
Data Modelling Tools
AUTM08016

Topic 8
Database Replication

Dr Diarmuid Ó Briain
Version 1.0 [01 January 2024]

tus.ie | 8-2 AUTM08016 – Data Modelling Tools

Copyright © 2024 C²S Consulting

Licenced under the EUPL, Version 1.2 or – as soon they will be approved by the European
Commission - subsequent versions of the EUPL (the "Licence");
You may not use this work except in compliance with the Licence.
You may obtain a copy of the Licence at:
https://joinup.ec.europa.eu/sites/default/files/custom-page/attachment/eupl_v1.2_en.pdf

Unless required by applicable law or agreed to in writing, software distributed under the Licence
is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied.

See the Licence for the specific language governing permissions and limitations under the
Licence.

Dr Diarmuid Ó Briain

Linux Version
~$ lsb_release -a | grep Description
Description: Ubuntu 22.04.3 LTS

Apache2 Version
~$ apache2 -v
Server version: Apache/2.4.52 (Ubuntu)
Server built: 2023-10-26T13:44:44

MariaDB Version
~$ mariadb --version
mariadb Ver 15.1 Distrib 10.6.12-MariaDB, for debian-linux-gnu
(x86_64) using EditLine wrapper

python version
~$ python3 --version
Python 3.10.12

TUS: MMW Database Replication 29 Dec 2023

AUTM08016 – Data Modelling Tools tus.ie | 8-3

Table of Contents

1. Introduction...5

1.1 Objectives.. 5

2. MariaDB Connector/Python...6

2.1 Default Data Generator...7

3. Simple MariaDB Connector module..10

4. Custom Database interface..12

4.1 Python Virtual Environment...12

4.2 Virtual Environment modules...13
4.3 How the Database connector module works...14

4.4 Login to the application..19
4.5 Read from the database..20

4.6 Write to the Database..21
4.7 Delete from the Database..22

5. Moving the application into production on Apache2...24

5.1 Apache2 site configuration file...24
5.2 Install the WSGI and enable it for Apache2...25

5.3 Launch Apache2 Server..25
5.4 Test the new service in production..26

6. Laboratory #1..27

6.1 Create a custom interface to the counties database..27

29 Dec 2023 Database Replication TUS: MMW

tus.ie | 8-4 AUTM08016 – Data Modelling Tools

Table of Figures
Figure 1: MariaDB Connector/Python...6
Figure 2: Basic query via MariaDB Connector/Python..6
Figure 3: mariadb connector module..10
Figure 4: Testing mariadb_conn.py..11
Figure 5: Python sys.path...12
Figure 6: Connect to MariaDB Database..14
Figure 7: Select function...14
Figure 8: Insert function..15
Figure 9: Delete function...15
Figure 10: Browse to development webserver..17
Figure 11: How index.html is built...18
Figure 12: Root of custom application...19
Figure 13: Read from the Database..20
Figure 14: Write to the database...21
Figure 15: View the newly added user..22
Figure 16: Delete from the database...23
Figure 17: Read to confirm the delete...23
Figure 18: View service from another workstation..26

TUS: MMW Database Replication 29 Dec 2023

AUTM08016 – Data Modelling Tools tus.ie | 8-5

1. Introduction

MariaDB database replication is a powerful feature that allows for the synchronisation of
data between multiple servers. This can be used to achieve several benefits, such as,
high availability, data redundancy and load balancing. In this topic a number of
replication mechanisms will be discussed and an example will be demonstrated to
expand on the work of the earlier topics.

1.1 Objectives

By the end of this topic the learner will be able to
• Develop a replication database server with its own read-only front-end webpage.

29 Dec 2023 Database Replication TUS: MMW

tus.ie | 8-6 AUTM08016 – Data Modelling Tools

2. Distributed Databases

A distributed database is a database in which storage devices are not all attached to a
common processing unit. The data is stored across several databases generally at
different sites each managed by a Relational Database Management System (RDBMS)
that can run independently.
These can be managed by a Distributed Database Management System. These
databases can be stored on multiple computers, located in the same physical location;
or may be dispersed over a network of interconnected computers. The location of data
and degree of individual sites impact query optimisation, concurrency control and
recovery.
Distributed data transactions, like other transactions, are governed the Atomicity,
Consistency, Isolation, Durability (ACID) properties that guarantee that database
transactions are processed reliably.

