) 1w
Key expires at Wed 16 Mar 2016 14:04:20 EAT
Is this correct? (y/N) y

You need a user ID to identify your key; the software constructs the user ID
from the Real Name, Comment and Email Address in this form:
 "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: Ada Lovelace
Email address: alovelace@mak.ac.ug
Comment: March Key
You selected this USER-ID:
 "Ada Lovelace (March Key) <alovelace@mak.ac.ug>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
You need a Passphrase to protect your secret key.

Enter passphrase: babbage
Re-enter passphrase: babbage

We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.

gpg: /home/alovelace/.gnupg/trustdb.gpg: trustdb created
gpg: key 6E64AF4C marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: next trustdb check due at 2016-03-16
pub 2048R/6E64AF4C 2016-03-09 [expires: 2016-03-16]
 Key fingerprint = E150 F5AC F0E5 A492 6891 0903 F315 80E3 6E64 AF4C
uid Ada Lovelace (March Key) <alovelace@mak.ac.ug>
sub 2048R/DC6CB630 2016-03-09 [expires: 2016-03-16]

07 May 2017 Applications TEL3214

9-34 TEL3214 - Computer Communication Networks

8.2 Generate a public key

$ gpg --armor --output pubkey.txt --export 'Ada Lovelace'

$ cat pubkey.txt

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1

mQENBFbgA5sBCAC12JYl3KtCjH7jOtfZWBw7gISy5Zl8Y4WMQnEsD7F/na1xQqWB
2kN8ka2MzBCyUFlWQ6sJu/F8jfkzS3YGy4eCa7OZeAdQgZ4EQU+eC1rIo8cLhPA+
jyL5EacQ+jG4kBDsLD+kD8AA55whmAGoapK2lZNyX8tuoW7Ex94BkATB3EgwJ/0Q
53aGrsH93BhIEesc32duvpS0uRe9xY+iEnU9ZquCE6hdCqJBXHo2HdCqs2nN8os8
AlwAfLvN7uRc4Yv7qi5tpWM5+9L30lZlm2/Ydkl2WPxotkCp6mqp+RvZmL7w6hh/
dmflZ/Ts+SzrPMdt9QtE/hJA/J/j8uOedc8jABEBAAG0K0FkYSBMb3ZlbGFjZSAo
TWFyY2ggS2V5KSA8YWxvdmVsYWNlQGMycy5pZT6JAT4EEwECACgFAlbgA5sCGwMF
CQAJOoAGCwkIBwMCBhUIAgkKCwQWAgMBAh4BAheAAAoJEPMVgONuZK9MqIEH/1B3
BHTjJGsXbWsobJnKMJuJeHNaL+9ibmHkgPK3r1K77D8n0xyO4/k0rpS/BNbp2e9V
hEbIpk3/tgIJOGgEhm7ckSmTZSfOyTBi5YO0c/GzhAptNKDbk+qSRVgoV+qtIaeE
PBvUWthZzpa6qRO8b24hdi7QwR354Lf2ZOnU/+WY5/DBGxl4+NGJ3BIN5wB7yL8L
PeHTAyseftgN0wR6C9AwEXx7mW0kBLLFVEmwAB6sJzXvgOOsRpQ5Wr5bF5C1CWf5
MG+VQ0abjnteP3I6YibQcDEExqDXfo1nebVzKu1Nke7bCef6jvrEJ6W2BlxAGf0L
e8c2+SB5QsJFEAGmBSG5AQ0EVuADmwEIAMGIj2BqX2OP2kl7GYXaiaV+xSxndNR0
Rtv7yvehKbJ9YhmplxyHLOIXBqoFWC9YUPcoy40HmhfPrhXrvIA5Uiema6dm/BFB
OtnrpHM0JWHgBwmk3GOQWH2WKHwlRjIhc36l93wesuJYENskIy/WtLEfiuvkS4ZA
fiEhw91VVp0LFTrBahprOgYzcOhra78RhvxI8/vTS03a1GYryuOQoArCjj+TFNMh
GIVgxIY2XWxOlKO7hh75VRRrbM6dhZJkemLKPiKzqbpPfpQaCN11kytQLtJ+r0KH
Lrv3GjhGaChRehDSkVoSltPzsYpSslj/bG5jK0BqmTRzNnOUXQjWXvsAEQEAAYkB
JQQYAQIADwUCVuADmwIbDAUJAAk6gAAKCRDzFYDjbmSvTBUtB/0cxtlyK9jB82rl
QVCNViJIsfnKYC+wZ4h84HhoCpzyTBweRm1nnSNu06paps+rS/GXQ0yOOfT4b/NA
Lv5iJwKANRqkShH4LsxbGYd8Ps/jMEc8lRnSTNwlHnKGzjSco9wGnF/A2omqc2gd
LAFlHZPUJDnzhG2H5jHvgwJs6Oncgs5FyjtA/FnUUqMzy+ITQCbYQEnDQn8CmNyB
Vnxz04u+Td2ajRznD3V29UvXgTaG7gU5842CNsLiezrfqqPgnNnRISxpAboy3xCp
UbqBG/i8z6hNwGDBZRGuwKROAYC5dNDE+SBugYub16SDkhe2dR5tGbURFPSeOdLp
f17ONf3/
=JYlA
-----END PGP PUBLIC KEY BLOCK-----

