
BSc in Telecommunications Engineering

TEL3214

Computer Communication Networks

Lecture 12
Software Defined Networks

Eng Diarmuid O'Briain, CEng, CISSP

12-2 TEL3214 - Computer Communication Networks

Copyright © 2017 Diarmuid Ó Briain
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled "GNU Free
Documentation License".

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-3

Table of Contents
1. Introduction..5

1.1 Why the need for change..6

2. The Data Centre problem..8

2.1 SDN in the Data Centre..9

3. SDN Architecture...10

4. SDN operation...11

4.1 Flow Tables..13
4.2 Group Tables..13
4.3 Meter Tables..13

5. SDN Controllers...15

5.1 SDN Applications..16
5.2 Link Discovery Module...17
5.3 Topology Manager...17
5.4 Virtual Routing Engine (VRE)..18

6. Mininet...19

6.1 Getting the SDN Virtual Machine...19
6.2 Build a Mininet test network...22
6.3 Configuring hosts...29
6.4 Configuring links..29

7. OpenFlow traffic review...31

7.1 Webserver test..38

8. POX Controller...41

8.1 Running POX..41
8.2 Testing POX..42

9. Project Floodlight..43

9.1 Running Floodlight...43
9.2 Testing Floodlight...43

10. OpenDaylight..44

10.1 Running ODL karaf...44
10.2 Installing openDaylight User eXperience (DULX) features..44
10.3 Testing the ODL installation...45
10.4 DLUX User interface...46

11. Custom Topologies...47

11.1 Create a custom topology..50

12. Custom script to ODL remote controller...55

12.1 Run OpenDaylight..55
12.2 OpenDaylight User Experience (DLUX)...56
12.3 Start Mininet network...56

13. North Bound Interface (NBI)..60

13.1 Frenetic..60

14. Networks Function Virtualisation (NFV)...62

14.2 Open Platform NFV..66
14.3 Ongoing research...67
14.4 Software Defined WAN (SD-WAN)...68

15. The future of Broadband...70

16. SDN Lab...71

17. List of Abbreviations..72

16 May 2017 Software Defined Networking TEL3214

12-4 TEL3214 - Computer Communication Networks

Illustration Index
Illustration 1: Elastic Compute to Elastic Network...6
Illustration 2: Data Centre racks..8
Illustration 3: Traditional Data Centre...8
Illustration 4: SDN in the Data Centre...9
Illustration 5: SDN Architecture...10
Illustration 6: SDN Architecture...10
Illustration 7: SDN Operation...11
Illustration 8: OpenFlow switch tables..13
Illustration 9: SDN Routing islands..16
Illustration 10: SDN Routing service...17
Illustration 11: Appliance to import..19
Illustration 12: Appliance settings...20
Illustration 13: VirtualBox Dashboard...20
Illustration 14: Bridged adapter...21
Illustration 15: Basic test network...23
Illustration 16: Testing Mininet network..26
Illustration 17: xterm window over SSH..27
Illustration 18: Wireshark OpenFlow traffic...31
Illustration 19: SDN Action...31
Illustration 20: SDN Flow-MOD...33
Illustration 21: SDN Flow-MOD #2..34
Illustration 22: karaf..44
Illustration 23: Dlux login..46
Illustration 24: DLUX Topology..46
Illustration 25: Mininet custom topology example..50
Illustration 26: Test network with ODL..55
Illustration 27: Dlux topology dashboard...59
Illustration 28: Pyretic...60
Illustration 29: Kenetic..61
Illustration 30: Network Function Virtualisation..62
Illustration 31: NFV Ecosystem...63
Illustration 32: vCPE...64
Illustration 33: Software Defined WAN (SD-WAN)..68
Illustration 34: SDN Lab...71

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-5

1. Introduction

Over the last ten years or so the landscape in computing has changed dramatically with
the Cloud, large-scale data centres and virtualisation. Over the last few years networks
have increased in speed and there has been a convergence on Ethernet as the standard
for all links, to the point that the difference between Local Area Network (LAN),
Metropolitan Area Network (MAN) and Wide Area Network (WAN) has diminished
dramatically. What has not changed in that time however is the core switching and
routing functions which are generally delivered on a hardware based stand-alone device
that is self sufficient in terms of the data it switches or routes and the control necessary
to make that happen. In a bid to outdo each other to maintain advantage in the market
companies like Cisco, Juniper and HP have loaded their devices with features that over
time have resulted in network devices that rely on aged protocols like Border Gateway
Protocol (BGP) to communicate and networks have levels of header encapsulation that
eat into the Maximum Transfer Unit (MTU) size of the packets. This layering of
abstractions on top of other abstractions is not conducive to Network Management,
where traffic patterns are decided within each layer independently.

It is not uncommon for a packet to arrive at an Internet service provider (ISP) network
with a Virtual LAN (VLAN) tag, the ISP adding another VLAN tag before passing the
packet to an upstream ISP who adds an Multi-Protocol Label Switching (MPLS) header
as it is switched across their IP network.

While the underlying networks have converged towards the all Ethernet / all Internet
Protocol (IP) model, in some form the number of services have increased rapidly. In the
past ISPs provided Internet Access in the form of Broadband and possibly layered a
voice service either as a circuit switched out of band telephone line or as a Voice over
Internet Protocol (VoIP) service with some packet priority mechanism to give Quality of
Service (QoS). In more recent years this service set is increasingly being supplemented
with TeleVision over IP (TVoIP) that more often than not requires a separate Set Top
Box (STB) for its provision.

16 May 2017 Software Defined Networking TEL3214

12-6 TEL3214 - Computer Communication Networks

Network resilience is an important characteristic to ISP network designers, yet
duplication of service paths may give the appearance of redundancy where there is in
fact none. For example a tier three ISP getting a service from two independent ISPs,
one a tier two provider and the second, an incumbent tier one privider, all to ensure path
resilience for a customer. The tier one ISP provides an MPLS circuit at the customer
end and drops that off at a data centre at a major city, the tier two ISP provides a
Network Termination Unit (NTU) at the customer end and drops the traffic off at another
data centre in a major city. However there is generally a limit on the number of actual
fibre paths between major cities or even the circuit supplied by the tier two ISP many in
fact have a portion passing through the tier one network. From the ISP providing the
service to the customer there is the appearance of separate paths however a strategic
failure of a fibre bundle could in fact expose this.

1.1 Why the need for change

In the not to distant past Network Engineers were taught to design networks according
to the 80/20 rule where 80% of traffic stays within the local network and should be
switched, whereas 20% left the local network to the Internet. This has completely
changed with 80% leaving the local network, mainly to access cloud based services and
only 20% remains within the local network. This has transformed today's traffic patterns.

TEL3214 Software Defined Networking 16 May 2017

Illustration 1: Elastic Compute to Elastic Network

TEL3214 - Computer Communication Networks 12-7

As vitualisation and led to the cloud and AWS launching the concept of Elastic Compute
the network has not adjusted until now. SDN promises Elastic Network to match Elastic
Compute and support the move to cloud based services, the rise in big data and the
Internet of Things (IoT).

Current network models discourages change, Companies are finding they are unable to
scale and are dependent on a small number of vendors.

16 May 2017 Software Defined Networking TEL3214

12-8 TEL3214 - Computer Communication Networks

2. The Data Centre problem

Traditional networking has proven a problem in Data Centres for some time. Consider
Illustration 2 where racks of servers have two Top of Rack (ToR) switches that are
linked to each server in the rack and to each of the aggregation switches that are in turn
linked to core routers. As can be see in Illustration 3 each switch and router in this
scenario has responsibility in the Forwarding Plane (FP) moving frames from port to port
as well as in Control Plane (CP) identifying the paths which frames should be forwarded
over.

TEL3214 Software Defined Networking 16 May 2017

Illustration 2: Data Centre racks

Illustration 3: Traditional Data Centre

ToR Sw #1 ToR Sw #2 ToR Sw #3 ToR Sw #4 ToR Sw #5 ToR Sw #6

Cabinet #1 Cabinet #2 Cabinet #x

Aggregation
Switch #1

Aggregation
Switch #2

Server block #1 Server block #2 Server block #3

Core
Router #2

Core
Router #1

CP FP CP FP CP FP CP FP CP FP CP FP

CP FP CP FP

CP FP CP FPCP

FP Forwarding

Control

Traditional
switches

Internet

TEL3214 - Computer Communication Networks 12-9

Why ?
Would the Data Centre be better off with some massive single switch into which all
servers are connected ?
No practical, no certainly not, well SDN solves this question.

2.1 SDN in the Data Centre

Illustration 4 Shows the how SDN changes the data centre. While each rack continues
to have two ToR switches they are bare-metal switches with responsibility for the FP
only. A communications channel called OpenFlow to the two SDN Controllers provide a
link to the CP. The SDN Controllers make switching decisions based on a network
policy and forward decisions to the switches. In this way the Data Centre has the one big
switch in terms of control but the hardware is distributed.

16 May 2017 Software Defined Networking TEL3214

Illustration 4: SDN in the Data Centre

ToR Sw #1 ToR Sw #2 ToR Sw #3 ToR Sw #4 ToR Sw #5 ToR Sw #6

Cabinet #1 Cabinet #2 Cabinet #x

Aggregation
Switch #1

Aggregation
Switch #2

Server block #1 Server block #2 Server block #3

Core
Router #1

Core
Router #2

FP FP FP FP FP FP

SDN Controller
 #1

SDN Controller
 #2

Bare-metal
switches

CP

FP Forwarding

Control

FP FP

CP CP

CP FP CP FP

Internet

12-10 TEL3214 - Computer Communication Networks

3. SDN Architecture

Communication between the SDN Controller and the bare-metal switches is an essential
component of SDN. This is achieved over the Device and Resource Abstraction Layer
(DAL) on the South Bound Interface (SBI) of the SDN Controller. OpenFlow is a simple
protocol that the SDN Controller uses over a secure channel (Transport Layer Security
(TLS) on TCP port 6633 to modify the flow table in a supporting switch.

Further work on the OpenFlow protocol and an initial specification in 2008 for a virtual
Switch daemon (vswitchd), produced for the GNU/Linux kernel led to the Open virtual
Switch (OvS). OVS offers a soft switch solution that operates over OpenFlow and can
be used in virtualised situations where a physical switch is unnecessary. The overall
SDN architecture is demonstrated in Illustration 5 with the Forwarding and Control
planes, linked by OpenFlow offering services from the Application plane via a RESTful
Application Program Interface (API).

OpenFlow has also evolved, coming under the management of the Open Networking
Foundation (ONF) founded in 2011 for the promotion and adoption of SDN through open
standards development. OpenFlow has evolved to version 1.5.1.

TEL3214 Software Defined Networking 16 May 2017

Illustration 6: SDN Architecture

Control
Plane

Bare-metal switches

NSAL

SBI

SDN
Controller

NBI

Application &
Service Plane

Forwarding
Plane

JSON

App
#1

App
#2

Service
#1

Service
 #2

Network Services
Abstraction Layer

ReST API

DAL Device & Resource
Abstraction Layer

Network
Policy

Illustration 5: SDN Architecture

Control
Plane

Bare-metal switches

NSAL

SBI

SDN
Controller

NBI

Application &
Service Plane

Forwarding
Plane

JSON
NETCONF/YANG

App
#1

App
#2

Service
#1

Service
 #2

Network Services
Abstraction Layer

ReST API

DAL ForCES
NETCONF/YANG

Device & Resource
Abstraction Layer

Network
Policy

TEL3214 - Computer Communication Networks 12-11

4. SDN operation

In order to understand how SDN switching works consider a traditional switch. A frame
arrives at a switch port, the switch inspects the frame header and determines if it has a
record for the destination MAC address. If it doesn't, then the frame is forwarded on all
ports and the source port MAC is recorded upon which the port the frame was received.
If it does then the frame is only forwarded to the known port associated with the
destination MAC. All these decisions are made in the individual switch.

In and SDN Network when as is shown in detail in the mininet example labs below,
when a frame arrives at a OpenFlow Switch, tt performs a table entry check and if it
finds that it has a table-miss, which means there is no flow entry associated with this
frame, it will send an OpenFlow Packet In (OFPT_PACKET_IN) message to the SDN
Controller with a unique Buffer IDentifier for a decision. The SDN Controller responds to
OpenFlow Switch using the same Buffer IDentifier with the decision to Output to switch
port on all ports.

