
Data Modelling Tools

AUTM08016

Topic 2
Introduction to Databases

Dr Diarmuid Ó Briain
Version 1.0 [06 September 2023]

tus.ie | 2-2 AUTM08016 – Data Modelling Tools

Copyright © 2024 C²S Consulting

Licenced under the EUPL, Version 1.2 or – as soon they will be approved by the European
Commission - subsequent versions of the EUPL (the "Licence");
You may not use this work except in compliance with the Licence.
You may obtain a copy of the Licence at:
https://joinup.ec.europa.eu/sites/default/files/custom-page/attachment/eupl_v1.2_en.pdf

Unless required by applicable law or agreed to in writing, software distributed under the Licence
is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied.

See the Licence for the specific language governing permissions and limitations under the
Licence.

Dr Diarmuid Ó Briain

TUS: MMW Introduction to Databases 16 Feb 2024

AUTM08016 – Data Modelling Tools tus.ie | 2-3

Table of Contents

1. Introduction...5

1.1 Objectives.. 5

2. What are Data Modelling Tools?..6

2.1 Create, Edit, and View Data Models..6
2.2 Reverse Engineering...6

2.3 Code Generation... 6
2.4 Collaboration and Sharing...6

2.5 Documentation and Reporting...6
2.6 Benefits of Using Data Modelling Tools...6

3. File-Based Data Models..7

3.1 Key Characteristics of File-Based Data Models:..7
3.2 Example File-based Data Model..7

3.3 Summary... 8

4. Introduction to Databases..9

4.1 What Is a Database?...9

4.2 History of Databases...9
4.3 Edgar Codd and the Relational Model...10

4.4 The Relational Database...10

5. Other Databases...13

5.1 Spreadsheets..13

5.2 Non-Relational Databases...13
5.3 Summary... 15

6. The 12 Rules of Relational Databases..16

7. Fundamental Database Concepts...20

7.1 Atomicity, Consistency, Isolation, Durability (ACID)..22

8. Databases available on the market...23

8.1 Oracle.. 23

8.2 MySQL... 23
8.3 MariaDB... 24

8.4 Postgres.. 24
8.5 IBM DB2.. 24

8.6 Microsoft.. 25

9. Laboratory #1 - Building Data Models...26

16 Feb 2024 Introduction to Databases TUS: MMW

tus.ie | 2-4 AUTM08016 – Data Modelling Tools

Table of Figures
Figure 1: orders.txt..7
Figure 2: customers.txt...8
Figure 3: products.txt..8
Figure 4: Library of Alexandria..9
Figure 5: Edgar Codd...10
Figure 6: The anatomy of a RDBMS table..10
Figure 7: orders table..11
Figure 8: Customers table...11
Figure 9: Customers table...11
Figure 10: orders query..12
Figure 11: customers query..12
Figure 12: products query...12
Figure 13: Accessing data in MongoDB..14
Figure 14: Relationships between tables..20
Figure 15: SQL Query...21
Figure 16: ACID properties of a database...22
Figure 17: RDBMS on the market...23

TUS: MMW Introduction to Databases 16 Feb 2024

AUTM08016 – Data Modelling Tools tus.ie | 2-5

1. Introduction

In today's data-driven world, where organisations collect, store, and analyse vast
amounts of information, databases and data modelling tools have emerged as essential
tools for managing and extracting value from this data. Databases provide a structured
repository for storing and organising data, while data modelling tools assist in designing
and creating these databases efficiently and effectively. Studying databases and data
modelling tools equips learners with the knowledge and skills necessary to design,
implement, and maintain efficient and scalable data storage solutions that can power
business operations, scientific research, and decision-making across various industries.

1.1 Objectives

At the end of this topic the learner will:
• Distinguish Data Modelling Tools
• Write simple File-Based Data Models
• Classify different database types
• List the 12 Rules of Relational Databases
• Discuss Fundamental Database Concepts - ACID
• List databases available on the market.

16 Feb 2024 Introduction to Databases TUS: MMW

tus.ie | 2-6 AUTM08016 – Data Modelling Tools

2. What are Data Modelling Tools?

Data modelling tools are software applications that assist in the creation, modification,
and reverse engineering of data models. They are essential for the design and
maintenance of efficient and accurate data storage and retrieval systems. Data models
represent the structure and relationships between data entities, providing a clear visual
representation of the data landscape.

2.1 Create, Edit, and View Data Models

These tools enable users to create and modify various types of data models, including
conceptual, logical, and physical models. They provide a Graphical User Interface (GUI)
for designing and editing data entities, relationships, and attributes.

2.2 Reverse Engineering

Data modelling tools can extract and analyse existing database structures to generate
data models. This helps in understanding the current data layout and identifying
potential issues or optimisations.

2.3 Code Generation

Some data modelling tools can generate Structured Query Language (SQL) scripts or
code from data models. This simplifies the process of implementing data models in
various databases.

2.4 Collaboration and Sharing

Data modelling tools often support collaboration features, allowing teams to work on the
same models simultaneously and share their work effectively.

2.5 Documentation and Reporting

These tools can generate comprehensive documentation of data models, including
diagrams, detailed descriptions, and traceability information.

2.6 Benefits of Using Data Modelling Tools

Accurate data models ensure that data is structured correctly and relationships are
maintained, leading to improved data quality and integrity. Additionally, well-designed
data models can optimise database performance, enabling efficient data storage,
retrieval, and analysis. Data modelling tools can automate many tasks, saving time and
effort in the data modelling process, ultimately reducing overall development costs. Clear
data models facilitate better communication among stakeholders, promoting a shared
understanding of the data landscape.