The public key can be freely distributed, posted on a web site, or otherwise distributed.
It can also be registered with public keyservers so that others can retrieve the key
without having to contact the owner directly.

$ gpg --send-keys 'Ada Lovelace' --keyserver hkp://subkeys.pgp.net

TEL3214 Applications 07 May 2017

TEL3214 - Computer Communication Networks 9-35

8.3 Encrypting a file for personal use

Taking a file MyFile.txt as a target to experiment with.

$ ls -la | grep MyFile
-rw-r--r-- 1 dobriain dobriain 74 Mar 9 14:23 MyFile.txt

$ cat MyFile.txt
MyFile
======

This is a file used as part of the exercise on encryption.

Now encrypt the file. The argument to the --recipient is the name used when
generating the private key. Note the output is a new file MyFile.txt.gpg.

$ gpg --encrypt --recipient 'Ada Lovelace' MyFile.txt

$ ls -la | grep MyFile
-rw-r--r-- 1 dobriain dobriain 74 Mar 9 14:23 MyFile.txt
-rw-r--r-- 1 dobriain dobriain 406 Mar 9 14:23 MyFile.txt.gpg

Use the file command to interrogate the file type and the cat command to view the
contents.

$ file MyFile.txt
MyFile.txt: ASCII text

$ file MyFile.txt.gpg
MyFile.txt.gpg: data

$ cat MyFile.txt
MyFile
======

This is a file used as part of the exercise on encryption.

$ cat MyFile.txt.gpg
#�
! l 0# P # a E # 6 V + vU`< #<" . i}| �����]� � � � � ʖ �� �� �� � Ա �� �� � � � ����Ԇ
 vm #Tq< &b j |�� � ��� ��
ħ G H -d g r# $ O I UB� ������ � � �� �� ��� � � �� �
 2% # #)0 O f� ��� ����� �� � Jܣ O� #̂Wp#�* +<�� � �� ϴ �ԩ
 [#6 X #K?Μ# Hb #�� �� �� � � ��

~##) 4 0�� � �� !e 8' & @ Db n '� � � � � � �Ӽ 9ن `v # sNc Z F$^ ? P tUL# ^ o#_� �� ��� � � �� � � � �
% # LA� ~ h f # ## _� ��� �� �� � � � � �����

Rc2����
 @# \# 2 & =#,#D������� � � ��� �
6 #N #� c #Z#6I� � ��� ���� ��
 ,N r =(0 # #��� � � ���� � �

07 May 2017 Applications TEL3214

9-36 TEL3214 - Computer Communication Networks

8.4 Decrypting the file for personal use

Decrypt the file to a new file called MyFile2.txt.