16 May 2017 Software Defined Networking TEL3214

Illustration 7: SDN Operation

SDN
Controller

Host 1

OpenFlow
Switch

Host 2

12-12 TEL3214 - Computer Communication Networks

The response from the second host arrives at the OpenFlow Switch and is given a new
Buffer IDentifier, again there is a table-miss so the OpenFlow Switch sends an
OpenFlow OFPT_PACKET_IN message to SDN Controller. The SDN Controller now
sends an OpenFlow Flow MOD to the OpenFlow Switch to add an entry to the Flow
Table for this now known traffic. Subsequent similar packets are then forwarded
automatically by the OpenFlow Switch until the idle time-out of 60 seconds has been
exceeded and then the process must be repeated.

The next packet in from the original host triggers another OFPT_PACKET_IN. This time
the SDN Controller knows the port that the second host is connect on, so it sends an
OpenFlow Flow MOD to the OpenFlow Switch to add an entry to the Flow Table for the
traffic. Subsequent similar packets are then forwarded automatically by the OpenFlow
Switch until the idle time-out of 60 seconds has been exceeded and then the process
must be repeated.

In the example the frame that arrived was unmatched by the OpenFlow Switch. It is
typical for the SDN Controller to pre-load the OpenFlow Switch with flows. It is also not
simply the MAC fields in the frame header nor the IP Addresses in the packet header.
Flows can be based on a multitude of values within the overall frame and its sub packet
and even transport session headers:

• The port the frame arrived on
• The source Ethernet port
• The destination Ethernet port
• The source IPv4 or IPv6 address
• The destination IPv4 or IPv6 address
• IPv6 Flow Label
• IPv6 Extension Header pseudo-field
• ICMPv6 type or code
• Target IP address, source or target link layer address in IPv6 Neighbour Discovery (ND)
• VLAN IDentifier (VLAN-ID)
• VLAN Priority Code Point (PCP)
• Differentiated Services (DiffServ) Code Point (DSCP)
• IP Header Explicit Congestion Notification (ECN)
• IPv4 or IPv6 Protocol number
• TCP Source, Destination port or flags
• UDP Source or Destination port
• Stream Control Transmission Protocol (SCTP) Source or Destination port
• ICMP Type or Code
• ARP Opcode
• MAC Addresses in ARP payload
• IP Addresses in ARP payload
• The LABEL, Traffic Class (TC) or Bottom of Stack (BoS) in first MPLS Shim header
• User Customer Address (UCA) field in the first Provider Backbone Bridge (PBB) instance

tag

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-13

4.1 Flow Tables

In the forwarding instructions the controller specifies to the OpenFlow switch the group
of parameters used to define individual flows and what action to carry out on frames that
match the flow. The OpenFlow switch has as can be seen in the diagram multiple Flow
Tables. In the initial OpenFlow version this was limited to a single table however the
Application Specific Integrated Circuit (ASIC) hardware in switches were capable of
much more so later versions of the OpenFlow protocol allowed for multiple tables which
improves performance and scalability.

4.2 Group Tables

OpenFlow protocol also added Group Tables consisting of group entries. A flow entry
can be pointed to a group, which enables OpenFlow to have additional methods of
forwarding:

• SELECT: for load sharing and redundancy
• ALL: for multicast or broadcast forwarding
• INDIRECT: which allows for multiple flow entries to point to a common group ID
• FAST FAILOVER: which enables the switch to change forwarding without

requiring communication with the SDN Controller in the event of a port failure

4.3 Meter Tables

The Meter Tables consists of per-flow meters used by OpenFlow to implement QoS.
Each per-flow meter measures the rate of frames assigned to it and controls the rate of
those frames. Each meter consists of one or more meter bands which specify the rate at
which the band applies and how frames are processed. Each meter band is identified by
its rate and contains:

16 May 2017 Software Defined Networking TEL3214

Illustration 8: OpenFlow switch tables

Flow table #1

Flow Entry – Priority 200
Action: Forward Port 2

Flow Entry – Priority 200
Go to Flow-table #2

Flow Entry – Priority 0
Change DST-MAC addr

Flow table #2

Flow Entry – Priority 1000
Action: Group Table 30

Flow Entry – Priority 200
xxxx

Flow Entry – Priority 0
xxxx

Flow table #3

Flow Entry – Priority 400
xxxx

Flow Entry – Priority 100
xxxx

Flow Entry – Priority n
xxxx

Group table

Group Entry 10
Action: Send out all ports

Group Entry 20
Action: Dst-IP: 192.168.3.3

Group Entry 30
Action: Send out port 3

OpenFlow
Channel

Controller0

Transmission Control Protocol (TCP)
or
Transport Layer Security (TLS)

Control Channel

1

2

3

4

5

6

P
o

rts

P
o

rts

OpenFlow Switch

Flow table #n

Flow Entry – Priority 300
xxxx

Flow Entry – Priority 100
xxxx

Flow Entry – Priority n
xxxx

Meter table

ID Bands Counter

Band
rate
Burst
Counters
Arguments

12-14 TEL3214 - Computer Communication Networks

• Band type: defines how packet are processed
• rate: defines the lowest rate at which the band can apply
• burst: defines the granularity of the meter band
• counters: updated when packets are processed by a meter band
• type specific arguments

• drop: discard the packet. Can be used as a rate limiter band
• dscp remark: increase the drop precedence of the DSCP field in the IP

header. Can act a simple DiffServ policer

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-15

5. SDN Controllers

Now that a standard SBI existed the evolution of controllers as well as work on a NBI
became important. Network Operating System (NOX) a C++ based first generation
controller was developed by Nicira Networks and donated to the research community.
A Python version of the NOX Controller called POX was developed for rapid
development and prototyping.

Another Python based SDN Controller is 'RYU' (Japanese: flow), available under the
Apache 2.0 license has OpenStack integration and supports OpenFlow 1.0 – 1.4 plus
Nicira extensions. Ryu has a Web Server Gateway Interface (WSGI) and by using this
function, it is possible to create a REST API (called RESTful API), which is a useful NBI
link with other systems or browsers in an application tier.

A commercial grade Java SDN Controller developed by Big Switch Networks evolved
from a Java based research SDN Controller called Beacon as Project Floodlight. This
project code is also Apache 2 licensed. It, like RYU, has a RESTful API.

The other big SDN Controller is a Linux Foundation collaborative project called
OpenDaylight (ODL), developed in Java. The latest version of the platform designated
Helium is a follow on from the first release of ODL called Hydrogen. This project was
designed to take advantage of existing Linux Foundation projects, like integration with
OpenStack as well as developments with high availability, clustering and security. ODL
OpenFlow plugin supports OpenFlow versions 1.0 and 1.3. Like RYU and Project
Floodlight an application tier is made possible through a RESTful API as well as an
Authentication, Authorisation and Accounting (AAA) AuthN filter.

5.1 SDN Applications

5.1.1 SDN Routing Service

16 May 2017 Software Defined Networking TEL3214

12-16 TEL3214 - Computer Communication Networks

As we have seen the SDN Controller manages switches on the CDPI using OpenFlow
protocol. On the NBI the SDN Controller interfaces using REST API with application
services. In traditional networks networks are linked by routers. In an SDN Network
groups of switches are managed by a controller and this is called an OpenFlow Island.
In an SDN Network the Flows that the SDN Controller send to the individual switches
are controlled by SDN Applications. One typical example is the routing service.

TEL3214 Software Defined Networking 16 May 2017

Illustration 9: SDN Routing islands

OpenFlow
Island 2

OpenFlow
Island 1

OpenFlow
Island 3

Routing
Service

ReST APIReST API

TEL3214 - Computer Communication Networks 12-17

Routing in this case is an SDN Application and consists of:
• Link Discovery Module (LDM)
• Topology Manager
• Virtual Routing Engine (VRE)

5.2 Link Discovery Module

The LDM discovers and maintains the status of all physical links on the network. When
OpenFlow Switches discover other switches via Link Layer Discovery Protocol (LLDP)
this information is passed to the Link Discovery Module (LDM). Additionally when
unknown traffic is discovered by an OpenFlow Switch as described above the SDN
Controller also passes this to the LDM. In this way the LDM derives the information to
build a picture of the overall network topology as a Neighbour Database.

5.3 Topology Manager

The Topology Manager builds the topology from the Neighbour Database. It generates
the logical OpenFlow Islands and determines the shortest path between OpenFlow
nodes. From this the Topology Manager can build the individual topology databases for
the controllers which contain the shortest paths plus alternate paths to each OpenFlow
node or hosts connected to them.

16 May 2017 Software Defined Networking TEL3214

Illustration 10: SDN Routing service

Topology Manager

 vRE

LDM
(LLDM) DB

ReST API

Routing
Service

Controller0 Controller2

Traditional
Network

OSPF
BGP

Controller1

12-18 TEL3214 - Computer Communication Networks

5.4 Virtual Routing Engine (VRE)

The function of the VRE is to allow SDN networks interoperate with traditional networks.
It builds a virtual networking topology to represent the SDN network to the traditional
networks using traditional routing protocols like Open Shortest Path First (OSPF) and
Border Gateway Protocol (BGP).
While it is essential for SDN to have an application like the Routing Service to handling
routing within the SDN and to interact with traditional networks, the SDN architecture
lends itself readily to newer SDN Applications that can interact with the Controller over
the REST API and thereby influence the OpenFlow Switches in new and imaginative
ways not possible in today's traditional networks.

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-19

6. Mininet

Mininet is a project that creates a virtual network on a computer, a network emulator. On
it it is possible to develop a network of hosts, switches, routers and links based on a
single GNU/Linux kernel. Minitnet uses Linux Containers (LXC) lightweight virtualisation
to allow for experimentation with SDNs and SDN Controllers. For example a SDN
Controller can be given a network of devices to work with and because they are based
on the GNU/Linux kernel behave exactly as a stand-alone GNU/Linux device.
To allow for experimentation establish a Mininet VM image to work with. Install Oracle
VirtualBox as a hypervisor first (https://www.virtualbox.org).

6.1 Getting the SDN Virtual Machine

Download the course NTE-SDN VM .ova from the course page.
Extract the NTE-SDN-v1.0.1.ova file to the computer.
If you wish to understand how this VM was built the refer to the Appendix 02.

File > Import Appliance

Select the NTE-SDN-v1.0.1.ova and click Next >.

16 May 2017 Software Defined Networking TEL3214

Illustration 11: Appliance to import

https://www.virtualbox.org/

12-20 TEL3214 - Computer Communication Networks

Check the tickbox for “Reinitialise the MAC address of all network cards”
Select Import.

TEL3214 Software Defined Networking 16 May 2017

Illustration 12: Appliance settings

Illustration 13: VirtualBox Dashboard

TEL3214 - Computer Communication Networks 12-21

The new SDN VM is created. Before starting it configure the Network interface as a
Bridged Adapter. To do this Right click on the newly created VM, select Settings and
Network, make the change from Attached to: NAT to Attached to: Bridged Adapter.
Select OK.

Get the IP address of the mininet VM.

sdn@SDN-i386:~$ ip addr list
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
 default qlen 1000
 link/ether 08:00:27:e6:cb:e2 brd ff:ff:ff:ff:ff:ff
 inet 192.168.22.83/24 brd 192.168.25.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::a00:27ff:fee6:cbe2/64 scope link
 valid_lft forever preferred_lft forever

From the host computer SSH to the VM guest.
user@host:~$ ssh -X sdn@192.168.22.83
sdn@192.168.22.83's password: sdn
sdn@SDN-i386:~$

16 May 2017 Software Defined Networking TEL3214

Illustration 14: Bridged adapter

12-22 TEL3214 - Computer Communication Networks

6.2 Build a Mininet test network

Look at the startup options for Mininet.

user@host:~$ ssh -X sdn@192.168.22.83

sdn@SDN-i386:~$ sudo mn --help
Usage: mn [options]
(type mn -h for details)
The mn utility creates Mininet network from the command line. It can create
parametrized topologies, invoke the Mininet CLI, and run tests.