TUS: MMW Introduction to Databases 16 Feb 2024

AUTM08016 – Data Modelling Tools tus.ie | 2-7

3. File-Based Data Models

File-based data models are a type of data modelling approach where data is stored in
separate files, each with its own structure. This approach is often used for small to
medium-sized applications where the data volume is relatively low. File-based data
models are simple to implement and manage, but they can become inefficient as the
data volume increases.

3.1 Key Characteristics of File-Based Data Models:

• Data Separation: Each file stores a distinct set of data, often related to a specific
application or function.

• Modular Approach: Data is divided into independent modules, making it easier
to maintain and update specific data areas.

• Direct File Access: Applications can directly access and manipulate data within
their respective files, reducing reliance on centralised control.

• Limited Metadata Management: Metadata, such as data definitions and
relationships, is typically managed within the application code rather than a
centralised data repository.

File-Based Data Models are simple, easy to understand and implement, requiring
minimal knowledge of data modelling concepts. They are flexible and adaptable to
changing data requirements without major structural modifications and they are scalable
as the can accommodate moderate data growth in the early stages of an application's
lifecycle.
However, they are also inefficient with performance degrading as data volume increases
due to lack of centralised data management and indexing. Data duplication can easily
occur if multiple applications store similar data independently and they offer data
consistency challenges to the maintenance of data consistency across multiple files.
Additionally, they offer limited data analysis as complex data analysis queries can be
inefficient and difficult to implement due to the distributed data structure.

3.2 Example File-based Data Model

An example of a file-based data model for an order management system is illustrated in
Figure 1. This file stores data about orders placed by customers. Each row in the file
represents a single order, and the columns represent the order ID, customer ID, product
ID, quantity, and price.

16 Feb 2024 Introduction to Databases TUS: MMW

Figure 1: orders.txt

Order ID	Customer ID	Product ID	Quantity	Price
1001|1234|5678|10|10.00
1002|4321|7654|20|25.00
1003|9876|3456|30|32.50

tus.ie | 2-8 AUTM08016 – Data Modelling Tools

The file in Figure 2 stores data about customers who have placed orders. Each row in
the file represents a single customer, and the columns represent the customer ID, name,
address, and phone number.

This file in Figure 3 stores data about products that are available for purchase. Each row
in the file represents a single product, and the columns represent the product ID, name,
description, and price.

This example shows how a file-based data model can be used to store data about
orders, customers, and products. However, this approach is not as efficient as a
relational database for larger applications with more complex data relationships.

3.3 Summary

In summary, file-based data models are suitable for simple applications with low data
volumes and limited data sharing needs. However, as data complexity and volume grow,
file-based models become inefficient and may hinder data analysis and reporting
capabilities. More sophisticated data modelling techniques, such as relational databases,
are typically recommended for larger, enterprise-level applications.

TUS: MMW Introduction to Databases 16 Feb 2024

Figure 2: customers.txt

Customer ID	Name	Address	Phone Number
1234|John Ryan|3 Mulgrave Street|087-456-7890
4321|Tomas Smith|21 Sarsfield Street|086-678-9012
9876|Peter Gleeson|35 Main Street|087-890-1234

Figure 3: products.txt

Product ID	Name	Description	Price
1|Laptop|A powerful laptop for work and play.|1000.00
2|Phone|A high-end smartphone with a great camera.|500.00
3|TV|A 4K Ultra HD TV with HDR.|1200.00

AUTM08016 – Data Modelling Tools tus.ie | 2-9

4. Introduction to Databases

4.1 What Is a Database?

A database, in the most general sense, is an organised collection of data. More
specifically, a database is an electronic system that allows data to be easily accessed,
manipulated and updated.
Databases are the backbone of modern business efficiency. They provide a structured
and controlled way to store, manage, and retrieve information, enabling organisations to
harness the power of data for improved decision-making and innovation.
Databases extend beyond mere data storage; they are strategic business tools that
empower organisations to extract meaningful insights and gain competitive advantages.
By effectively utilising databases, businesses can optimise operations, identify market
trends, and drive growth.

4.2 History of Databases

Databases are not a recent invention. They have been around for centuries, from the
ancient Egyptians to the Library of Alexandria, established during the reign of Ptolemy II
Philadelphus (285–246 BC). However, the computerisation of databases in the 1960s
has revolutionised their capabilities.
Early databases were navigational, relying on pointers to navigate through data.
However, these were inefficient and limited in their ability to handle complex data
relationships. The relational model, introduced by Edgar Frank "Ted" Codd, provided a
more structured and efficient way to store and retrieve data [1].

16 Feb 2024 Introduction to Databases TUS: MMW

Figure 4: Library of Alexandria

tus.ie | 2-10 AUTM08016 – Data Modelling Tools

Relational databases are now the standard for modern applications. They are powerful,
efficient, and easy to use.