$ gpg --output MyFile2.txt --decrypt MyFile.txt.gpg
You need a passphrase to unlock the secret key for
user: "Ada Lovelace (March Key) <alovelace@mak.ac.ug>"
2048-bit RSA key, ID DC6CB630, created 2016-03-09 (main key ID 6E64AF4C)

gpg: encrypted with 2048-bit RSA key, ID DC6CB630, created 2016-03-09
 "Ada Lovelace (March Key) <alovelace@mak.ac.ug>"

Enter passphrase: babbage

Check the new file and use the diff command to confirm it is identical to the original file
MyFile.txt.

$ cat MyFile2.txt
MyFile
======

This is a file used as part of the exercise on encryption.

$ diff MyFile.txt MyFile2.txt

TEL3214 Applications 07 May 2017

TEL3214 - Computer Communication Networks 9-37

8.5 Passing encrypted files to another person

Open the TEL3214-Client-Server-Example.imn network. On the server create a
private key and from it a public key for Ada Lovelace.

root@svr1:/tmp/pycore.54569/svr1.conf# gpg --gen-key

gpg (GnuPG) 1.4.18; Copyright (C) 2014 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

gpg: directory `/root/.gnupg' created
gpg: new configuration file `/root/.gnupg/gpg.conf' created
gpg: WARNING: options in `/root/.gnupg/gpg.conf' are not yet active during
this run
gpg: keyring `/root/.gnupg/secring.gpg' created
gpg: keyring `/root/.gnupg/pubring.gpg' created
Please select what kind of key you want:
 (1) RSA and RSA (default) 1
 (2) DSA and Elgamal
 (3) DSA (sign only)
 (4) RSA (sign only)
Your selection?
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048) 2048
Requested keysize is 2048 bits
Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0) 1
Key expires at Thu 10 Mar 2016 13:02:39 GMT
Is this correct? (y/N) y

You need a user ID to identify your key; the software constructs the user ID
from the Real Name, Comment and Email Address in this form:
 "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: Ada Lovelace
Email address: alovelace@cedat.mak.ac.ug
Comment: Ada Lovelace March key
You selected this USER-ID:
 "Ada Lovelace (Ada Lovelace March key) <alovelace@cedat.mak.ac.ug>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
You need a Passphrase to protect your secret key.

Enter passphrase: babbage
Re-enter passphrase: babbage

07 May 2017 Applications TEL3214

9-38 TEL3214 - Computer Communication Networks

We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.

gpg: /root/.gnupg/trustdb.gpg: trustdb created
gpg: key 3AAB4367 marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: next trustdb check due at 2016-03-10
pub 2048R/3AAB4367 2016-03-09 [expires: 2016-03-10]
 Key fingerprint = 7F0F EE48 BA1D 5DF9 F7F0 A3D9 D78C 0277 3AAB 4367
uid Ada Lovelace (Ada Lovelace March key)
<alovelace@cedat.mak.ac.ug>
sub 2048R/E5DE8209 2016-03-09 [expires: 2016-03-10]

Now create a public key from this.

root@svr1:/tmp/pycore.54569/svr1.conf# gpg --armor --output pubkey.txt
--export 'Ada Lovelace'

root@svr1:/tmp/pycore.54569/svr1.conf# cat pubkey.txt
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1