Options:
 -h, --help show this help message and exit
 --switch=SWITCH default|ivs|lxbr|ovs|ovsbr|ovsk|user[,param=value...]
 ovs=OVSSwitch default=OVSSwitch ovsk=OVSSwitch
 lxbr=LinuxBridge user=UserSwitch ivs=IVSSwitch
 ovsbr=OVSBridge
 --host=HOST cfs|proc|rt[,param=value...]
 rt=CPULimitedHost{'sched': 'rt'} proc=Host
 cfs=CPULimitedHost{'sched': 'cfs'}
 --controller=CONTROLLER
 default|none|nox|ovsc|ref|remote|ryu[,param=value...]
 ovsc=OVSController none=NullController
 remote=RemoteController default=DefaultController
 nox=NOX ryu=Ryu ref=Controller
 --link=LINK default|ovs|tc[,param=value...] default=Link
 ovs=OVSLink tc=TCLink
 --topo=TOPO linear|minimal|reversed|single|torus|tree[,param=value
 ...] linear=LinearTopo
 reversed=SingleSwitchReversedTopo tree=TreeTopo
 single=SingleSwitchTopo torus=TorusTopo
 minimal=MinimalTopo
 -c, --clean clean and exit
 --custom=CUSTOM read custom classes or params from .py file(s)
 --test=TEST cli|build|pingall|pingpair|iperf|all|iperfudp|none
 -x, --xterms spawn xterms for each node
 -i IPBASE, --ipbase=IPBASE
 base IP address for hosts
 --mac automatically set host MACs
 --arp set all-pairs ARP entries
 -v VERBOSITY, --verbosity=VERBOSITY
 info|warning|critical|error|debug|output
 --innamespace sw and ctrl in namespace?
 --listenport=LISTENPORT
 base port for passive switch listening
 --nolistenport don't use passive listening port
 --pre=PRE CLI script to run before tests
 --post=POST CLI script to run after tests
 --pin pin hosts to CPU cores (requires --host cfs or –host rt)
 --nat [option=val...] adds a NAT to the topology that
 connects Mininet hosts to the physical network.
 Warning: This may route any traffic on the machine
 that uses Mininet's IP subnet into the Mininet
 network. If you need to change Mininet's IP subnet,
 see the --ipbase option.
 --version prints the version and exits
 --cluster=server1,server2...
 run on multiple servers (experimental!)
 --placement=block|random
 node placement for --cluster (experimental!)

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-23

Establish a basic network with an SDN Controller (c0) an Open vSwitch (OVS) and
three hosts.
Options:

• Switch
• ivs - Indigo Virtual Switch
• lxbr - Linux Bridge
• ovs - Open vSwitch
• ovsbr - Open vSwitch in standalone/bridge mode
• ovsk - OpenFlow 1.3 switch
• ovsl - Open vSwitch legacy kernel-space switch using ovs-openflowd

• Controller
• nox - Nicira Networks OpenFlow controller
• ovsc - Open vSwitch controller
• ref - OpenFlow reference controller
• remote - Controller running outside of mininet (i.e. OpenDaylight for

example)
• ryu - RYU Network Operating System

16 May 2017 Software Defined Networking TEL3214

Illustration 15: Basic test network

SDN
Controller
c0

h1

OvS
s1

h3h2

OpenFlow

12-24 TEL3214 - Computer Communication Networks

• topo
• linear - Linear topology of k switches, with n hosts per switch
• minimal - Single switch and two hosts
• reversed - Single switch connected to k hosts, with reversed ports, the

lowest-numbered host is connected to the highest-numbered port
• single - Single switch connected to k hosts
• torus - 2-D Torus mesh interconnect topology
• tree - a tree network with a given depth and fanout

• mac - automatically set host MACs

Create a basic network to start with from the mn mininet launch command.

sdn@SDN-i386:~$ sudo mn --topo tree,depth=1,fanout=3 --switch ovsk
--controller ref --mac
*** Creating network
*** Adding controller
*** Adding hosts:
h1 h2 h3
*** Adding switches:
s1
*** Adding links:
(s1, h1) (s1, h2) (s1, h3)
*** Configuring hosts
h1 h2 h3
*** Starting controller
c0
*** Starting 1 switches
s1
*** Starting CLI:

Review the network elements and the links between them.

mininet> hosts
*** Unknown command: hosts
mininet> nodes
available nodes are:
c0 h1 h2 h3 s1

mininet> links
s1-eth1<->h1-eth0 (OK OK)
s1-eth2<->h2-eth0 (OK OK)
s1-eth3<->h3-eth0 (OK OK)

mininet> dump
<Host h1: h1-eth0:10.0.0.1 pid=7960>
<Host h2: h2-eth0:10.0.0.2 pid=7963>
<Host h3: h3-eth0:10.0.0.3 pid=7965>
<OVSSwitch s1: lo:127.0.0.1,s1-eth1:None,s1-eth2:None,s1-eth3:None pid=7970>
<Controller c0: 127.0.0.1:6633 pid=7952>

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-25

To run commands on the hosts, use the hostname followed by the command. For
example look at the IP address on h1 and route table on h2.

mininet> h2 ip addr show | grep eth0
159: h2-eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
group default qlen 1000
 inet 10.0.0.2/8 brd 10.255.255.255 scope global h2-eth0

mininet> h2 ip route
10.0.0.0/8 dev h2-eth0 proto kernel scope link src 10.0.0.2

Test connectivity from one host to another.

Test options in the cli are:
• build
• pingall - Ping between all hosts
• pingallfull - Ping between all hosts, including times
• pingpair - Ping between first two hosts
• iperf <host1> <host2> - Run TCP iperf between two hosts
• iperfudp <bw i.e. 100M> <host1> <host2> - UDP iperf

mininet> h1 ping -c1 h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_seq=1 ttl=64 time=4.66 ms

--- 10.0.0.3 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 4.664/4.664/4.664/0.000 ms

16 May 2017 Software Defined Networking TEL3214

12-26 TEL3214 - Computer Communication Networks

Look at network links between elements.

mininet> net
h1 h1-eth0:s1-eth1
h2 h2-eth0:s1-eth2
h3 h3-eth0:s1-eth3
s1 lo: s1-eth1:h1-eth0 s1-eth2:h2-eth0 s1-eth3:h3-eth0
c0

The Mininet command pingall is useful for checking connectivity between hosts.

mininet> pingall
*** Ping: testing ping reachability
h1 → h2 h3
h2 → h1 h3
h3 → h1 h2
*** Results: 0% dropped (6/6 received)

iperf can be ran from the Mininet prompt to test bandwidth between links. Here is an
example between h1 and h2.

Mininet> iperf h1 h2
*** Iperf: testing TCP bandwidth between h1 and h2
*** Results: ['18.0 Gbits/sec', '18.0 Gbits/sec']

Running commands on hosts can be done directly from the Mininet command shell as
seen above or individual xterms can be ran for hosts. In the example see the IPv4
addresses for each host.

TEL3214 Software Defined Networking 16 May 2017

Illustration 16: Testing Mininet network

TEL3214 - Computer Communication Networks 12-27

6.2.1 X11 error running xterm
If the connection is over SSH with a -X switch for X11 forwarding, then the following
error may be displayed.
mininet> xterm h2
mininet> X11 connection rejected because of wrong authentication.

The error is caused because the -X connection is made as the user sdn but the Mininet
has been ran as root using sudo. To rectify use the X authority file utility xauth to
determine the X11 magic cookie for the user ssh and then set the same magic cookie
for the root user to resolve the issue.

sdn@SDN-i386:~$ xauth list $DISPLAY
SDN-i386/unix:10 MIT-MAGIC-COOKIE-1 1603e2caa81a3a6f50245bb17cf9e546

sdn@SDN-i386:~$ sudo -s
root@SDN-i386:/home/sdn# xauth add SDN-i386/unix:10 MIT-MAGIC-COOKIE-1
1603e2caa81a3a6f50245bb17cf9e546
root@SDN-i386:/home/sdn# exit

sdn@SDN-i386:~$ sudo mn --topo tree,depth=1,fanout=3 --switch ovsk
--controller ref --mac
*** Creating network
*** Adding controller
*** Adding hosts:
h1 h2 h3
*** Adding switches:
s1
*** Adding links:
(s1, h1) (s1, h2) (s1, h3)
*** Configuring hosts
h1 h2 h3
*** Starting controller
c0
*** Starting 1 switches
s1
*** Starting CLI:
mininet> xterm h2

16 May 2017 Software Defined Networking TEL3214

Illustration 17: xterm window over SSH

12-28 TEL3214 - Computer Communication Networks

6.2.2 Exiting mininet
To exit Mininet use the exit command.

mininet> exit
*** Stopping 1 controllers
c0
*** Stopping 1 switches
s1 ...
*** Stopping 3 links

*** Stopping 3 hosts
h1 h2 h3
*** Done
completed in 3.536 seconds

It is a good idea to follow this up with sudo mn –clean or -c to tidy up before running
another network.

sdn@SDN-i386:~$ sudo mn --clean
*** Removing excess controllers/ofprotocols/ofdatapaths/pings/noxes
killall controller ofprotocol ofdatapath ping nox_core lt-nox_core ovs-
openflowd ovs-controller udpbwtest mnexec ivs 2> /dev/null
killall -9 controller ofprotocol ofdatapath ping nox_core lt-nox_core ovs-
openflowd ovs-controller udpbwtest mnexec ivs 2> /dev/null
pkill -9 -f "sudo mnexec"
*** Removing junk from /tmp
rm -f /tmp/vconn* /tmp/vlogs* /tmp/*.out /tmp/*.log
*** Removing old X11 tunnels
*** Removing excess kernel datapaths
ps ax | egrep -o 'dp[0-9]+' | sed 's/dp/nl:/'
*** Removing OVS datapaths
ovs-vsctl --timeout=1 list-br
ovs-vsctl --timeout=1 list-br
*** Removing all links of the pattern foo-ethX
ip link show | egrep -o '([-_.[:alnum:]]+-eth[[:digit:]]+)'
ip link show
*** Killing stale mininet node processes
pkill -9 -f mininet:
*** Shutting down stale tunnels
pkill -9 -f Tunnel=Ethernet
pkill -9 -f .ssh/mn
rm -f ~/.ssh/mn/*
*** Cleanup complete.

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-29

6.3 Configuring hosts

Recreate the same network but this time specifying the bandwidth of links and adding
delay. The options:

• host
• cfs - Completely Fair Scheduler (CFS)
• proc
• rt, - Real Time (RT)

• cpu=<positive fraction, or -1> - CPU bandwidth limit

Note: RT_GROUP_SCHED must be enabled in the kernel to change the rt,cpu.

sdn@SDN-i386:~$ sudo mn --topo tree,depth=1,fanout=3 --switch ovsk
--controller ref --mac --host rt,cpu=0.25

6.4 Configuring links

Recreate the same network but this time for traffic control (tc) specify the bandwidth of
links and adding delay. The options:

• link tc
• bw=<value> - Value in Mb/s
• delay=<value> - Time unit expressed as '5ms', '50us' or '1s'
• max_queue_size=<x> - Queue size in packets
• loss=<0 - 100> - Percentage loss
• use_htb=<True | False> - Hierarchical Token Bucket (HTB) rate limiter

sdn@SDN-i386:~$ sudo mn --topo tree,depth=1,fanout=3 --switch ovsk
--controller ref --mac --link tc,bw=100,delay=20ms
*** Creating network
*** Adding controller
*** Adding hosts:
h1 h2 h3
*** Adding switches:
s1
*** Adding links:
(100.00Mbit 20ms delay) (100.00Mbit 20ms delay) (s1, h1) (100.00Mbit 20ms
delay) (100.00Mbit 20ms delay) (s1, h2) (100.00Mbit 20ms delay)
(100.00Mbit 20ms delay) (s1, h3)
*** Configuring hosts
h1 h2 h3
*** Starting controller
c0
*** Starting 1 switches
s1 (100.00Mbit 20ms delay) (100.00Mbit 20ms delay) (100.00Mbit 20ms delay)
*** Starting CLI:

16 May 2017 Software Defined Networking TEL3214

12-30 TEL3214 - Computer Communication Networks

Repeat the iperf test between h1 and h2. Note the difference in results from the earlier
test. *** Results: ['18.0 Gbits/sec', '18.0 Gbits/sec'].

mininet> iperf h1 h2
*** Iperf: testing TCP bandwidth between h1 and h2
*** Results: ['85.7 Mbits/sec', '99.3 Mbits/sec']

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-31

7. OpenFlow traffic review

The OpenFlow traffic between the Controller c0 and the OvS s1. As the controller and
switch share the same VM guest the control channel is via the loopback interface, so
monitoring the loopback lo0 interface will give access to this messaging. In this case the
messaging is using OpenFlow v1.0 so using the filter openflow_v1 will show the
communications between the devices.