4.3 Edgar Codd and the Relational Model

Edgar Codd's relational model, published in 1970, introduced a new approach to storing
and retrieving data. Instead of relying on hierarchical or network models, which were
based on pointers and linked structures, the relational model organises data into tables
with rows and columns. This makes it much easier to query and manipulate data, and it
paved the way for the development of powerful and efficient relational databases.
Codd's work was initially met with resistance from IBM, which was heavily invested in its
own hierarchical database model, Information Management System (IMS). However,
Codd's vision eventually prevailed, and relational databases became the standard for
commercial applications.
In 1979, Larry Ellison founded Oracle Corporation and adopted Codd's relational model
for his database product. Oracle Database (DB) quickly became the most popular
relational database.

TUS: MMW Introduction to Databases 16 Feb 2024

Figure 5: Edgar Codd

Figure 6: Larry Ellison

AUTM08016 – Data Modelling Tools tus.ie | 2-11

4.4 The Relational Database

A relational database is a collection of tables that store data in a structured and
organised way. Each table has rows and columns, and the tables are related to each
other by primary and foreign keys.
Referential integrity is a rule that ensures that the relationships between tables are
always consistent. This means that any changes to data in one table must also be
reflected in the tables that relate to it. For example, if a student is deleted from the
STUDENT_MASTER table, then that students accounts must also be deleted from the
STUDENT_MASTER table. Referential integrity is important because it helps to prevent
data from becoming corrupt. It also makes it easier to query and manipulate data.
The relational model is a powerful and efficient way to store and manage data. It is the
standard for most modern database systems, and it is likely to remain so for many years
to come.

4.4.1 Relational DB example
Consider the tables from a relational DB in Figures 8, 10, and 9. An order is placed by a
single customer. This is a one-to-one relationship between the Orders and Customers
tables. An order contains a single product, this is a one-to-one relationship between the
Orders and Products tables. A product can be ordered multiple times. These are
many-to-one relationships between the Orders and Products tables.
This relational database structure allows for efficient data storage and retrieval. For
example, to find all orders placed by a particular customer, the Orders and Customers
tables can be joined on the CustomerID field. Similarly, a join of the Orders and
Products tables on both the CustomerID and ProductID fields will find all products
ordered by a particular customer.

16 Feb 2024 Introduction to Databases TUS: MMW

Figure 7: The anatomy of a RDBMS table

1 Student ID Name Campus
1 K001234 Ryan Thurles
2 K001235 Gleeson Athlone
3 K001236 Cunnane Limerick Rows

Columns

Object IDs (OID)

Attribute / Field IDs

Primary Key

tus.ie | 2-12 AUTM08016 – Data Modelling Tools

Column Name Data Type Description

OrderID INT Primary key, Unique ID for each order

CustomerID INT Foreign key referencing the CustomerID
in the Customers table

ProductID INT Foreign key referencing the ProductID
in the Products table

Quantity INT Quantity of the product ordered

Price FLOAT Price of the product

Figure 8: orders table

Column Name Data Type Description

CustomerID INT Primary key, Unique ID for each
customer

Name VARCHAR(50) Customer's name

Address VARCHAR(255) Customer's address

PhoneNumber VARCHAR(20) Customer's phone number

Figure 9: Customers table

Column Name Data Type Description

ProductID INT Primary key, Unique ID for each product

Name VARCHAR(50) Product’s name

Description VARCHAR(255) Product’s description

Price FLOAT Price of Product

Figure 10: Customers table

As an example consider the output of the SQL query executed against the orders, in
Figure 11, customers, in Figure 12, and products, in Figure 13, tables. SQL and SQL
queries are the subject of future topics on this module.

TUS: MMW Introduction to Databases 16 Feb 2024

Figure 12: customers query

SQL> select * from customers
customerID	customerName	address	email	phoneNo
1	John Ryan	3 Mulgrave St	john@gmail.com	087-456-7890
2	Thomas Smith	21 Sarsfield St	tom@micro.org	086-678-9012
3	Peter Gleeson	35 Main St	peter@itservice.com	087-890-1234

Figure 11: orders query

SQL> select * from orders
orderID	customerID	productID	orderDate	status
1	1	1	2023-10-04	pending
2	2	2	2023-10-05	processing
3	3	3	2023-10-06	delivered

AUTM08016 – Data Modelling Tools tus.ie | 2-13

16 Feb 2024 Introduction to Databases TUS: MMW

Figure 13: products query

SQL> select * from products
productID	productName	price	description
1	Laptop	€1,000	A powerful laptop for work and play.
2	Phone	€500	A high-end smartphone with a great camera.
3	TV	€1200	A 4K Ultra HD TV with HDR.

tus.ie | 2-14 AUTM08016 – Data Modelling Tools

5. Other Databases

5.1 Spreadsheets

Spreadsheets are often touted as a cost-effective alternative to
databases, but they have a number of limitations that make them
unsuitable for managing some data situations. Here are some of the key
differences between databases and spreadsheets:

• Spreadsheets are not designed for multi-user access, and this can
lead to conflicts and data corruption. Databases, on the other
hand, can handle multi-user access with ease, allowing multiple users to access
and modify data simultaneously without interfering with each other.

• Spreadsheets are not very good at enforcing data validation and integrity rules.
This means that it is easy for users to make mistakes or enter invalid data.
Databases, on the other hand, can enforce data validation and integrity rules,
ensuring that the data is accurate and consistent.

• Spreadsheets can be used to query and report on data, but they are not as
powerful as databases. Databases can be used to run complex queries, join
multiple tables, and create advanced reports.

• Spreadsheets are not scalable, and they can struggle to handle large amounts of
data. Databases, on the other hand, are scalable and can handle millions of rows
of data with ease.