mQENBFbgHzkBCADASnR2j4651YHPINsvpY9DIjX7MomAxzjpHJmQHdxp8m5jLyDT
ild4zttzJgtk6QVE97+ozAo0Artk/uh3nXLGFKJwe7h491T7hePjMT3T5bfrAx9p
Wy8rP8XhOsw4kwv2x6MXMg+9fAxZbL5sZXS/4NUUsSl5XVaPsDwHBz2vHyxQ9RKA
uQARFR88xeMXpY3Z6So4YGhsKkDsMa/K6u/SBf26QlVtaRTBZx/urzrlzeBbYtgz
6LA+4RevDs7PcbxhRUq2w/TV4CA7oL/36K/LmdwjrrE2QBd93qQaGYeklGnBQOhT
sctAmGrMKZiT3uuj+4hrC6ludbU7YqIJcQFrABEBAAG0QUFkYSBMb3ZlbGFjZSAo
QWRhIExvdmVsYWNlIE1hcmNoIGtleSkgPGFsb3ZlbGFjZUBjZWRhdC5tYWsuYWMu
dWc+iQE+BBMBAgAoBQJW4B85AhsDBQkAAVGABgsJCAcDAgYVCAIJCgsEFgIDAQIe
AQIXgAAKCRDXjAJ3OqtDZxzPB/9zGZD3TJJ/RyFcZeyMVfpVskVSBc01FBt562GI
VFrwTYvf+k6WPX/B2KXsebNx2bJBvCXosQDotIDM6yTNlP8AUUM2pVdhbhuDpZMC
XYIz3PmdCHQ+0si1vpNC8AN22stCtZe7qMWMzk7MGEblE2Ie/WQRPmo9xwQ+tPEq
d5UKK9GqSOG1PdyZLxzZ5ERhMDYpszjt7oTx6cy4Uag7OrusAwDhMjufqxFWLuJu
u/1CfN+QVFvrlhuip80TB2cjLGCqMpjL+sKhj5d3I6CD9TKtQ8MX9FL1QudgVhVg
W+Qm6aNj5N748dgt3LseiUurVjNs0VZ6dtMFpcR5GxQ022MduQENBFbgHzkBCACw
xPCjRq6br7yCqCcXopJ1tKwe5vxvXKyBIADvUVX97evQaxj5eTczgvNrn9fIlb7X
9NTH+yKxize+bFky8IKbwCUmgur2uBKEhXVcyDOJapkgEIGS6KYK4Su8ucTyGBXS
+l88LNxYCcxBDiQlWPCWxt2czws3AZNCTES3LQXgdr9jBYSYRh9Kif7VxH5Aqgyx
vrGYdnq5j9CxQxioHRrgrpA6A6rIOo/DVZ8IONnTHMWT0Y37k4cMT6Gv0ieNu6aW
d6XXljFv+EDcAxGk3DzH8JAJxnVIjXXjUqAm1yreRt0ylgcZWemQwzY1FXsH8UI2
RzHUH5EgvUaGZMFOSXa9ABEBAAGJASUEGAECAA8FAlbgHzkCGwwFCQABUYAACgkQ
14wCdzqrQ2czZggAoWR6Yuiry8k3S/GnkMDh3/jX5aLjf1QEWpvi5SkXGeH3GXAl
5AFOYzmgqp5zqcKIp9gqt1VQi9uKefRGpKRlth8A9WSRxzEOyYB1BrSkuXLtnGmF
PV8CegDUlZDqINkVNb8RObXmEcEq4JZRvHyJneTbsSTAXSkE7eUWEh7z8Sm+M6qi
dxEy8yvHmFZSkz/vYcYeGTvaM8og5JWv1Iw9bdSF7kVbs9GljWI4VnAQ1q/xjFjz
ulKfO/Tp6eShduYdebgQ6n8T8rwYSGrKl//emIZi6VfdL1U/CM/7Ia0Yc36yMQXG
4FjxE5dcfrS+y7K7ZaLG1is8oP+aF5tcPcWEYQ==
=BAof
-----END PGP PUBLIC KEY BLOCK-----

TEL3214 Applications 07 May 2017

TEL3214 - Computer Communication Networks 9-39

8.5.1 Public key

On the lap1 get the public key from the svr1.

root@lap1:/tmp/pycore.54569/lap1.conf# sftp root@10.0.2.10
root@10.0.2.10's password: root
Connected to 10.0.2.10.