16 May 2017 Software Defined Networking TEL3214

Illustration 19: SDN Action

h1

Packet-IN

ICMP

Buf: 128ICMP

Packet-OUT
Buf: 128

Action: Forward All ports

Flow table

ICMP

Table miss

h2
Controller0

Switch1

Illustration 18: Wireshark OpenFlow traffic

12-32 TEL3214 - Computer Communication Networks

As demonstrated in Illustration 19 an Internet Control Message Protocol (ICMP) arrives
at s1. It does a table entry check and finds that it has a table-miss no flow entry. The
OvS s1 sends an OpenFlow Packet In (OFPT_PACKET_IN) to the controller c0 with a
unique Buffer IDentifier 128 for a decision.

 Frame 1: OFPT_PACKET_IN
 Ethernet II, Src: 00:00:00_00:00:00, Dst: 00:00:00_00:00:00
 Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
 Transmission Control Protocol, Src Port: 60348, Dst Port: 6633, Seq: 9,
 Ack: 9, Len: 60
 OpenFlow
 version: 1
 type: OFPT_PACKET_IN (10)
 length: 60
 xid: 0
 buffer_id: 128
 total_len: 42
 in_port: 1
 reason: OFPR_NO_MATCH (0)
 Ethernet packet

The controller c0 responds to the OvS s1 using the Buffer IDentifier 128 with the
decision to Output to switch port on all ports.

 Frame 2: OFPT_PACKET_OUT
 Ethernet II, Src: 00:00:00_00:00:00, Dst: 00:00:00_00:00:00
 Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
 Transmission Control Protocol, Src Port: 6633, Dst Port: 60348, Seq: 9,
 Ack: 69, Len: 24
 OpenFlow
 version: 1
 type: OFPT_PACKET_OUT (13)
 length: 24
 xid: 0
 buffer_id: 128
 in_port: 1
 actions_len: 8
 of_action list
 of_action_output
 type: OFPAT_OUTPUT (0)
 len: 8
 port: 65531 (All ports)
 max_len: 0

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-33

The response from the host h2 can be seen in Illustration 20, it arrives at the OvS s1
and is given a Buffer IDentifier 129, again there is a table-miss so the OvS s1 sends an
OpenFlow OFPT_PACKET_IN message to the controller c0.

 Frame 3: OFPT_PACKET_IN
 Ethernet II, Src: 00:00:00_00:00:00, Dst: 00:00:00_00:00:00
 Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
 Transmission Control Protocol, Src Port: 60348, Dst Port: 6633, Seq: 69,
 Ack: 33, Len: 60
 OpenFlow
 version: 1
 type: OFPT_PACKET_IN (10)
 length: 60
 xid: 0
 buffer_id: 129
 total_len: 42
 in_port: 2
 reason: OFPR_NO_MATCH (0)
 Ethernet packet

16 May 2017 Software Defined Networking TEL3214

Illustration 20: SDN Flow-MOD

h1 h2
Controller0

Switch1

Packet-IN

Flow table

Buf 129ICMP

Flow-MOD
Match and Mask
Buffer ID: 129
Idle timeout: 60
Match: src h2, dst h1, In Port 2
Action: Out Port 1
Priority: 0

Flow table
Flow Entry
Match and Mask
Idle timeout: 30
Hard timeout: 90
Match: src h2, dst h1, In Port 2
Action: Forward Port 1
Priority: 0

Table miss

ICMP

ICMP

12-34 TEL3214 - Computer Communication Networks

In this case as shown in Illustration 21, the controller c0 sends an OpenFlow Flow MOD
to the OvS s1 to add an entry to the Flow Table for traffic from 10.0.0.2 → 10.0.0.1 on
Ethernet port 2 → port 1. Subsequent similar packets are then forwarded automatically
by the OvS until the idle time-out of 60 seconds has been exceeded and then the
process must be repeated.

TEL3214 Software Defined Networking 16 May 2017

Illustration 21: SDN Flow-MOD #2

h1 h2
Controller0

Switch1

Packet-IN

Flow table

Buf 130ICMP

Flow-MOD
Match and Mask
Buffer ID: 130
Idle timeout: 60
Match: src h1, dst h2, In Port 1
Action: Out Port 2
Priority: 0

Flow table
Flow Entry
Match and Mask
Idle timeout: 30
Hard timeout: 90
Match: src h1, dst h2, In Port 1
Action: Forward Port 2
Priority: 0

Table miss

ICMP

ICMP

TEL3214 - Computer Communication Networks 12-35

 Frame 4: OPENFLOW FLOW MODIFICATION
 Ethernet II, Src: 00:00:00_00:00:00, Dst: 00:00:00_00:00:00
 Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
 Transmission Control Protocol, Src Port: 6633, Dst Port: 60348, Seq: 33,
 Ack: 129, Len: 80
 OpenFlow
 version: 1
 type: OFPT_FLOW_MOD (14)
 length: 80
 xid: 0
 of_match
 wildcards: 0x0000000000000000
 in_port: 2
 eth_src: 00:00:00_00:00:02
 eth_dst: 00:00:00_00:00:01
 vlan_vid: 65535
 vlan_pcp: 0
 eth_type: 2054
 ip_dscp: 0
 ip_proto: 2
 ipv4_src: 10.0.0.2
 ipv4_dst: 10.0.0.1
 tcp_src: 0
 tcp_dst: 0
 cookie: 0
 _command: 0
 idle_timeout: 60
 hard_timeout: 0
 priority: 0
 buffer_id: 129
 out_port: 0
 flags: Unknown (0x00000000)
 of_action list
 of_action_output
 type: OFPAT_OUTPUT (0)
 len: 8
 port: 1
 max_len: 0

16 May 2017 Software Defined Networking TEL3214

12-36 TEL3214 - Computer Communication Networks

The next packet in from h1 triggers another OFPT_PACKET_IN.

 Frame 5: OFPT_PACKET_IN
 Ethernet II, Src: 00:00:00_00:00:00, Dst: 00:00:00_00:00:00
 Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
 Transmission Control Protocol, Src Port: 60348, Dst Port: 6633, Seq: 129,
 Ack: 113, Len: 116
 OpenFlow
 version: 1
 type: OFPT_PACKET_IN (10)
 length: 116
 xid: 0
 buffer_id: 130
 total_len: 98
 in_port: 1
 reason: OFPR_NO_MATCH (0)
 Ethernet packet

This time, Controller c0 knows the port that h2 is on so it sends an OpenFlow Flow
MOD to the OvS s1 to add an entry to the Flow Table for traffic from 10.0.0.1 → 10.0.0.2
on Ethernet port 1 → port 2. Subsequent similar packets are then forwarded
automatically by the OvS until the idle time-out of 60 seconds has been exceeded and
then the process must be repeated.

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-37

 Frame 6: OPENFLOW FLOW MODIFICATION
 Ethernet II, Src: 00:00:00_00:00:00, Dst: 00:00:00_00:00:00
 Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
 Transmission Control Protocol, Src Port: 6633, Dst Port: 60348, Seq: 113,
 Ack: 245, Len: 80
 OpenFlow
 version: 1
 type: OFPT_FLOW_MOD (14)
 length: 80
 xid: 0
 of_match
 wildcards: 0x0000000000000000
 in_port: 1
 eth_src: 00:00:00_00:00:01
 eth_dst: 00:00:00_00:00:02
 vlan_vid: 65535
 vlan_pcp: 0
 eth_type: 2048
 ip_dscp: 0
 ip_proto: 1
 ipv4_src: 10.0.0.1
 ipv4_dst: 10.0.0.2
 tcp_src: 8
 tcp_dst: 0
 cookie: 0
 _command: 0
 idle_timeout: 60
 hard_timeout: 0
 priority: 0,ip=[controller IP]
 buffer_id: 130
 out_port: 0
 flags: Unknown (0x00000000)
 of_action list
 of_action_output
 type: OFPAT_OUTPUT (0)
 len: 8
 port: 2
 max_len: 0

Ping is not the only command that can run on a host. Mininet hosts can run any
command or application that is available to the underlying Linux system and its file
system. It is possible to enter any bash command, including job control (&, jobs, kill,
etc..)

Next, run a simple HTTP server on h1, making a request from h3, then shut down the
web server.

16 May 2017 Software Defined Networking TEL3214

12-38 TEL3214 - Computer Communication Networks

7.1 Webserver test

lynx text based web client on the mininet VM.

Check the IP addresses of the h1 and h3 hosts. Confirm connectivity between them.

mininet> h1 ip addr | grep "inet.*eth0"
 inet 10.0.0.1/8 brd 10.255.255.255 scope global h1-eth0

mininet> h3 ip addr | grep "inet.*eth0"
 inet 10.0.0.3/8 brd 10.255.255.255 scope global h3-eth0

mininet> h1 ping -c1 10.0.0.3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_seq=1 ttl=64 time=4.46 ms

xterm h1 and h3 so you have access to individual shells for each host.

mininet> xterm h1
mininet> xtern h3

Run a webserver on h1 xterm.

root@SDN-i386:~# python -m SimpleHTTPServer 80
Serving HTTP on 0.0.0.0 port 80 ...

Use lynx on the h3 xterm to access the webserver.

root@SDN-i386:~# lynx 10.0.0.1
 Directory listing for / (p1 of 2)
Directory listing for /
 __

 * .bash_history
 * .bash_logout
 * .bashrc
 * .cache/
 * .gitconfig
 * .mininet_history
 * .profile
 * .rnd
 * .ssh/
 * .wireshark/
 * .Xauthority
 * install-mininet-vm.sh
 * loxigen/
 * mininet/
 * oflops/
 * oftest/
 * openflow/
-- press space for next page --
 Arrow keys: Up and Down to move. Right to follow a link; Left to go back.
 H)elp O)ptions P)rint G)o M)ain screen Q)uit /=search [delete]=history list

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-39

On the webserver xterm on h1 the following message pops up.

10.0.0.3 - - [18/Mar/2015 01:11:34] "GET / HTTP/1.0" 200 -

An alternative is to run the server in the mininet console as a background process and
the use lynx to view it.

mininet> h1 python -m SimpleHTTPServer 80 &
Serving HTTP on 0.0.0.0 port 80 ...

mininet> h2 lynx h1
 Directory listing for / (p1 of 2)
Directory listing for /
 __

 * .bash_history
 * .bash_logout
 * .bashrc
 * .cache/
 * .gitconfig
 * .mininet_history
 * .profile
 * .rnd
 * .ssh/
 * .wireshark/
 * .Xauthority
 * install-mininet-vm.sh
 * loxigen/
 * mininet/
 * oflops/
 * oftest/
 * openflow/
-- press space for next page --
 Arrow keys: Up and Down to move. Right to follow a link; Left to go back.
 H)elp O)ptions P)rint G)o M)ain screen Q)uit /=search [delete]=history list

Kill the webserver on host h1.

mininet> h1 ps -ef | grep SimpleHTTPServer
root 2624 1406 0 01:17 pts/4 00:00:00 python -m SimpleHTTPServer 80
root 2669 1406 0 01:19 pts/4 00:00:00 grep SimpleHTTPServer

mininet> h1 kill 2624

16 May 2017 Software Defined Networking TEL3214

12-40 TEL3214 - Computer Communication Networks

So what happened ?
From → to Ver Len Type BufID Reason/Action

S1 → C0 OF 1.0 158 OFPT_PACKET_IN 342 Reason: OFPR_NO_MATCH 10.0.0.3 → 10.0.0.1
TCP SYN 39109 → 80 In pt: 3

C0 → S1 OF 1.0 90 OFPT_PACKET_OUT 342 Action: OFPAT_OUTPUT In pt: 3 Out pt: 65531
S1 → C0 OF 1.0 158 OFPT_PACKET_IN 343 Reason: OFPR_NO_MATCH 10.0.0.1 → 10.0.0.3

TCP SYN, ACK 80 → 39109 In pt: 1
C0 → S1 OF 1.0 146 OFPT_FLOW_MOD 343 Action: OFPR_FLOW_MOD 10.0.0.1 → 10.0.0.3

TCP SRC: 80 TCP DST: 39109 In pt: 1 Out pt:3
S1 → C0 OF 1.0 150 OFPT_PACKET_IN 344 Reason: OFPR_NO_MATCH 10.0.0.3 → 10.0.0.1

TCP ACK 39109 → 80 In pt: 3
C0 → S1 OF 1.0 146 OFPT_FLOW_MOD 344 Action: OFPR_FLOW_MOD 10.0.0.3 → 10.0.0.1

TCP SRC: 39109 TCP DST: 80 In pt: 3 Out pt:1

h3 tried to send an Ethernet frame containing a TCP SYN message to port 80 on the h1
webserver.