• Spreadsheets are generally easier to use than databases. However, databases
can be more powerful and efficient for large-scale data management.

In general, spreadsheets are a good choice for small-scale data management or for
tasks that do not require a lot of data integrity or security. However, databases are a
better choice for large-scale data management, multi-user access, and complex data
analysis.

5.2 Non-Relational Databases

A non-relational database (NoSQL) database does not store data in a traditional
relational format. Instead, non-relational databases store data in other ways, such as
key-value pairs, documents, or graphs. This makes them more flexible and scalable than
relational databases, which can be a good thing for certain types of applications.

MongoDB is a cross-platform, document-oriented database
management system (DBMS) that stores data in JavaScriptObject
Notation (JSON)-like documents. It is a NoSQL database, meaning it
does not adhere to the strict schema requirements of traditional
relational databases. Instead, MongoDB stores data in flexible, self-
describing JSON documents, enabling efficient storage and retrieval
of complex data structures.

TUS: MMW Introduction to Databases 16 Feb 2024

AUTM08016 – Data Modelling Tools tus.ie | 2-15

Example of data access in MongoDB. The example in Figure 14 illustrates a simple
python program that will retrieve all documents from a MongoDB database, called
mydatabase, where the products have a price field greater than 100. The $gt operator
is used to perform a greater-than comparison. Additionally the program gets all products
with a status of pending, in this case for customer numbers 1, 2, and 3.
The returned data for both queries is in JSON format. JSON is a lightweight data-
interchange format that uses key-value pairs to represent data. Each document in the
returned results is represented as a JSON object, with each field of the document
corresponding to a key-value pair. The _id field is a unique identifier for each document,
and the other fields are the data stored for that document.

16 Feb 2024 Introduction to Databases TUS: MMW

Figure 14: Accessing data in MongoDB

~$ cat mongodb_example.py
 1 #! /usr/bin/env python3
 2
 3 import pymongo
 4
 5 # Connect to the MongoDB database
 6 client = pymongo.MongoClient()
 7 db = client['mydatabase']
 8
 9 # Get the products collection
10 products = db['products']
11
12 # Find all products with a price greater than 100
13 products_with_high_price = products.find({'price': {'$gt':100}})
14
15 for product in products_with_high_price:
16 print(product)
17
18 # Find all orders that are pending
19 orders_pending = db['orders'].find({'status':'pending'})
20
21 for order in orders_pending:
22 print(order)
23

~$./mongodb_example.py
{'_id': 1, 'productName': 'Laptop', 'price': 1000, 'description': 'A
powerful laptop for work and play.'}

{'_id': 3, 'productName': 'TV', 'price': 700, 'description': 'A 4K
Ultra HD TV with HDR.'}

{'_id':29,'customerID':3,'productID':3,'orderDate':2023-10-
06,'status':'pending'}

{'_id':30,'customerID':2,'productID':2,'orderDate':2023-10-
05,'status':'pending'}

{'_id':31,'customerID':1,'productID':1,'orderDate':2023-10-
04,'status':'pending'}

tus.ie | 2-16 AUTM08016 – Data Modelling Tools

The table in summarised the key differences between relational and non-relational
databases:

Feature Relational database Non-relational database

Data storage Tables Key-value pairs, documents, graphs

Data modelling Stricter More flexible

Scalability Less scalable More scalable

Use cases Enterprise applications,
transactional systems

Web-based applications, cloud
computing, social networking

Non-relational databases have the following benefits:
• Flexible: Non-relational databases can store data in many different ways, which

makes them more flexible than relational databases. This can be a good thing for
applications with complex data structures.

• Scalable: Non-relational databases can be scaled horizontally, which means that
you can add more servers to handle more traffic. This can be a good thing for
applications that need to handle a lot of data.

• Performance: Non-relational databases can perform better than relational
databases for certain types of applications, such as those that require a lot of
reads.

However, there are drawbacks of non-relational databases too. For example non-
relational databases are not as good at enforcing data integrity as relational databases.
They also tend to be more complex to use than relational databases.
Overall, non-relational databases are a good choice for applications that need to store a
lot of data, are highly scalable, and require flexibility. However, they are not a good
choice for applications that require a lot of data integrity or are very complex.

5.3 Summary

Spreadsheets Non-relational
databases

Relational
databases

Data warehouses

Data
storage

Flat files Key-value pairs Tables Tables

Data
integrity

Limited Weaker Stronger Stronger

Scalability Not scalable Highly scalable Less scalable Highly scalable

Use cases Personal data
management,
basic calculations

Web-based
applications, cloud
computing, social
networking

Enterprise
applications,
transactional
systems

Business
intelligence, data
analysis, trend
forecasting

TUS: MMW Introduction to Databases 16 Feb 2024

AUTM08016 – Data Modelling Tools tus.ie | 2-17

6. The 12 Rules of Relational Databases

Edgar Codd developed a list of 12 rules, or criteria, that determined whether a database
could be called “relational” or not.
Codd's 12 rules, also known as the 12 commandments of relational databases, are a set
of guidelines that define what makes a database truly relational [1].

6.1.1 Rule 0: Foundation Rule
“A Relational Database Management System (RDBMS) must manage its stored data

using only its relational capabilities”

Essentially this rule states that an RDBMS should not rely on any non-relational features,
such as hierarchical or network structures. The data in a relational database should be
stored and manipulated in a purely relational manner.