sftp> cd /tmp/pycore.54569/svr1.conf

sftp> pwd
Remote working directory: /tmp/pycore.54569/svr1.conf

sftp> ls
defaultroute.sh etc.apache2 etc.ssh pubkey.txt run.lock
startsshd.sh var.ftp var.lock.apache2 var.log
var.log.apache2 var.run var.run.apache2 var.run.sshd
var.run.vsftpd.empty var.www vsftpd.conf

sftp> get pubkey.txt
Fetching /tmp/pycore.54569/svr1.conf/pubkey.txt to pubkey.txt
/tmp/pycore.54569/svr1.conf/pubkey.txt 100% 1763 1.7KB/s 00:00

sftp> quit

The lap1 now has the public key from svr1.

root@lap1:/tmp/pycore.54569/lap1.conf# ls
defaultroute.sh pubkey.txt var.log var.run
root@lap1:/tmp/pycore.54569/lap1.conf#

8.5.2 Generate a secret file and encrypt

root@lap1:/tmp/pycore.54569/lap1.conf# echo "This is my little secret" > secretFile.txt

root@lap1:/tmp/pycore.54569/lap1.conf# cat secretFile.txt
This is my little secret

07 May 2017 Applications TEL3214

9-40 TEL3214 - Computer Communication Networks

Import Ada Lovelace's public key just copied over from svr1.

root@lap1:/tmp/pycore.54569/lap1.conf# gpg --import pubkey.txt
gpg: key 3AAB4367: "Ada Lovelace (Ada Lovelace March key)
<alovelace@cedat.mak.ac.ug>" not changed
gpg: Total number processed: 1
gpg: unchanged: 1

Search for Ada Lovelace's key in the keyring.

root@lap1:/tmp/pycore.54569/lap1.conf# gpg --list-keys
/root/.gnupg/pubring.gpg

pub 2048R/3AAB4367 2016-03-09 [expires: 2016-03-10]
uid Ada Lovelace (Ada Lovelace March key) <alovelace@cedat.mak.ac.ug>
sub 2048R/E5DE8209 2016-03-09 [expires: 2016-03-10]

Encrypt the secret file pubkey.txt with Ada Lovelace's public key.

root@lap1:/tmp/pycore.54569/lap1.conf# gpg --encrypt --recipient 'Ada
Lovelace' secretFile.txt

There is now a new encrypted file in the local directory. Confirm it is encrypted.

root@lap1:/tmp/pycore.54569/lap1.conf# ls secretFile*
secretFile.txt secretFile.txt.gpg

root@lap1:/tmp/pycore.54569/lap1.conf# file secretFile.txt.gpg
secretFile.txt.gpg: PGP RSA encrypted session key - keyid: 9EBC8885 982DEE5
RSA (Encrypt or Sign) 2048b .

Send the new encrypted file to svr1.

root@lap1:/tmp/pycore.54569/lap1.conf# sftp root@10.0.2.10
root@10.0.2.10's password: root
Connected to 10.0.2.10.
sftp> cd /tmp/pycore.54569/svr1.conf

sftp> put secretFile.txt.gpg
Uploading secretFile.txt.gpg to
/tmp/pycore.54569/svr1.conf/secretFile.txt.gpg
secretFile.txt.gpg 100% 366 0.4KB/s 00:00

sftp> quit

TEL3214 Applications 07 May 2017

TEL3214 - Computer Communication Networks 9-41

8.6 Decrypt secret file on svr1

Confirm secret file is on svr1.

root@svr1:/tmp/pycore.54569/svr1.conf# ls secret*
secretFile.txt.gpg

Confirm secret file is on svr1.

root@svr1:/tmp/pycore.54569/svr1.conf# gpg --output lap1_secret.txt --decrypt
secretFile.txt.gpg

You need a passphrase to unlock the secret key for
user: "Ada Lovelace (Ada Lovelace March key) <alovelace@cedat.mak.ac.ug>"
2048-bit RSA key, ID E5DE8209, created 2016-03-09 (main key ID 3AAB4367)

Enter passphrase: babbage

gpg: encrypted with 2048-bit RSA key, ID E5DE8209, created 2016-03-09
 "Ada Lovelace (Ada Lovelace March key) <alovelace@cedat.mak.ac.ug>"

Check the decrypted file.

root@svr1:/tmp/pycore.54569/svr1.conf# cat lap1_secret.txt
This is my little secret

• To summarise, lap1 received the public key for Ada Lovelace on svr1.