The OvS s1 does not have a flow for this in its flow table so it encapsulated the message
in an OpenFlow OFPT_PACKET_IN message with Buffer ID 342 and a Reason code of
OFPR_NO_MATCH.

Controller C0 responded with an Output to switch port (OFPAT_OUTPUT) message
telling the OvS s1 to send on all its ports.

When the responding SYN, ACK is received the OvS s1 has no match for the return
path either so it encapsulates in an OpenFlow OFPT_PACKET_IN message with Buffer
ID 343 and a Reason code of OFPR_NO_MATCH.

This time the Ethernet port for the destination is known as a result of the earlier
message so the Controller c0 instructs the OvS s1 with a OpenFlow Flow Modification
message to map HTTP traffic for 10.0.0.1 → 10.0.0.3 in on port 1 to be forwarded to
port 3.

The next response from h3 will again be forwarded as an OFPT_PACKET_IN message
with Buffer ID 344 and a Reason code of OFPR_NO_MATCH to Controller c0.

As the Ethernet port for h1 is now known an OpenFlow Flow Modification message to
map HTTP traffic for 10.0.0.3 → 10.0.0.1 in on port 3 to be forwarded to port 1 is sent to
the OvS s1 from the Controller c0.

All similar traffic to/from h1 to h3 will now be handled by the OvS s1 with need for
recourse to the Controller c0 until the idle timeout of 60 seconds has passed.

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-41

8. POX Controller

POX is an SDN networking platform written in Python. It is an OpenFlow controller, but
can also function as an OpenFlow switch, and can be useful for writing networking
software in general.

8.1 Running POX
sdn@SDN-i386:~$ ~/pox/pox.py forwarding.l2_learning
POX 0.2.0 (carp) / Copyright 2011-2013 James McCauley, et al.
INFO:core:POX 0.2.0 (carp) is up.

An alternative which gives ‘pretty’ output is:

sdn@SDN-i386:~$ ~/pox/pox.py forwarding.l2_pairs \
info.packet_dump samples.pretty_log log.level --DEBUG
POX 0.2.0 (carp) / Copyright 2011-2013 James McCauley, et al.
INFO:forwarding.l2_pairs:Pair-Learning switch running.
INFO:info.packet_dump:Packet dumper running
[core] POX 0.2.0 (carp) going up...
[core] Running on CPython (2.7.9/Aug 13 2016 16:41:35)
[core] Platform is Linux-3.16.0-4-586-i686-with-debian-8.7
[core] POX 0.2.0 (carp) is up.
[openflow.of_01] Listening on 0.0.0.0:6633
[openflow.of_01] [00-00-00-00-00-03 1] connected
[openflow.of_01] [00-00-00-00-00-02 2] connected
[openflow.of_01] [00-00-00-00-00-01 3] connected
[dump:00-00-00-00-00-03] [ethernet][ipv4][udp][172 bytes]
[dump:00-00-00-00-00-02] [ethernet][ipv4][udp][172 bytes]
[dump:00-00-00-00-00-01] [ethernet][ipv4][udp][172 bytes]

16 May 2017 Software Defined Networking TEL3214

12-42 TEL3214 - Computer Communication Networks

8.2 Testing POX

Run a mininet topology where Floodlight is the SDN controller.

sdn@SDN-i386:~$ sudo mn --topo tree,depth=2,fanout=3 --switch ovsk
--controller=remote,ip=127.0.0.1,port=6633 --mac
*** Creating network
*** Adding controller
Connecting to remote controller at 127.0.0.1:6633
*** Adding hosts:
h1 h2 h3 h4 h5 h6 h7 h8 h9
*** Adding switches:
s1 s2 s3 s4
*** Adding links:
(s1, s2) (s1, s3) (s1, s4) (s2, h1) (s2, h2) (s2, h3) (s3, h4) (s3, h5) (s3,
h6) (s4, h7) (s4, h8) (s4, h9)
*** Configuring hosts
h1 h2 h3 h4 h5 h6 h7 h8 h9
*** Starting controller
c0
*** Starting 4 switches
s1 s2 s3 s4 ...
*** Starting CLI:

mininet> pingall
*** Ping: testing ping reachability
h1 -> h2 h3 h4 h5 h6 h7 h8 h9
h2 -> h1 h3 h4 h5 h6 h7 h8 h9
h3 -> h1 h2 h4 h5 h6 h7 h8 h9
h4 -> h1 h2 h3 h5 h6 h7 h8 h9
h5 -> h1 h2 h3 h4 h6 h7 h8 h9
h6 -> h1 h2 h3 h4 h5 h7 h8 h9
h7 -> h1 h2 h3 h4 h5 h6 h8 h9
h8 -> h1 h2 h3 h4 h5 h6 h7 h9
h9 -> h1 h2 h3 h4 h5 h6 h7 h8
*** Results: 0% dropped (72/72 received)
mininet>

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-43

9. Project Floodlight

The Project Floodlight Open SDN Controller operates with OpenFlow switches. It is an
enterprise class, Apache licensed, Java based SDN Controller and has its origins with
Big Switch Networks.

9.1 Running Floodlight

Run the floodlight.jar file produced by ant.
sdn@SDN-i386:~$ cd ~/floodlight
sdn@SDN-i386:/floodlight$ java -jar ./target/floodlight.jar

Floodlight will start running and print debug output to your console.

9.2 Testing Floodlight

Run a Mininet topology where Floodlight is the SDN controller.

sdn@SDN-i386:~$ sudo mn --topo tree,depth=2,fanout=3 --switch ovsk
--controller=remote,ip=127.0.0.1,port=6653 --mac
[sudo] password for sdn:
*** Creating network
*** Adding controller
*** Adding hosts:
h1 h2 h3 h4 h5 h6 h7 h8 h9
*** Adding switches:
s1 s2 s3 s4
*** Adding links:
(s1, s2) (s1, s3) (s1, s4) (s2, h1) (s2, h2) (s2, h3) (s3, h4) (s3, h5) (s3, h6) (s4,
h7) (s4, h8) (s4, h9)
*** Configuring hosts
h1 h2 h3 h4 h5 h6 h7 h8 h9
*** Starting controller
c0
*** Starting 4 switches
s1 s2 s3 s4 ...
*** Starting CLI:

mininet> pingall
*** Ping: testing ping reachability
h1 -> h2 h3 h4 h5 h6 h7 h8 h9
h2 -> h1 h3 h4 h5 h6 h7 h8 h9
h3 -> h1 h2 h4 h5 h6 h7 h8 h9
h4 -> h1 h2 h3 h5 h6 h7 h8 h9
h5 -> h1 h2 h3 h4 h6 h7 h8 h9
h6 -> h1 h2 h3 h4 h5 h7 h8 h9
h7 -> h1 h2 h3 h4 h5 h6 h8 h9
h8 -> h1 h2 h3 h4 h5 h6 h7 h9
h9 -> h1 h2 h3 h4 h5 h6 h7 h8
*** Results: 0% dropped (72/72 received)

16 May 2017 Software Defined Networking TEL3214

12-44 TEL3214 - Computer Communication Networks

10. OpenDaylight

Project OpenDaylight is a Linux Foundation Collaborative Project. The software
combines SDN components including a fully pluggable controller, interfaces, protocol
plug-ins and applications to create a framework for SDN and Network Functions
Virtualisation (NFV) solutions. The current release is Beryllium.

10.1 Running ODL karaf

ODL uses Apache Karaf which is a small Open Services Gateway initiative (OSGi)
based runtime which provides a lightweight container onto which various components
and applications can be deployed. Karaf provides an ecosystem for ODL.
To run karaf:
sdn@SDN-i386:~$./odl/bin/karaf

10.2 Installing openDaylight User eXperience (DULX) features

On the karaf shell install DLUX.
• odl-restconf – Representational STate (REST) like protocol that provides a

programmatic interface over Hyper Text Transfer Protocol (HTTP) for accessing
data on port 8080 for HTTP requests.

• odl-l2switch-all – Layer2 switch functionality.
• odl-mdsal-apidocs - Model Driven Service Abstraction Layer (MD-SAL)

Application Programmable Interface (API) Documentation. They can be
accessed at: http://<IP addr>:8181/apidoc/explorer/index.html.

• odl-dlux-all - Graphical user interface for OpenDaylight based on the AngularJS
framework.

TEL3214 Software Defined Networking 16 May 2017

Illustration 22: karaf

TEL3214 - Computer Communication Networks 12-45

opendaylight-user@root> feature:install odl-restconf
opendaylight-user@root> feature:install odl-l2switch-all
opendaylight-user@root> feature:install odl-mdsal-apidocs
opendaylight-user@root> feature:install odl-dlux-all

Features can be installed in one command like this also.

opendaylight-user@root> feature:install odl-restconf odl-l2switch-all odl-
mdsal-apidocs odl-dlux-all

10.3 Testing the ODL installation

Run a Mininet topology where the ODL is the SDN controller.

sdn@SDN-i386:~$ sudo mn --topo tree,depth=2,fanout=3 --switch ovsk
--controller=remote,ip=127.0.0.1,port=6633 --mac
[sudo] password for sdn:
*** Creating network
*** Adding controller
*** Adding hosts:
h1 h2 h3 h4 h5 h6 h7 h8 h9
*** Adding switches:
s1 s2 s3 s4
*** Adding links:
(s1, s2) (s1, s3) (s1, s4) (s2, h1) (s2, h2) (s2, h3) (s3, h4) (s3, h5) (s3, h6) (s4,
h7) (s4, h8) (s4, h9)
*** Configuring hosts
h1 h2 h3 h4 h5 h6 h7 h8 h9
*** Starting controller
c0
*** Starting 4 switches
s1 s2 s3 s4 ...
*** Starting CLI:

mininet> pingall
*** Ping: testing ping reachability
h1 -> h2 h3 h4 h5 h6 h7 h8 h9
h2 -> h1 h3 h4 h5 h6 h7 h8 h9
h3 -> h1 h2 h4 h5 h6 h7 h8 h9
h4 -> h1 h2 h3 h5 h6 h7 h8 h9
h5 -> h1 h2 h3 h4 h6 h7 h8 h9
h6 -> h1 h2 h3 h4 h5 h7 h8 h9
h7 -> h1 h2 h3 h4 h5 h6 h8 h9
h8 -> h1 h2 h3 h4 h5 h6 h7 h9
h9 -> h1 h2 h3 h4 h5 h6 h7 h8
*** Results: 0% dropped (72/72 received)

16 May 2017 Software Defined Networking TEL3214

12-46 TEL3214 - Computer Communication Networks

10.4 DLUX User interface

Login to the Dlux interface with a Chrome browser (recommended). The default
username is: admin and the default password is: admin.

http://<IP address>:8181/index.html

Within the Dlux user interface the Mininet network should be visible under the Topology
tab.

TEL3214 Software Defined Networking 16 May 2017

Illustration 24: DLUX Topology

Illustration 23: Dlux login

TEL3214 - Computer Communication Networks 12-47

11. Custom Topologies

The topologies created thus far have been defined by the mn command options and
these are limited. It will become necessary to create more customised topologies and
this can be achieved using Python scripts. Mininet has example scripts in:

~/mininet/examples

and custom scripts can be created in:

~/mininet/custom

Note: For the purpose of NTE-SDN VM however custom exercise scripts are in:
~/TEL-3214-exercises

sdn@SDN-i386:~$ cd ~/mininet/custom
sdn@SDN-i386:~/mininet/custom$ ls
README topo-2sw-2host.py

sdn@SDN-i386:~/mininet/custom$ cat README

This directory should hold configuration files for custom mininets.

See custom_example.py, which loads the default minimal topology. The
advantage of defining a mininet in a separate file is that you then use the
--custom option in mn to run the CLI or specific tests with it.

To start up a mininet with the provided custom topology, do:
 sudo mn --custom custom_example.py --topo mytopo

16 May 2017 Software Defined Networking TEL3214

12-48 TEL3214 - Computer Communication Networks

An example is given for a two switch solution with a host in each. The example also
incorporates different parameters for each link.

sdn@SDN-i386:~$ cat ~/TEL-3214-exercises/topo-2sw-2host.py

"""Custom topology example

Two directly connected switches plus a host for each switch:

 host --- switch --- switch --- host

Adding the 'topos' dict with a key/value pair to generate our newly defined
topology enables one to pass in '--topo=mytopo' from the command line.
"""

from mininet.topo import Topo

class MyTopo(Topo):
 "Simple topology example."

 def __init__(self):
 "Create custom topo."