6.1.2 Rule 1: Information Rule
“All information in the database should be represented in one and only one way – as

values in a table”

This rule states that data in a relational database should be normalised, meaning that it
should be stored in a way that minimises redundancy and inconsistencies. Each piece of
information should be represented once in the database, and there should be a single
place to find it.

6.1.3 Rule 2: Guaranteed Access Rule
“Each and every datum (atomic value) is guaranteed to be logically accessible by
resorting to a combination of table name, primary key value and column name”

This rule states that any piece of data in a relational database should be able to be
retrieved using its primary key value. The primary key is a unique identifier for each row
in a table.

6.1.4 Rule 3: Systematic Treatment of Null Values
“Null values (which are distinct from empty character strings, strings of blank characters,
zeros or any other number) are supported in the fully relational DBMS for representing

missing information in a systematic way that is independent of data type”

This rule states that a relational database should support null values, which are used to
represent missing or unknown data. Null values should be treated as a distinct data type,
separate from other data types such as numbers and strings.

16 Feb 2024 Introduction to Databases TUS: MMW

tus.ie | 2-18 AUTM08016 – Data Modelling Tools

6.1.5 Rule 4: Dynamic Online Catalogue Based on the Relational Model
“The database description is represented at the logical level in the same way as ordinary
data, so authorised users can apply the same relational language to its interrogation as

they apply to regular data”

This rule states that the metadata for a relational database should be stored in the
database itself, and that this metadata should be accessible using the same relational
language as the data itself. This allows users to query and update the metadata without
having to use a separate tool.

6.1.6 Rule 5: Comprehensive Data Sublanguage Rule
“A relational system may support several languages and various modes of terminal use.
However, there must be at least one language whose statements are expressible, per
some well-defined syntax, as character strings and whose ability to support all of the

following is comprehensible:
• Data definition
• View definition
• Data manipulation (interactive and by program)
• Integrity constraints
• Authorisation
• Transaction boundaries (begin, commit and rollback)”

This rule states that a relational database should support a powerful data sublanguage
that can be used to perform all of the following tasks:

• Create and modify tables
• Create and modify views
• Insert, update, and delete data
• Define and enforce integrity constraints
• Grant and revoke privileges
• Manage transactions

6.1.7 Rule 6: View Updating Rule
“All views that are theoretically up-dateable are also up-dateable by the system”

This rule states that views should be updated using the same relational operations as
base tables. This means that users should be able to update views without having to
worry about the underlying data structure of the database.

TUS: MMW Introduction to Databases 16 Feb 2024

AUTM08016 – Data Modelling Tools tus.ie | 2-19

6.1.8 Rule 7: High-Level Insert, Update and Delete
“The ability to handle a base relation or a derived relation as a single operand applies not
only to the retrieval of data, but also to the insertion, update and deletion of data”

This rule states that the data manipulation language of a relational database should
allow users to perform operations on base tables and derived tables in the same way.
This means that users should be able to insert, update, and delete data from derived
tables without having to explicitly specify the underlying base tables.

6.1.9 Rule 8: Physical Data Independence
“Application programs and terminal activities remain logically unimpaired whenever any

changes are made in either storage representation or access methods”

This rule states that changes to the physical storage of data or the access methods used
to retrieve and manipulate data should not affect the logical structure of the database.
This means that application programs should not have to be rewritten or recompiled
whenever the physical implementation of the database changes.
For example, suppose a relational database is initially stored on magnetic tape. Later,
the database is moved to a disk-based system. Application programs that access the
database should not need to be changed to work with the disk-based system.

6.1.10 Rule 9: Logical Data Independence
“Application programs and terminal activities remain logically unimpaired when

information-preserving changes of any kind – and those that theoretically permit
unimpairment – are made to the base tables”

This rule states that changes to the logical structure of the database, such as the
addition or deletion of columns, should not affect the logical structure of the database.
This means that application programs should not have to be rewritten or recompiled
whenever the logical schema of the database changes.

6.1.11 Rule 10: Integrity Independence
“Integrity constraints specific to a particular relational database must be definable in the

relational data sublanguage and storable in the catalogue, not in the application
programs”

This rule states that integrity constraints, which are rules that enforce the consistency
and validity of data in a database, should be defined in the relational database language
and stored in the database catalogue, not in the application programs. This means that
application programs can access and manipulate data without having to know about the
specific integrity constraints that are in place.
This rule is important because it ensures that integrity constraints are consistently
enforced across all applications that access the database. It also makes it easier to

16 Feb 2024 Introduction to Databases TUS: MMW

tus.ie | 2-20 AUTM08016 – Data Modelling Tools

modify the integrity constraints as the database schema evolves, without having to
modify all of the application programs.
For example, if a database has an integrity constraint that states that a customer's name
must be unique, this constraint should be defined in the relational database language
and stored in the database catalogue. This means that any application that attempts to
insert a new customer record with a duplicate name will be prevented from doing so.
This rule is often cited as one of the most important of Codd's 12 rules because it makes
it possible to create databases that are more flexible, reliable, and maintainable.

6.1.12 Rule 11: Distribution Independence
“The data manipulation sub-language of a relational DBMS must enable application

programs and terminal activities to remain logically unimpaired whether and whenever
data are physically centralised or distributed”

This rule states that the Data Manipulation Language (DML) of an RDBMS should be
able to handle distributed data without application programs being aware of the
distribution. This means that application programs should be able to work with data as if
it were all stored in one location, even if it is actually spread across multiple locations.
For example, an application that stores customer data could be distributed across
multiple servers, with each server containing a subset of the data. The DML of the
RDBMS should be able to handle this distribution without the application programs being
aware of it.