• lap1 used this public key to encrypt a file.

• lap1 sent the file to svr1.

• svr1 decrypted the file using Ada Lovelace's private key.

07 May 2017 Applications TEL3214

9-42 TEL3214 - Computer Communication Networks

8.7 Digitally signing a file

GPG also provides a mechanism to digitally sign a file. Ada Lovelace wishes to have a
file signed so those with her public key can confirm that she did indeed create the file,
i.e. non repudiation.

root@svr1:/tmp/pycore.54569/svr1.conf# echo 'This file will be signed" >
sign.txt

root@svr1:/tmp/pycore.54569/svr1.conf# gpg --armor --detach-sign sign.txt

You need a passphrase to unlock the secret key for
user: "Ada Lovelace (Ada Lovelace March key) <alovelace@cedat.mak.ac.ug>"
2048-bit RSA key, ID 3AAB4367, created 2016-03-09

Enter passphrase: babbage

root@svr1:/tmp/pycore.54569/svr1.conf# ls -la sign*
-rw-rw-rw- 1 root root 25 Mar 9 19:18 sign.txt
-rw-rw-rw- 1 root root 473 Mar 9 19:20 sign.txt.asc

root@svr1:/tmp/pycore.54569/svr1.conf# file sign.txt.asc
sign.txt.asc: PGP signature Signature (old)

root@svr1:/tmp/pycore.54569/svr1.conf# cat sign.txt.asc
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iQEcBAABAgAGBQJW4HdvAAoJENeMAnc6q0NnQekH/3bck0fGF3FSblpQSeVfrZLJ
sCpGNvLeDv+PpyPCLRtPqwHJlCGMFsP6FCh9d07EYJIYnpHuvnwSPaJCsXqS6OcX
f11vbSo24BLWYDN/T9v7Kt3ui7jEhUYqQNZQXMzlciVrRpYqU5F4vQClTChQXZ2l
9R71QuOGi98AsAZfitAXU3L3SLPxHwieJefqsuWgLqI75uuB2atoy+FvrFSQ7gdv
nW9ylvehHFLtyXwKMQUZ5OSGW/DUl0M6CRVofu4aY9BsIHV5z9yiMiQG3Vi2t5Kl
/4YAzN34jy0YHPDTFrv3qCdgGtuB/Zv9/6CkYYRjP4XyhBtJM74483lDF+hJzjU=
=SS9+
-----END PGP SIGNATURE-----

TEL3214 Applications 07 May 2017

TEL3214 - Computer Communication Networks 9-43

8.7.1 Verifying a signed file

On lap1 get the two files, the sign.txt and sign.txt.asc from svr1.

root@lap1:/tmp/pycore.54569/lap1.conf# sftp root@10.0.2.10
root@10.0.2.10's password: root
Connected to 10.0.2.10.

sftp> cd /tmp/pycore.54569/svr1.conf

sftp> mget sign.txt*
Fetching /tmp/pycore.54569/svr1.conf/sign.txt to sign.txt
/tmp/pycore.54569/svr1.conf/sign.txt 100% 25 0.0KB/s 00:00
Fetching /tmp/pycore.54569/svr1.conf/sign.txt.asc to sign.txt.asc
/tmp/pycore.54569/svr1.conf/sign.txt.asc 100% 473 0.5KB/s 00:00

sftp> exit

Confirm signature.

root@lap1:/tmp/pycore.54569/lap1.conf# gpg --verify sign.txt.asc sign.txt
gpg: Signature made Wed 09 Mar 2016 19:20:15 GMT using RSA key ID 3AAB4367
gpg: Good signature from "Ada Lovelace (Ada Lovelace March key)
<alovelace@cedat.mak.ac.ug>"

07 May 2017 Applications TEL3214

9-44 TEL3214 - Computer Communication Networks

9. Applications Lab

Carry out the following activities while monitoring the traffic. Note any observations.