 # Initialize topology
 Topo.__init__(self)

 # Add hosts and switches
 leftHost = self.addHost('h1')
 rightHost = self.addHost('h2')
 leftSwitch = self.addSwitch('s3')
 rightSwitch = self.addSwitch('s4')

 # Add links
 self.addLink(leftHost, leftSwitch, bw=50, delay='3ms', loss=10)
 self.addLink(leftSwitch, rightSwitch, bw=100, delay='1ms')
 self.addLink(rightSwitch, rightHost, bw=50, delay='3ms', loss=10)

topos = { 'mytopo': (lambda: MyTopo()) }

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-49

Run this example and confirm it is working.
$ sudo mn --custom ~/TEL-3214-exercises/topo-2sw-2host.py --topo mytopo --link=tc
*** Creating network
*** Adding controller
*** Adding hosts:
h1 h2
*** Adding switches:
s3 s4
*** Adding links:
(30.00Mbit 3ms delay 10% loss) (30.00Mbit 3ms delay 10% loss) (h1, s3)
(100.00Mbit 1ms delay) (100.00Mbit 1ms delay) (s3, s4) (50.00Mbit 3ms delay
10% loss) (50.00Mbit 3ms delay 10% loss) (s4, h2)
*** Configuring hosts
h1 h2
*** Starting controller
c0
*** Starting 2 switches
s3 s4 ...(30.00Mbit 3ms delay 10% loss) (100.00Mbit 1ms delay) (100.00Mbit
1ms delay) (50.00Mbit 3ms delay 10% loss)
*** Starting CLI:

To demonstrate the link constraint run the iperfudp between hosts. Note the speed is
limited below the speed of the slowest link.

mininet> iperfudp 100M h1 h2
*** Iperf: testing UDP bandwidth between h1 and h2
*** Results: ['100M', '26.2 Mbits/sec', '26.2 Mbits/sec']

16 May 2017 Software Defined Networking TEL3214

12-50 TEL3214 - Computer Communication Networks

11.1 Create a custom topology

Taking this diagram as an example to build. Use the existing file as a template to build
the required custom topology.

-----------------------------Custom-OvS.py---------------------------------

#!/usr/bin/python

"""
Custom topology example

Three directly connected switches plus a host attached to each switch with a
controller (c0):

 c0
 /|\
 / | \
 / | \
 h1 --- s1 | s3 --- h3
 \ | /
 \ | /
 \|/
 s2 --- h2

"""

TEL3214 Software Defined Networking 16 May 2017

Illustration 25: Mininet custom topology example

SDN
Controller
c0

h2
192.168.1.2/24

OvS
s2

OpenFlow

h3
192.168.1.3/24

OvS
s3

h1
192.168.1.1/24

OvS
s1 eth2

eth1

eth0

eth3

eth0 eth0

eth2

eth1

eth1

eth1

eth2

TEL3214 - Computer Communication Networks 12-51

from mininet.net import Mininet
from mininet.node import Controller
from mininet.cli import CLI
from mininet.log import setLogLevel, info
from mininet.link import TCLink
from mininet.topo import Topo

def customNet():

 "Create a customNet and add devices to it."

 net = Mininet(controller=Controller, link=TCLink)

 # Add controller
 info('Adding controller\n')
 net.addController ('c0')

 # Add hosts
 info('Adding hosts\n')
 h1 = net.addHost('h1')
 h2 = net.addHost('h2')
 h3 = net.addHost('h3')

 # Add switches
 info('Adding switches\n')
 s1 = net.addSwitch('s1')
 s2 = net.addSwitch('s2')
 s3 = net.addSwitch('s3')

 # Add links
 info('Adding switch links\n')
 net.addLink(s1, s2, bw=1000, delay='1ms')
 net.addLink(s2, s3, bw=1000, delay='1ms')

 info('Adding host links\n')
 net.addLink(h1, s1, bw=50, delay='3ms')
 net.addLink(h2, s2, bw=50, delay='2ms')
 net.addLink(h3, s3, bw=50, delay='2ms', loss=15)

 info('*** Starting network\n')
 net.start()

 info('*** Running CLI\n')
 CLI(net)

 info('*** Stopping network')
 net.stop()

if __name__ == '__main__':
 setLogLevel('info')
 customNet()

16 May 2017 Software Defined Networking TEL3214

12-52 TEL3214 - Computer Communication Networks

Now run the new custom topology.

sdn@SDN-i386:~$ sudo ~/TEL-3214-exercises/Custom-OvS.py
Adding controller
Adding hosts
Adding switches
Adding switch links
(1000.00Mbit 1ms delay) (1000.00Mbit 1ms delay) (1000.00Mbit 1ms delay)
(1000.00Mbit 1ms delay) Adding host links
(50.00Mbit 3ms delay) (50.00Mbit 3ms delay) (50.00Mbit 2ms delay) (50.00Mbit
2ms delay) (50.00Mbit 2ms delay 15% loss) (50.00Mbit 2ms delay 15% loss)
*** Starting network
*** Configuring hosts
h1 h2 h3
*** Starting controller
c0
*** Starting 3 switches
s1 (1000.00Mbit 1ms delay) (50.00Mbit 3ms delay) s2 (1000.00Mbit 1ms delay)
(1000.00Mbit 1ms delay) (50.00Mbit 2ms delay) s3 (1000.00Mbit 1ms delay)
(50.00Mbit 2ms delay 15% loss) ...(1000.00Mbit 1ms delay) (50.00Mbit 3ms
delay) (1000.00Mbit 1ms delay) (1000.00Mbit 1ms delay) (50.00Mbit 2ms delay)
(1000.00Mbit 1ms delay) (50.00Mbit 2ms delay 15% loss)
*** Running CLI
*** Starting CLI:
mininet>

Reviewing the new network with the dump, net, pingall, iperf and dpctl dump-flows
commands.

mininet> dump
<Host h1: h1-eth0:10.0.0.1 pid=10517>
<Host h2: h2-eth0:10.0.0.2 pid=10519>
<Host h3: h3-eth0:10.0.0.3 pid=10521>
<OVSSwitch s1: lo:127.0.0.1,s1-eth1:None,s1-eth2:None pid=10526>
<OVSSwitch s2: lo:127.0.0.1,s2-eth1:None,s2-eth2:None,s2-eth3:None pid=10529>
<OVSSwitch s3: lo:127.0.0.1,s3-eth1:None,s3-eth2:None pid=10532>
<Controller c0: 127.0.0.1:6653 pid=10510>

mininet> net
h1 h1-eth0:s1-eth2
h2 h2-eth0:s2-eth3
h3 h3-eth0:s3-eth2
s1 lo: s1-eth1:s2-eth1 s1-eth2:h1-eth0
s2 lo: s2-eth1:s1-eth1 s2-eth2:s3-eth1 s2-eth3:h2-eth0
s3 lo: s3-eth1:s2-eth2 s3-eth2:h3-eth0
c0

mininet> pingall
*** Ping: testing ping reachability
h1 -> h2 h3
h2 -> h1 h3
h3 -> h1 h2
*** Results: 0% dropped (6/6 received)

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-53

mininet> pingall
*** Ping: testing ping reachability
h1 -> h2 h3
h2 -> h1 h3
h3 -> X h2
*** Results: 16% dropped (5/6 received)

mininet> iperf h1 h2
*** Iperf: testing TCP bandwidth between h1 and h2
*** Results: ['43.3 Mbits/sec', '47.7 Mbits/sec']

mininet> iperf h1 h3
*** Iperf: testing TCP bandwidth between h1 and h3
*** Results: ['179 Kbits/sec', '193 Kbits/sec']

mininet> iperf h2 h3
*** Iperf: testing TCP bandwidth between h2 and h3
*** Results: ['318 Kbits/sec', '320 Kbits/sec']

mininet> dpctl dump-flows
*** s1
--
NXST_FLOW reply (xid=0x4):
*** s2
--
NXST_FLOW reply (xid=0x4):
*** s3

NXST_FLOW reply (xid=0x4):

mininet> h1 ping h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=2.81 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=2.82 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.595 ms

--- 10.0.0.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 0.595/2.078/2.826/1.048 ms

mininet> dpctl dump-flows
*** s1
--
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=3.854s, table=0, n_packets=3, n_bytes=294,
idle_timeout=60,idle_age=1, priority=65535,icmp,in_port=1,
vlan_tci=0x0000,dl_src=b2:a6:82:06:f5:0b,dl_dst=da:f0:ca:b8:ca:79,
nw_src=10.0.0.2,nw_dst=10.0.0.1,nw_tos=0,icmp_type=0,icmp_code=0
actions=output:2 cookie=0x0, duration=2.856s, table=0, n_packets=2,
n_bytes=196, idle_timeout=60, idle_age=1, priority=65535,icmp,
in_port=2,vlan_tci=0x0000,dl_src=da:f0:ca:b8:ca:79,
dl_dst=b2:a6:82:06:f5:0b,nw_src=10.0.0.1,nw_dst=10.0.0.2,nw_tos=0,
icmp_type=8,icmp_code=0 actions=output:1

16 May 2017 Software Defined Networking TEL3214

12-54 TEL3214 - Computer Communication Networks

*** s2 ---
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=2.859s, table=0, n_packets=2, n_bytes=196,
idle_timeout=60, idle_age=1, priority=65535,icmp,in_port=1,
vlan_tci=0x0000,dl_src=da:f0:ca:b8:ca:79,dl_dst=b2:a6:82:06:f5:0b,
nw_src=10.0.0.1,nw_dst=10.0.0.2,nw_tos=0,icmp_type=8,icmp_code=0
actions=output:3 cookie=0x0, duration=3.86s, table=0, n_packets=3,
n_bytes=294, idle_timeout=60, idle_age=1, priority=65535,icmp,
in_port=3,vlan_tci=0x0000,dl_src=b2:a6:82:06:f5:0b,
dl_dst=da:f0:ca:b8:ca:79,nw_src=10.0.0.2,nw_dst=10.0.0.1,
nw_tos=0,icmp_type=0,icmp_code=0 actions=output:1
*** s3 ---
NXST_FLOW reply (xid=0x4):

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-55

12. Custom script to ODL remote controller

Create a clone of the NTE-SDN VM. In this second VM run OpenDaylight.

12.1 Run OpenDaylight

Run OpenDaylight.

sdn@SDN-i386:~$ ~/opendaylight/bin/karaf

 ________ ________ .__ .__ .__ __
 _____ \ ______ ____ ____ ______ \ _____ ___.__.| | |__| ____ | |___/ |_
 / | ____ _/ __ \ / \ | | __ \< | || | | |/ ___\| | \ __\
 / | \ |_> > ___/| | \| ` \/ __ ___ || |_| / /_/ > Y \ |
 _______ / __/ ___ >___| /_______ (____ / ____||____/_____ /|___| /__|
 \/|__| \/ \/ \/ \/\/ /_____/ \/

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.
Hit '<ctrl-d>' or type 'system:shutdown' or 'logout' to shutdown OpenDaylight.

opendaylight-user@root>

Add features to the ODL server.

opendaylight-user@root> feature:install odl-restconf odl-l2switch-all odl-
mdsal-apidocs odl-dlux-all

16 May 2017 Software Defined Networking TEL3214

Illustration 26: Test network with ODL

ODL
Controller
c0

h2
192.168.1.2/24

OvS s2

OpenFlow

h3
192.168.1.3/24

OvS
s3

h1
192.168.1.1/24

OvS
s1 eth2

eth1

eth0eth0 eth0

eth2

eth1

eth1 eth2

ODL

eth3

Mininet

OpenDaylight

12-56 TEL3214 - Computer Communication Networks

12.2 OpenDaylight User Experience (DLUX)

Access the ODL Server from a Chrome browser as shown earlier.

12.3 Start Mininet network

Start a Mininet network on the Mininet computer. In this case point to the remote
OpenDaylight remote controller on port 6633, the standard OpenFlow port. The
following python script is a variant of the previous script except the controller now points
to the remote Open Daylight controller.