• Atomicity requires that each transaction is "all or nothing": if one part of the
transaction fails, the entire transaction fails, and the database state is left
unchanged.

• Consistency ensures that any transaction will bring the database from one
valid state to another.

• Isolation ensures that the concurrent execution of transactions results in a
system state that would be obtained if transactions were executed one after
the other.

• Durability means that once a transaction has been committed, it will remain
so, even in the event of power loss, crashes, or errors.

2.1 Distributed Data Independence

The distribution of portions of the database to various locations should be invisible to
users of the database. Existing applications should continue to operate successfully:

• when a distributed version of the DBMS is first introduced; and
• when existing distributed data are redistributed around the system.

2.2 Distributed Transaction Atomicity

Users should be able to write transactions that access and update data at several sites.
Transactions are atomic, all changes persist if the transaction commits, or roll-back if
transaction aborts.

2.3 Distributed Databases on slow networks

If sites are connected by slow networks, the Independence and Atomicity properties are
hard to support efficiently. Users have to be aware of where data is located because
Distributed Data Independence and Distributed Transaction Atomicity are not
supported. In situations where an organisation have globally distributed sites, these
properties may not even be desirable due to the administrative overhead of making
locations of data transparent.

TUS: MMW Database Replication 29 Dec 2023

AUTM08016 – Data Modelling Tools tus.ie | 8-7

2.4 Types of Distributed Databases

2.4.1 Homogeneous
A homogeneous distributed database system is a network of two or more databases that
reside on one or more machines. In Figure 1 there are three databases: ho, manu, and
sales connected as a distributed database. An application can simultaneously access
or modify the data in several databases in a single distributed environment.
For a client application, the location and platform of the databases are transparent. You
can also create synonyms for remote objects in the distributed system so that users can
access them with the same syntax as local objects. For example, A single query from a
sales client on the local database at the sales office can retrieve data from the pricing
table on the local database and the products table on the database at the manufacturing
site.

MariaDB [(none)]> SELECT a.Pricing, b.Products

 -> FROM Sales a INNER JOIN Manufacturing b
 -> ON a.Product_no = b.Product_no
 -> WHERE a.Product_no = 23456;

In this way, a distributed system gives the appearance of native data access. Users on
mfg do not have to know that the data they access resides on remote databases.

2.4.2 Heterogeneous

29 Dec 2023 Database Replication TUS: MMW

Figure 1: Homogeneous - distributed databases

Figure 2: Hetrogeneous - distributed databases
SITE A

RDBMS A

SITE B
RDBMS B

SITE C
RDBMS C GATEWAY

ho.xyz.iesales.xyz.ie manu.xyz.ie

HEAD OFFICE SITE

SALES SITE MANUFACTURING SITE

tus.ie | 8-8 AUTM08016 – Data Modelling Tools

Different sites run different RDBMSs separately and are connected somehow to enable
access to data from multiple sites. In the example illustrated in Figure 2, Site A running
MySQL, Site B, Microsoft SQL and Site C, Oracle 12c. Different sites using different
schema and software. Differences in schema can be a major problem for query
processing and transaction processing. Sites may not be aware of each other and may
provide only limited facilities for cooperation in transaction processing. Different nodes
may have different hardware, software and data structures at various nodes or locations
are also incompatible.
Gateway protocols allow applications to connect to multiple Database servers or other
gateways across a network, using a number of communications protocols and
middleware Application Program Interfaces (APIs) to establish a distributed processing
and distributed database environment. Examples: Open Database Connectivity
(ODBC), Java Database Connectivity (JDBC) and Object Linking and Embedding,
Database (OLE-DB).