SFTP

1. On the NTE Emulator Virtual Machine (VM) create a 100 MB file on the Desktop.
Call the file 100MB_NTE_File.

2. Compress the file with two different compression protocols.

3. Run the TEL3214-Client-Server-Example.imn network.

4. Using SFTP connect from lap1 to svr1 using the Username: nte and Password:
nte.

5. Change directory to /home/nte/Desktop.

6. Download the file 100MB_NTE_File to the home directory.

7. Confirm the file downloaded OK.

8. Quit SFTP.

SSH

1. Use SSH to connect to the server svr1 from lap1.

2. Change to the directory /home/nte/Desktop.

3. Change the name of the file 100MB_NTE_File to 100MB_NTE_File.old.

4. Logout of svr1.

HTTP

1. Connect to the web-server on svr1 from lap1.

2. Monitor traffic between devices.

GPG

1. Connect to svr1.

2. Create a private/public key pair.

3. Encrypt the file from 100MB_NTE_File.old.

4. From lap1, SFTP to svr1 and download the encrypted file
100MB_NTE_File.old as well as the public key.

5. Exit from SFTP.

6. Add the public key to the keyring.

7. Decrypt the downloaded file.

TEL3214 Applications 07 May 2017

TEL3214 - Computer Communication Networks 9-45

This page is intentionally blank

07 May 2017 Applications TEL3214

	1. The Client-Server architecture
	2. TCP Flow
	2.1 TCP Socket Connection
	2.2 TCP Writes and Reads
	2.3 TCP Close
	2.4 TCP Socket Daemon

	The TCP Socket daemon is a demonstration tool
	2.5 TCP Client

	3. Secure Shell (SSH)
	3.1 SSH
	3.2 SFTP

	4. Archiving and compressing files and directories
	4.1 Tape Archive (TAR) archiving
	4.2 Compression
	4.2.1 GNU ZIP (GZIP)
	4.2.2 BZIP2
	4.2.3 XZ
	4.2.4 TAR/GZIP/BZ/XZ
	4.2.5 ZIP
	4.2.6 Comparing compression tools

	5. Hyper Text Transfer Protocol (HTTP)
	5.1.1 HTTP User Agent (UA)
	5.1.2 HTTP example
	5.1.3 HTTP on the wire

	6. Asymmetric Key Cryptography
	6.1 Key pairs
	6.1.1 Diffie-Hellman key protocol
	6.1.2 El Gamal
	6.1.3 RSA
	6.1.4 Elliptic curve cryptography (ECC)

	6.2 Asymmetric Key Protocol summary
	6.3 How Asymmetric Key Cryptography works
	6.4 Digital Signature
	6.5 The hybrid system

	7. Key Management
	7.1 Certificate Authorities (CA)
	7.2 Web of Trust
	7.3 Implementations
	7.3.1 Privacy Enhanced Mail (PEM)
	7.3.2 Pretty Good Privacy (PGP)
	7.3.3 Secure/Multi-purpose Internet Mail Extensions (S/MIME)

	8. GNU Privacy Guard
	8.1 Generate a private key
	8.2 Generate a public key
	8.3 Encrypting a file for personal use
	8.4 Decrypting the file for personal use
	8.5 Passing encrypted files to another person
	8.5.1 Public key
	8.5.2 Generate a secret file and encrypt

	8.6 Decrypt secret file on svr1
	8.7 Digitally signing a file
	8.7.1 Verifying a signed file

	9. Applications Lab