------------------------Custom-RemoteODL.py----------------------------

#!/usr/bin/python

"""
Custom topology example

Three directly connected switches plus a host attached to each switch
with a remote ODL SDN Controller (c0):

 c0
 ODL /|\ 192.168.25.111
 /.|.\.................
 Mininet / | \ 192.168.25.83
 / | \
 h1 --- s1 | s3 --- h3
 \ | /
 \ | /
 \ | /
 \|/
 s2 --- h2

"""
from mininet.net import Mininet
from mininet.node import Controller, RemoteController
from mininet.cli import CLI
from mininet.log import setLogLevel, info

OpenDayLight controller
ODL_CONTROLLER_IP='192.168.25.111'
ODL_CONTROLLER_PORT=6633

Define remote OpenDaylight Controller

print 'OpenDaylight IP Addr:', ODL_CONTROLLER_IP
print 'OpenDaylight Port:', ODL_CONTROLLER_PORT

def customNet():

 "Create a customNet and add devices to it."

 net = Mininet(topo=None, build=False)

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-57

 # Add controller
 info('Adding controller\n')
 net.addController('c0',
 controller=RemoteController,
 ip=ODL_CONTROLLER_IP,
 port=ODL_CONTROLLER_PORT
)

 # Add hosts
 info('Adding hosts\n')
 h1 = net.addHost('h1')
 h2 = net.addHost('h2')
 h3 = net.addHost('h3')

 # Add switches
 info('Adding switches\n')
 s1 = net.addSwitch('s1')
 s2 = net.addSwitch('s2')
 s3 = net.addSwitch('s3')

 # Add links
 info('Adding switch links\n')
 net.addLink(s1, s2)
 net.addLink(s2, s3)

 info('Adding host links\n')
 net.addLink(h1, s1)
 net.addLink(h2, s2)
 net.addLink(h3, s3)

 info('*** Starting network ***\n')
 net.start()

 info('*** Running CLI ***\n')
 CLI(net)

 info('*** Stopping network ***')
 net.stop()

if __name__ == '__main__':
 setLogLevel('info')
 customNet()

16 May 2017 Software Defined Networking TEL3214

12-58 TEL3214 - Computer Communication Networks

Run the script.

sdn@SDN-i386:~$ sudo ~/TEL-3214-exercises/Custom-RemoteODL.py
OpenDaylight IP Addr: 192.168.25.111
OpenDaylight Port: 6633
Adding controller
Adding hosts
Adding switches
Adding switch links
Adding host links
*** Starting network ***
*** Configuring hosts
h1 h2 h3
*** Starting controller
c0
*** Starting 3 switches
s1 s2 s3
*** Running CLI ***
*** Starting CLI:

Review the topology.

mininet> dump
<Host h1: h1-eth0:10.0.0.1 pid=10598>
<Host h2: h2-eth0:10.0.0.2 pid=10601>
<Host h3: h3-eth0:10.0.0.3 pid=10603>
<OVSSwitch s1: lo:127.0.0.1,s1-eth1:None,s1-eth2:None pid=10608>
<OVSSwitch s2: lo:127.0.0.1,s2-eth1:None,s2-eth2:None,s2-eth3:None
pid=10611>
<OVSSwitch s3: lo:127.0.0.1,s3-eth1:None,s3-eth2:None pid=10614>
<RemoteController c0: 192.168.25.111:6633 pid=10591>

mininet> net
h1 h1-eth0:s1-eth2
h2 h2-eth0:s2-eth3
h3 h3-eth0:s3-eth2
s1 lo: s1-eth1:s2-eth1 s1-eth2:h1-eth0
s2 lo: s2-eth1:s1-eth1 s2-eth2:s3-eth1 s2-eth3:h2-eth0
s3 lo: s3-eth1:s2-eth2 s3-eth2:h3-eth0
c0

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-59

Test the topology.

mininet> pingall
*** Ping: testing ping reachability
h1 -> h2 h3
h2 -> h1 h3
h3 -> h1 h2
*** Results: 0% dropped (6/6 received)

mininet> iperf h1 h3
*** Iperf: testing TCP bandwidth between h1 and h3
Waiting for iperf to start up...*** Results: ['227 Mbits/sec', '234 Mbits/sec']

Now look at the network in DLUX Topology dashboard.

16 May 2017 Software Defined Networking TEL3214

Illustration 27: Dlux topology dashboard

12-60 TEL3214 - Computer Communication Networks

13. North Bound Interface (NBI)

As SDN evolves it has become apparent that new NBI mechanisms are required to
meet the diverse Applications that will adjust the SDN Controller 's Network Policy over
the Network Services Abstraction Layer (NSAL).

13.1 Frenetic

The Frenetic Project raises the level of abstraction for programming SDNs through the
development of simple, reusable, high level abstractions and efficient runtime systems
that automatically generate and install corresponding low-level rules on SDN switches.

• High-level abstraction
◦ Control.

• Modular constructs
◦ Compositional reasoning
◦ Sequential (>>)
◦ Parallel (|).

• Portability
◦ Operate on many devices.

• Rigorous semantic foundations
◦ Mechanical program analysis tools.

13.1.1 Pyretic

Pyretic is a Frenetic Project implementation embedded in Python. Pyretic however does
not answer the question of how an event-reaction logic is embedded in software or how
changes are verified as having completed correctly.

TEL3214 Software Defined Networking 16 May 2017

Illustration 28: Pyretic

from pyretic.lib.corelib import *

def main():
 return flood()

TEL3214 - Computer Communication Networks 12-61

13.1.2 Kenetic

Kenetic, a Pyretic module defines network policies as a Finite State machine (FSM).
Transitions between states are triggered by different types of dynamic events in the
network, like intrusion detection, authentication of hosts, data usage cap reached, etc.
For each of these events an operator can enforce different policies or a chain of policies
either sequentially or in parallel.

16 May 2017 Software Defined Networking TEL3214

Illustration 29: Kenetic

from pyretic.kinetic.fsm_policy import *
from pyretic.kinetic.smv.model_checker import *

def policy(self):
 self.case(is_true(V(‘infected’)),C(drop))
 self.default(C(identity))

Infected: False
Policy: identify

Infected: True
Policy: identify

Infected: True
Policy: drop

Infected: False
Policy: drop

(Infected, True)

(Infected, False)

12-62 TEL3214 - Computer Communication Networks

14. Networks Function Virtualisation (NFV)

At the SDN & OpenFlow World Congress in Darmstadt, Germany in October 2012 a
group of Tier 1 service providers launched an initiative called NFV. These operators
could see that Virtualisation and Cloud computing could evolve the way services are
delivered on networks by consolidation and virtualisation of network equipment on
industry standard high volume servers as can be seen in the NFV concept. Functions
could also be migrated to centralised virtualised infrastructure while also offering the
facility to push virtualisation of functions right out to the end user premises.

While SDN and NFV are complimentary to each other they are not as yet inter-
dependent and can therefore be operated either together, or independently.

Obviously moving functions that were heretofore based on specialist hardware presents
a number of challenges, such as;
• the portability to a virtualised system and interoperability with existing

infrastructure.
• the performance trade-off between standards based hardware and that of

specialised, function specific hardware.
• the interaction of the Management and Network Orchestration (MANO) of the

distributed functions with the network. Using the benefits of automation to achieve
the transformational aspects of NFV.

• the integration of functions into the overall NFV ecosystem and its coexistence with
legacy systems.

• the new challenges in terms of security and stability have evolved as a result of
cloud computing and virtualisation.

These challenges and newer security challenges will evolve from this new networking
system.

The benefits of NFV however make the case for migration so compelling that without
doubt it will form the core of services to be offered by service providers well into the

TEL3214 Software Defined Networking 16 May 2017

Illustration 30: Network Function Virtualisation

Storage

PABXDPI

Load
Balancer

DPISIP

OS OS OS OS OS OS

VM VM VM VM VM VM

Hypervisor

x86 based hardware

TEL3214 - Computer Communication Networks 12-63

future. Hardware-based appliances have a specific life, which is getting shorter and
shorter with the rapid pace of development, and they need regular replacement. This
complicates maintenance procedures and customer support with no financial benefit to
the service provider.

NFV will transform the design of the network to implement these functions in software,
many of these will process centrally thereby allowing for their operation to be migrated
and backed up as needed. This will reduce equipment costs and reduce power
consumption due to power management features in standard servers and storage, while
eliminating the need for specific hardware. Services can be scaled up and down in a
similar fashion to that provided by cloud services today. IT MANO mechanisms familiar
today in cloud services will facilitate the automatic installation and scaling of capacity by
building Virtual Machines (VM) or Containers to meet demand. In this way traffic
patterns and service demand can be met in an automated and managed fashion. As a
result the service provider can increase the speed to market of both existing NFVs but
also decrease the time it takes to innovate new services and deliver them on the
virtualised infrastructure.

16 May 2017 Software Defined Networking TEL3214

Illustration 31: NFV Ecosystem

Management
and

Network
Orchestration

 (MANO)

VM

VNF

VNF VNF VNF

VM VM

Network Functions Virtualisation Infrastructure (NFVI)

Hypervisor
domain

OSS /BSS

VNF Manager
(VNFM)

Controller

Network domain Compute domain

Virtual
Infrastructure

Manager (VIM)

12-64 TEL3214 - Computer Communication Networks

Illustration 31 shows the overall NFV ecosystem. The underlying infrastructure
collectively is called the Network Functions Virtualisation Infrastructure (NFVI) and it
consists of three domains, Network, Compute and Hypervisor/Virtualisation. The
Network Domain consists of islands of switches with SDN Controllers or a traditional
routed and switched network. The Compute Domain consists of the computing
hardware and storage necessary to support the upper layers. The final domain in the
NFVI is the Hypervisor/Virtualisation Domain which contains the virtualisation
hypervisors and VMs. This can be built using existing hypervisors like Xen, VMWare or
using Container technology like Docker. These NFVI domains are managed by a Virtual
Infrastructure Manager (VIM).

A Virtual Network Function Manager (VNFM) controls the building of individual Virtual
Network Functions (VNF) on the VMs. MANO performs the overall management of the
VIM, VNFM and Operations Support Systems (OSS) / Business Support System (BSS)
and allows the service provider to quickly deploy and scale VNF services as well as
provide and scale resources for VNFs. This system reduces administrator workloads
and removes the need for manual administration type tasks. It also offers APIs and other
tooling extensions to integrate with existing environments.

14.1.1 Providing NFV to the customer

Illustration 32 demonstrates the benefits that ubiquitous high speed broadband gives to
the service provider. It provides the ability to supply a vCPE to the customer upon which
VNFs can be offered.

TEL3214 Software Defined Networking 16 May 2017

Illustration 32: vCPE

Customer
Internal
Network

Enterprise Core
Network

Ubiquitous
Broadband

VNFs

Server Side VNFs

Virtual
Network

Infrastructure

Service
Provider
Network vCPE

Cloud

TEL3214 - Computer Communication Networks 12-65

Current services that can be converted into NFV style services are:
• Router.
• Session Border Controller (SBC).
• Load Balancer.
• Network Address Translation (NAT).
• Home Gateway (HG).
• Application Acceleration.
• Traffic Management.
• Firewall.
• Deep Packet Inspection (DPI).
• Bulk Encryption.
• Content Caching.
• Session Initiation Protocol Gateway (SIP-GW).

This however is just the beginning, these services already exist on traditional
deployment mechanisms. The fact that virtualisation will now be available in the vCPE at
the customer premises means that a service provider can deploy new services not
envisaged as yet and deploy services on a trial basis, all without equipment changes.

14.1.2 NFV Standards
After the initial white paper from the Darmstadt-Germany Call for Action in 2012 it was
decided to form an Industry Specification Group (ISG) under the European
Telecommunications Standards Institute (ETSI). Phase 1 of this group was to "drive
convergence on network operator requirements for NFV to include applicable
standards, where they already exist, into industry services and products to
simultaneously develop new technical requirements with the goal of stimulating
innovation and fostering an open ecosystem of vendors" (ETSI, 2012). They issued a
progress White Paper in October 2013 and a final paper in October 2014 which drew
attention to the second release of ETSI NFV ISG documents that were subsequently
published in January 2015. December 2014 was considered to be the end of phase 1
and phase 2 was launched. This saw some reorganisation of the ISG NFV working
groups, to focus less on requirements and more on adoption.