6.1.13 Rule 12: Non-subversion
“If a relational system has or supports a low-level (single-record-at-a-time) language, that
low-level language cannot be used to subvert or bypass the integrity rules or constraints

expressed in the higher-level (multiple-records-at-a-time) relational language”

This rule ensures that the higher-level DML, which defines the overall structure and
behaviour of the database, is the authoritative source for integrity rules. Any low-level
DML that attempts to override these rules must be prevented from doing so.

TUS: MMW Introduction to Databases 16 Feb 2024

AUTM08016 – Data Modelling Tools tus.ie | 2-21

7. Fundamental Database Concepts

Key Database Concepts and Data Objects
This following section lists key DB concepts and data objects. These are essential for
managing and manipulating data in relational databases.

• Tables: are the basic unit of data storage in a relational database. Each table
consists of rows and columns. Rows represent individual items of data, while
columns represent the attributes of those items.

• Rows: Rows, also known as records, represent individual items of data in a table.
Each row in a table must have a unique primary key. The primary key is a column
or combination of columns that uniquely identifies each row in a table.

• Columns: Columns are the attributes of data in a table. They define the specific
values that can be stored in each column. Each column must have a unique
name and a data type. The most common data types are numbers, strings, dates,
and Boolean values.

• Relationships: are the foundation of relational databases. They allow for the
linking of data from different tables together. In order to link tables together, a
foreign key is required. A foreign key is a column in one table that references the
primary key of another table. This allows for the identification of relationships
between different pieces of data.

• Primary Key: The primary key is a column or combination of columns that
uniquely identifies each row in a table. It must be unique for each row, and must
not contain any null values. The primary key is used to link tables together and to
ensure the integrity of the data.

• Foreign Key: A foreign key is a column in one table that references the primary
key of another table. The purpose of a foreign key is to link data from different
tables together. For example, a table called Customer and another table called
Orders. The Customer table would have a primary key called CustomerID,
and the Orders table would have a foreign key called CustomerID. This allows
for the linking of the customer data to the order data.

16 Feb 2024 Introduction to Databases TUS: MMW

Figure 15: Relationships between tables

 orderID customerID productID orderDate status
1 1 1 2023-10-04 pending

2 2 2 2023-10-05 processing

3 3 3 2023-10-06 delivered

customerID customerName address email phoneNo
1 John Ryan 3 Mulgrave St john@gmail.com 087-456-7890

2 Thomas Smith 21 Sarsfield St tom@micro.org 086-678-9012

3 Peter Gleeson 35 Main St peter@itservice.com 087-890-1234

 productID productName price description

1 Laptop €1,000 A powerful laptop for work and play.

2 Phone €500 A high-end smartphone with a great camera.

3 TV €1200 A 4K Ultra HD TV with HDR.

Primary
Key

Primary
Key

Primary
Key

Foreign Keys

tus.ie | 2-22 AUTM08016 – Data Modelling Tools

Note: o = orders table, c = customers table p = products table

• Structured Query Language (SQL): SQL is the standard language for
managing and manipulating data in relational databases. It can be used to query,
insert, update, and delete data. All major relational databases support SQL,
which makes it easy for Database Administrators (DBA) to manage data across
different platforms.
◦ The query, in Figure 16, will join the orders, customers, and products

tables using the customerID and productID columns, respectively. This
will create a single table that contains all of the relevant information from each
table, including the orderID, customerName, productName, orderDate,
and order status.

◦ This output shows that John Ryan has placed an order for a laptop, Thomas
Smith has placed an order for a phone, and Peter Gleeson has placed an
order for a TV. The order status for John Ryan's order is pending, the order
status for Thomas Smith's order is processing, and the order status for Peter
Gleeson's order is delivered.

• Indexes: are an RDBMS is a data structure that works closely with tables and
columns to speed up data retrieval operations. It works a lot like a book index. It
provides a reference point that allows a user to quickly find and access the data
without having to traverse the entire database.

• Schema: is the structure behind data organisation. It is a visual overview of how
different tables are related to each other. This serves to map out and implement
the underlying business rules for which the database is created.

TUS: MMW Introduction to Databases 16 Feb 2024

Figure 16: SQL Query

SQL> SELECT
 o.orderID,
 c.customerName,
 p.productName,
 o.orderDate,
 o.status
FROM orders o
JOIN customers c ON c.customerID = o.customerID
JOIN products p ON p.productID = o.productID;

+---------+---------------+-------------+------------+------------+
| orderID | customerName | productName | orderDate | status |
+---------+---------------+-------------+------------+------------+
1	John Ryan	Laptop	2023-10-04	pending
2	Thomas Smith	Phone	2023-10-05	processing
3	Peter Gleeson	TV	2023-10-06	delivered
+---------+---------------+-------------+------------+------------+

AUTM08016 – Data Modelling Tools tus.ie | 2-23

• Normalisation: is the process of organising data in a database so that it meets
two basic requirements:
◦ There is no data redundancy (all data is stored in only one place),
◦ Data dependencies are logical (all related data items are stored together).
◦ For instance, for a bank’s database all customer static data, such as name,

address and age, should be stored together. All account information, such as
account holder, account type, account branch and so on, should also be
stored together; it should also be stored separately from the customer static
data.

• Constraint: is a restriction on the type of data to be inputted into a certain
column. Constraints are always defined on columns. A common constraint is the
not-null constraint. It simply specifies that all rows in a table must have a value in
the column defined as not null.

• Transactions (Commits and Rollbacks): All items in a series of changes need
to be made together. In the case of a simple transfer, if you debit one account,
you need to credit anther account.

• Locking: facilitate the database to allow multiple users to simultaneous access a
set of data. In situations in which two or more users want to access or update the
same piece of data. RDBMSs uses locks to isolate transactions. There are
different types of locks, such as transactional or data-level locks that simply lock
down a single data field; row-level locks that lock down an entire record of data,
while table-level locks restrict access to a whole table.

7.1 Atomicity, Consistency, Isolation, Durability (ACID)

Four highly desirable properties of any RDBMS are:
• Atomicity: This refers to a database’s ability to either fully process or fully roll

back a transaction.
• Consistency: The database should ensure that all data written therein follows all

rules and constraints specified in the database.
• Isolation: Transactions must be processed securely and independently, without

interfering with each other.
• Durability: The database must ensure that all committed transactions are saved

permanently and cannot be accidentally erased, even in a database crash.

16 Feb 2024 Introduction to Databases TUS: MMW

Figure 17: ACID properties of a database

tus.ie | 2-24 AUTM08016 – Data Modelling Tools

8. Databases available on the market

Here is a look at some RDBMS offerings and the companies or organisations behind
them:

8.1 Oracle

Oracle is a leading provider of enterprise-level databases, middleware, enterprise
resource planning (ERP) systems, and customer relationship management (CRM)
offerings. It is the top dog in the RDBMS market with a market share of 48.8%. Oracle
DB is a widely used enterprise-level database that comes in different editions to meet
different needs. It is fully compliant with the SQL language and also maintains its
proprietary version called SQL*Plus. Oracle acquired Sun Microsystems in 2009, which
gave it the license holder of MySQL, one of its key competitors. As a result, Oracle now
has two RDBMS offerings, but it's unlikely that they will interfere destructively with each
other.

8.2 MySQL

MySQL is a RDBMS that is one of the most popular and widely used databases in the
world. It is open-source, which means that it is free to use and modify. MySQL is also
very scalable, which means that it can be used to store and manage large amounts of
data. It is also a reliable database that is known for its stability and performance. As a
result, MySQL is a popular choice for a variety of applications, including web
applications, e-commerce applications, and enterprise applications.

TUS: MMW Introduction to Databases 16 Feb 2024

Figure 18: RDBMS on the market

AUTM08016 – Data Modelling Tools tus.ie | 2-25

Some of the key features of MySQL is that it is opensource, and therefore free to use
and modify. It is scalable, reliable, easy to use and there is a large community of users
and developers with plenty of resources available to help users.
Overall, MySQL is a powerful, versatile, and easy-to-use database that is a popular
choice for a variety of applications.

8.3 MariaDB

MariaDB is a fork of MySQL that was created by former MySQL developers. MariaDB is
a community-developed project that is committed to providing a freely available, high-
performance, scalable, and reliable alternative to MySQL. MariaDB is fully compatible
with MySQL, and it can be used as a drop-in replacement for MySQL in most
applications. MariaDB also includes a number of new features that are not available in
MySQL, such as row-level locking and support for foreign keys. MariaDB is a popular
choice for both small and large organisations, and it is one of the fastest-growing open-
source database projects in the world.

8.4 Postgres

PostgreSQL is an open-source, Object-Relational Database Management System
(ORDBMS). It is a highly scalable and flexible database that is well-suited for a variety of
applications, including web applications, e-commerce applications, and enterprise
applications. PostgreSQL is fully compliant with the SQL language and supports a wide
range of advanced features, such as stored procedures, triggers, and user-defined
functions. It is also a highly reliable database that is known for its stability and
performance. PostgreSQL is a popular choice for both large and small organisations,
and it is one of the most widely used ORDBMSs in the world.

8.5 IBM DB2

IBM DB2, a RDBMS developed and published by IBM, holds a prominent position among
the world's most popular and widely used database systems. It is renowned for its
scalability, performance, and data integrity features, making it particularly suitable for
demanding enterprise-level applications. DB2 comes equipped with a comprehensive
range of capabilities, encompassing data management, data mining, and business
intelligence functions. Its high availability and security features make it an ideal choice
for mission-critical applications requiring 24/7 uptime and data protection.
IBM DB2, a relational database management system (RDBMS) developed and published
by IBM, holds a prominent position among the world's most popular and widely used
database systems. It is renowned for its scalability, performance, and data integrity
features, making it particularly suitable for demanding enterprise-level applications. DB2
comes equipped with a comprehensive range of capabilities, encompassing data
management, data mining, and business intelligence functions. Its high availability and
security features make it an ideal choice for mission-critical applications requiring 24/7
uptime and data protection.

16 Feb 2024 Introduction to Databases TUS: MMW

tus.ie | 2-26 AUTM08016 – Data Modelling Tools

8.6 Microsoft

Microsoft is another player in the RDBMS market, with SQL Server as its flagship
database product. SQL Server is widely used in enterprise-level databases and comes in
different editions to meet different needs. It is fully compliant with the SQL language and
also maintains its proprietary version called T-SQL. SQL Server is consistently ranked
second in the RDBMS market, with a market share of 33.7%. Microsoft acquired Sybase,
another major RDBMS vendor, in 2001, which gave it access to Sybase's database
technologies and expertise. As a result, Microsoft now has two RDBMS offerings, but it's
unlikely that they will interfere destructively with each other, as they play in slightly
different market spaces and cater to slightly different needs.