16 May 2017 Software Defined Networking TEL3214

12-66 TEL3214 - Computer Communication Networks

The key areas addressed include:
• Stability, Interoperability, Reliability, Availability, Maintainability.
• Intensified collaboration with other bodies.
• Testing and validation to encourage interoperability and solidify

implementations.
• Definition of interfaces.
• Establishment of a vibrant NFV ecosystem.
• Performance and assurance considerations.
• Security.

14.2 Open Platform NFV

The Linux Foundation established a Collaborative Project called 'Open Platform NFV
(OPNFV)' in October 2014. The project intent is to provide a Free and Open-Source
Software (FOSS) platform for the deployment of NFV solutions that leverage
investments from a community of developers and solution providers.

The initial focus of the OPNFV will be the NFVI and VIM. In reality this means the
OPNFV will focus on building interfaces between existing FOSS projects like those
listed below.

Creating these interfaces between what are essentially existing elements to create a
functional reference platform will be a major win for the technology and certainly
contribute to the goals of phase 2 of the ETSI NFV ISG.

• Virtual Infrastructure Management: OpenStack, Apache CloudStack, ...
• Network Controller and Virtualization Infrastructure: OpenDaylight, ...
• Virtualisation and hypervisors: KVM, Xen, libvirt, LXC, ...
• Virtual forwarder: OvS, Linux bridge, ...
• Forwarding-plane interfaces and acceleration: forwarding plane Development Kit

(DPDK), Open Data Plane (ODP), ...
• Operating System: GNU/Linux, ...

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-67

14.3 Ongoing research

SDN is at an early stage of development. The Open Networking Research Center
(ONRC) at UC Berkeley and Standford University has been created to help realise the
potential of SDN. The IETF has a Software-Defined Networking Research Group
(SDNRG) with the stated goal of identifying the approaches that can be defined,
deployed and used in the near term as well identifying future research challenges.

The IETF have also a Network Function Virtualisation Research Group (NFVRG) to
focus on research problems associated with NFV-related topics and the research
community to address them.

The Linux Foundation believe that with the projects they have in place already, they are
in a perfect position to bring these together as a new project Open Platform NFV
(OPNFV) to accelerate NFV.

Dr. James Kempf of Ericsson believes that NFV and SDN have traversed the peak of
inflated expectation and are starting down the trough of despair. However he has
considered the OPNFV initiative of the Linux Foundation which he sees as a
complimentary effort to their existing OpenDaylight and OpenStack projects. He
believes that there is a lot of work yet to be achieved before reaching the slope of
enlightenment and considers that SDN is confined to the data centre for some time to
come.

16 May 2017 Software Defined Networking TEL3214

12-68 TEL3214 - Computer Communication Networks

14.4 Software Defined WAN (SD-WAN)

In traditional enterprise, Local Area Network (LAN) segments are interconnected across
the Wide Area Network (WAN) via Multiprotocol Label Switching (MPLS) circuits
operated by Internet Service Providers (ISP). While in many enterprises, small offices
maybe connected over the Internet via secure Virtual Private Networks (VPN). At this
stage it is common for people to use Voice over Internet Protocol (VoIP) for personal
and even business voice calls over the Internet and for the most part it works. Therefore
why shouldn't it be possible to manage enterprise traffic over the Internet? Quality of
Service (QoS) cannot be guaranteed on the Internet so enterprises continue to employ
MPLS circuits for the QoS and the Service Level Agreements (SLA) they receive from
the providers. Such circuits and the enterprise routers required at each site makes the
cost of such circuits quite expensive.

SD-WAN as demonstrated in Illustration 33 provides a solution to the problem. With SD-
WAN, MPLS circuits are maintained between the critical sites, say HQ and regional
sites. Each site has a virtualised Customer Premises Equipment (vCPE) instead of an
enterprise router. For major sites both Internet VPN and MPLS circuits are maintained
while smaller sites maintain multiple Internet circuits from more connected sites.

TEL3214 Software Defined Networking 16 May 2017

Illustration 33: Software Defined WAN (SD-WAN)

Branch
Offices

Regional
Offices

Headquarters

MPLS

Internet

VPN

MPLS VPN

SD-VPN

vCPE
vCPE

 Internet

SDN
Switch

mpls1 - MPLS circuit
sdvpn1 - SD-VPN
bwt() - BW test f()

x = 100

forward:
 if (bwt(sdvpn1) > x){
 forward => sdvpn1;
 }else{
 forward => mpls1;
 }

TEL3214 - Computer Communication Networks 12-69

A Software Defined Network (SDN) Controller monitors each circuit, both MPLS and
Internet. Taking the example that a Regional Office requires 100 Mb/s of bandwidth at a
certain latency with the Headquarters office. The SDN Controller monitors these
thresholds and should the Internet circuit meet the requirements it will forward traffic
over that circuit instead of the more expensive MPLS option. Should the Internet circuit
fall below the threshold then the SDN Controller can redirect the traffic over the MPLS
circuit to maintain the expected QoS level. In this way MPLS is only employed when the
Internet circuit cannot meet the required SLA. Similar re-routing can occur for network
outages as the SDN Controller has an overall view of the WAN circuits, it can detect
failures and redirect accordingly.

16 May 2017 Software Defined Networking TEL3214

12-70 TEL3214 - Computer Communication Networks

15. The future of Broadband

It is predicted that the future of broadband (Weldon, 2015) will be a new Global-Local
paradigm that will supply an elastic network that will give the appearance of infinite
bandwidth to the end-user. This paradigm will be achieved increasingly by Global
Service Providers (GSP) using Local Service Provider (LSP) infrastructure. Seamless
provision will be possible with the GSP providing vCPEs to the customer and LSPs
allowing the GSP access to a slice of their Application & Service Plane.

The changes that the elastic network bring about will also impact the cloud. Elastic
compute and elastic network will link and develop together. The current centralised
cloud cannot continue in its current form and cloud content will need to be brought
closer to the customer. Services where latency and bandwidth are critical to the service
will naturally be the first to benefit from this. The need for this change can already be
seen as Netflix install Content Delivery Networks (CDN) in regions, typically through
local Internet eXchange Points (IXP) in Europe. Another pointer to a new model is
Netflix support for the Open-IX Association (OIX) to establish European-style IXPs in the
United States of America (US).

A new Global-Local paradigm will evolve that creates a service chain with critical
functions moving to a new edge cloud and less critical functions at the central site.
Virtual eXtendable LAN (VXLAN) and SD-WANs will link the elements of the service
chain mapped together via SDN network policies.

If the edge cloud resides at the LSP it will be interesting to see how the principle of Net
Neutrality can be maintained. There are many questions regarding the future evolution
of the Global-Local cloud paradigm.

The following is list of possible models that will evolve:
• LSP simply act as an Infrastructure as a Service (IaaS) provider for the GSP.
• LSP provide a hosted Platform as a Service (PaaS) or Software as a Service

(SaaS) for the GSP.
• GSPs provide infrastructure locally as is the current case where Netflix provides

CDNs at local IXPs. This model is very expensive for the GSP and will probably not
scale well in the future.

It is very likely that a mix of these options will exist in the future, the selection of a
particular option driven by local circumstances.

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-71

16. SDN Lab

• Using two SDN VMs build the network given in Illustration 34 and test
connectivity between each device.

• Show a screen capture of the Dlux topology.
• Change out the SDN Controller for POX and Project Floodlight respectfully,

demonstrate functionality.

16 May 2017 Software Defined Networking TEL3214

Illustration 34: SDN Lab

ODL
Controller
c0

h2
203.5.5.2/24
2aa2::2/64

OvS s4

OpenFlow

h3
203.5.5.3/24
2aa2::3/64

OvS
s3

h1
203.5.5.1/24
2aa2::1/64

OvS
s1

ODL

Mininet

OpenDaylight

OvS
s2

12-72 TEL3214 - Computer Communication Networks

17. List of Abbreviations

API Application Programming Interface
ARP Address Resolution Protocol
ASIC Application Specific Integrated Circuit
ATM Asynchronous Transfer Mode
BGP Border Gateway Protocol
BoS Bottom of Stack
BSS Business Support System
CDN Content Distribution Network
CDPI Control - Data Plane Interface
COTS Commercial-off-the-Shelf
CPU Central Processing Unit
DiffServ Differentiated Services
DPDK Dataplane Development Kit
DPI Deep Packet Inspection
DSCP DiffServ Code Point
ECN Explicit Congestion Notification
ETSI European Telecommunications Standards Institute
FCAPS Fault, Configuration, Accounting, Performance, and Security Management
FOSS Free and Open Source Software
HG Home Gateway
HV Hypervisor
ICMP Internet Control Message Protocol
ID Identifier
IDS Intrusion Detection System
I/O Input/Output
IPSec/SSL IP Security/ Secure Sockets Layer
IPS Intrusion Prevention System
IPv6 Internet Protocol version 6
ISG Industry Specification Group
ISG Industry Specification Group. An ETSI sub-organisation
ISSU In Service Software Upgrade
IT Information Technology
LAN Local Area Network

TEL3214 Software Defined Networking 16 May 2017

TEL3214 - Computer Communication Networks 12-73

LB Load Balancer
LDM Link Discovery Module
LLDP Link Layer Discovery Protocol
MAC Medium Access Control
MANO Management and Network Orchestration
M2M Machine-to-Machine communications
MPLS Multiprotocol Label Switching
NAT Network Address Translation
ND Neighbour Discovery
NF Network Function
NFVI Network Functions Virtualisation Infrastructure
NFV Network Functions Virtualisation
NIC Network Interface Controller
NSD Network Service Descriptors
ODP Open Dataplane
ONF Open Networking Foundation
OpenFlow Specifications developed by the Open Networking Foundation
OPNFV Open Platform NFV
OSPF Open Shortest Path First
OSS Operations Support System
PBB Provider Backbone Bridge
PCP Priority Code Point
QoS Quality of Service
SBC Session Border Controller
SCTP Stream Control Transmission Protocol
SDN Software Defined Network
SIP-GW SIP Gateway
SIP Session Initiation Protocol
SLA Service Level Agreement
TCP Transmission Control Protocol
TC Traffic Class
UCA User Customer Address
UDP User Datagram Protocol
vCPE Virtual Customer Premises Equipment
VLAN Virtual Local Area Network

16 May 2017 Software Defined Networking TEL3214

12-74 TEL3214 - Computer Communication Networks

VLD Virtual Link Descriptors
VM Virtual Machine
VMWare Proprietary Hypervisor
VNA Virtualised Network Appliance
VNFD VNF Descriptors
VNFFGD VNF Forwarding Graph Descriptors
VNF Virtual Network Function
VRE Virtual Routing Engine
WAN Wide Area Network
Xen Proprietary Hypervisor

TEL3214 Software Defined Networking 16 May 2017

	1. Introduction
	1.1 Why the need for change

	2. The Data Centre problem
	2.1 SDN in the Data Centre

	3. SDN Architecture
	4. SDN operation
	4.1 Flow Tables
	4.2 Group Tables
	4.3 Meter Tables

	5. SDN Controllers
	5.1 SDN Applications
	5.1.1 SDN Routing Service

	5.2 Link Discovery Module
	5.3 Topology Manager
	5.4 Virtual Routing Engine (VRE)

	6. Mininet
	6.1 Getting the SDN Virtual Machine
	6.2 Build a Mininet test network
	6.2.1 X11 error running xterm
	6.2.2 Exiting mininet

	6.3 Configuring hosts
	6.4 Configuring links

	7. OpenFlow traffic review
	7.1 Webserver test

	8. POX Controller
	8.1 Running POX
	8.2 Testing POX

	9. Project Floodlight
	9.1 Running Floodlight
	9.2 Testing Floodlight

	10. OpenDaylight
	10.1 Running ODL karaf
	10.2 Installing openDaylight User eXperience (DULX) features
	10.3 Testing the ODL installation
	10.4 DLUX User interface

	11. Custom Topologies
	11.1 Create a custom topology

	12. Custom script to ODL remote controller
	12.1 Run OpenDaylight
	12.2 OpenDaylight User Experience (DLUX)
	12.3 Start Mininet network

	13. North Bound Interface (NBI)
	13.1 Frenetic
	13.1.1 Pyretic
	13.1.2 Kenetic

	14. Networks Function Virtualisation (NFV)
	14.1.1 Providing NFV to the customer
	14.1.2 NFV Standards
	14.2 Open Platform NFV
	14.3 Ongoing research
	14.4 Software Defined WAN (SD-WAN)

	15. The future of Broadband
	16. SDN Lab
	17. List of Abbreviations