TUS: MMW Introduction to Databases 16 Feb 2024

AUTM08016 – Data Modelling Tools tus.ie | 2-27

9. Laboratory #1 - Building Data Models

Objective: To practice creating file-based and spreadsheet-based data models for
storing student information.

Materials:
• Text editor
• Spreadsheet software (e.g., LibreOffice Sheets, Microsoft Excel, Google Sheets)
• Sample student data

Instructions:
1. Create the main data file:

a) Create a text file named 'students.txt'.
b) Define the following fields for each student:

▪ Student ID: A unique identifier for each student
▪ Given Name: The student's first name
▪ Family Name: The student's last name
▪ Country of Origin: The student's country of origin
▪ Programme: The student's program of study

c) Add sample student data to the file. For example:
Student_ID,Given_Name,Family_Name,Country_Origin,Programme

K0012345,Alice,Murphy,Uganda,Computer Engineering

K0054321,John,Ryan,Scotland,Robotics & Automation

2. Create the sports data file:
a) Create a text file named 'sports.txt'.
b) Define the following fields for each student's sports activities:

▪ Student ID: A reference to the student's ID in the main data file
▪ Sport Played: The name of the sport the student plays
▪ Sport Watched: The name of the sport the student watches

c) Add sample data to the file. For example:
Student_ID,Sport_Played,Sport_Watched
K0012345,Rugby,Hurling

K0054321,Handball,Football

16 Feb 2024 Introduction to Databases TUS: MMW

tus.ie | 2-28 AUTM08016 – Data Modelling Tools

3. Create the academic data file:
a) Create a text file named 'academics.txt'.
b) Define the following fields for each student's academic courses:

▪ Student ID: A reference to the student's ID in the main data file
▪ Course Code: The code of the course
▪ Course Title: The title of the course
▪ Semester: The semester the course was taken
▪ Grade: The student's grade in the course

c) Add sample data to the file. For example:
Student_ID,Course_Code,Course_Title,Semester,Grade

K0012345,AUTM08017,Object Oriented Programming,CY23-24 S1,72

K0054321,AUTM08016,Data Modelling Tools,CY23-24 S2,65

4. Convert the data files to spreadsheets:
a) Open each data file in a spreadsheet software.
b) Format the data appropriately, including headers, alignment, and formatting.

5. Perform data analysis: Use the spreadsheet software's functionality to perform
basic data analysis tasks, such as:
a) Finding the most popular sport among students.
b) Calculating the average grade for each programme.
c) Identifying the most challenging courses for students.

6. Reflection: Compare and contrast the file-based and spreadsheet-based data
models:
a) Which data model was easier to create?
b) Which data model is more suitable for data analysis?
c) What are the advantages and disadvantages of each data model?
d) Discuss the limitations of using text files and spreadsheets for storing and

managing large amounts of data.
e) What field is the most appropriate to connect data from one file to another

file?
f) What ASCII character can you not use in the fields within the files and why?
g) Suggest how this problem could be circumnavigated?

TUS: MMW Introduction to Databases 16 Feb 2024

	1. Introduction
	1.1 Objectives

	2. What are Data Modelling Tools?
	2.1 Create, Edit, and View Data Models
	2.2 Reverse Engineering
	2.3 Code Generation
	2.4 Collaboration and Sharing
	2.5 Documentation and Reporting
	2.6 Benefits of Using Data Modelling Tools

	3. File-Based Data Models
	3.1 Key Characteristics of File-Based Data Models:
	3.2 Example File-based Data Model
	3.3 Summary

	4. Introduction to Databases
	4.1 What Is a Database?
	4.2 History of Databases
	4.3 Edgar Codd and the Relational Model
	4.4 The Relational Database
	4.4.1 Relational DB example

	5. Other Databases
	5.1 Spreadsheets
	5.2 Non-Relational Databases
	5.3 Summary

	6. The 12 Rules of Relational Databases
	6.1.1 Rule 0: Foundation Rule
	6.1.2 Rule 1: Information Rule
	6.1.3 Rule 2: Guaranteed Access Rule
	6.1.4 Rule 3: Systematic Treatment of Null Values
	6.1.5 Rule 4: Dynamic Online Catalogue Based on the Relational Model
	6.1.6 Rule 5: Comprehensive Data Sublanguage Rule
	6.1.7 Rule 6: View Updating Rule
	6.1.8 Rule 7: High-Level Insert, Update and Delete
	6.1.9 Rule 8: Physical Data Independence
	6.1.10 Rule 9: Logical Data Independence
	6.1.11 Rule 10: Integrity Independence
	6.1.12 Rule 11: Distribution Independence
	6.1.13 Rule 12: Non-subversion

	7. Fundamental Database Concepts
	7.1 Atomicity, Consistency, Isolation, Durability (ACID)

	8. Databases available on the market
	8.1 Oracle
	8.2 MySQL
	8.3 MariaDB
	8.4 Postgres
	8.5 IBM DB2
	8.6 Microsoft

	9. Laboratory #1 - Building Data Models