2.5 Distributed Database Architectures

2.5.1 Client – Server Architecture

A system that has one or more client process and one or more server processes. Client
sends a query to a server, and the server processes the query returning the result to the
client.
A client connects directly to a database server. A direct connection occurs when a client
connects to a server and accesses information from a database contained on that
server. i.e. a connection to the sales database to access the Pricing table on this
database can be achieved by issuing one of the following SQL Queries:

TUS: MMW Database Replication 29 Dec 2023

Figure 3: Client - Server Architecture

RDBMS
CLIENTQUERY

sales.xyz.ie ho.xyz.ie manu.xyz.ie

AUTM08016 – Data Modelling Tools tus.ie | 8-9

MariaDB [(none)]> SELECT * FROM Pricing;
MariaDB [(none)]> SELECT * FROM Pricing where Product_no = '23456';

This query is direct because an object on a remote database is not being accessed.

2.5.2 Collaborated Server Architecture

A collaborated connection occurs when a client connects to a server and then accesses
information contained in a database on a different server. For example, a connection to
the sales database that requires access to the Product table on the remote
Manufacturing database can be achieved by issuing the SQL Query:

sql> SELECT * FROM Product@manu.xyz.ie;

This query is indirect because the object being accessed is not on the database that is
currently connected.
A query requires access to data at other servers, it generates sub queries to be
executed by other servers and pieces the results together to answer the original query.

MariaDB [(none)]> SELECT a.Pricing, b.Products
 -> FROM Sales a INNER JOIN Manufacturing b

 -> ON a.Product_no = b.Product_no
 -> WHERE a.Product_no = 23456;

29 Dec 2023 Database Replication TUS: MMW

Figure 4: Collaborated Server Architecture

QUERY

sales.xyz.ie

ho.xyz.ie manu.xyz.ie

tus.ie | 8-10 AUTM08016 – Data Modelling Tools

2.5.3 Middleware

SQL-oriented Data Access Middleware is a software layer between applications and
database servers. Middleware has the capability to translate generic SQL into the SQL
specific to the database.

• Open Database Connectivity (ODBC) – supported by most database
vendors.

• Object Linking and Embedding Database (OLE-DB) - Microsoft
enhancement of ODBC.

• Java Database Connectivity (JDBC) - Special Java classes that allow Java
applications/applets to connect to databases.

• Common Object Request Broker Architecture (CORBA) – specification of
object-oriented middleware.

• Distributed Component Object Model (DCOM) – Microsoft’s version of
CORBA – not as robust as CORBA over multiple platforms.

Considering ODBC further, this is an Application Programming Interface (API) that
provides a common language for application programs to access and process SQL
databases independent of the particular RDBMS that is accessed. It requires the
following parameters:

• ODBC driver needed.
• Back-end server name.
• Database name.
• User ID and Password.

TUS: MMW Database Replication 29 Dec 2023

Figure 5: Middleware

QUERY

OracleMSSQL
ODBC Driver

Oracle
ODBC Driver

MySQL
ODBC Driver

OS Driver
Manager

Client
Application

MSSQL

MariaDB
QUERY

QUERY

AUTM08016 – Data Modelling Tools tus.ie | 8-11

2.6 High Availability Cluster Architecture

High-availability (HA) clusters are groups of servers that support server applications that
can be reliably utilised with a minimum of down-time. They operate by harnessing
redundant servers in groups or clusters that provide continued service when system
components fail. Without clustering, if a server running a database crashes, the
application will be unavailable until the crashed server is fixed. HA clustering remedies
this situation by detecting hardware/software faults, and immediately restarting the
application on another system without requiring administrative intervention, a process
called fail-over.
HA cluster implementations attempt to build redundancy into a cluster to eliminate single
points of failure, including multiple network connections and data storage which is
redundantly connected via Storage Area Networks (SAN).
HA clusters usually use a heartbeat private network connection which is used to monitor
the health and status of each node in the cluster. One subtle but serious condition all
clustering software must be able to handle is split-brain, which occurs when all of the
private links go down simultaneously, but the cluster nodes are still running. If that
happens, each node in the cluster may mistakenly decide that every other node has
gone down and attempt to start services that other nodes are still running. Having
duplicate instances of services may cause data corruption on the shared storage.
Figure 6 demonstrates the most common arrangement for a HA cluster. This is called a
two-node cluster. This is is the minimum required to provide redundancy, but many
clusters consist of many more, sometimes dozens of nodes. Configurations can
sometimes be categorised into one of the following models:

Active/active — Traffic intended for the failed node is either passed onto an existing
node or load balanced across the remaining nodes. This is usually only possible when
the nodes utilise a homogeneous software configuration.

29 Dec 2023 Database Replication TUS: MMW

Figure 6: HA Cluster
Clients

Heartbeat
1 2

Disk 2

Disk 1

SAN 2

SAN 1

DB 2

DB 1

LAN 2

LAN 1

External
LAN

tus.ie | 8-12 AUTM08016 – Data Modelling Tools

Active/passive (N+1) — Provides a fully redundant instance of each node, which is
only brought online when its associated primary node fails. This configuration typically
requires the most extra hardware.

N+M — In cases where a single cluster is managing many services, having only one
dedicated fail-over node may not offer sufficient redundancy. In such cases, more than
one (M) standby servers are included and available. The number of standby servers is a
trade-off between cost and reliability requirements.

N-to-1 — Allows the fail-over standby node to become the active one temporarily, until
the original node can be restored or brought back online, at which point the services or
instances must be failed-back to it in order to restore high availability.

N-to-N — A combination of active/active and N+M clusters, N to N clusters redistribute
the services, instances or connections from the failed node among the remaining active
nodes, thus eliminating (as with active/active) the need for a 'standby' node, but
introducing a need for extra capacity on all active nodes.

2.7 Storing data

Relations are stored across several sites and to reduce message-passing costs a
relation maybe fragmented across many sites. Fragmentation brakes a relation down
into smaller relations and stores the fragments at different sites.

2.7.1 Horizontal Fragmentation (HF)
If the relation is divided such that a subset of rows is stored at SITE_A and another
subset is stored at SITE_B and even more stored at SITE_C etc..., this is called
Horizontal Fragmentation (HF), and the original relation is obtained by taking the union
of all the sets.

2.7.2 Vertical Fragmentation (VF)
If the Student relation is divided in two sets say SET_A and SET_B such that half of the
attributes of Student is in SET_A and the other half is in SET_B. This is called Vertical
Fragmentation (VF) as a relation is fragmented along columns. The original relation is
obtained by natural join of all the sets. For natural join we require at least one Primary
Key attribute which is common to all the sets.

TUS: MMW Database Replication 29 Dec 2023

Figure 7: Database relations

1 Student ID Name Town
2 K001234 Lovelace Nottingham
3 K001235 Babbage London
4 K001236 Menabrea Turin

Horizontal
Fragment

(Rows)

Vertical Fragment (Columns)

AUTM08016 – Data Modelling Tools tus.ie | 8-13

2.8 Replication

Replication is the storing several copies of a relation or fragment. The entire relation can
be stored at one or more sites. This is done to either:

• High Availability (HA) – If a site contains replicated data goes down, then
we can use another site.

• Faster Query Evaluation – Queries are executed faster by using local
copy of a relation instead of going to a remote site.

2.8.1 Synchronous/Asynchronous replication
There are two types of replication are Synchronous and Asynchronous replication.
Synchronous replication writes the data to both the primary and to the secondary site
database at the same time. In doing this, the data remains completely current and
identical. The process works quickly and there is a extremely small margin of error.
Because of this, it is ideal for disaster recovery and is the method preferred for projects
that require absolutely no data loss. A high speed SAN is required to support such
replication

Asynchronous replication also writes data to both a primary and secondary site,
however with this process there is a delay when data is copied from one to another. This
approach to data backup is often termed, “Store and Forward”. With this type of
replication the data first writes to the primary database and then commits the data for
replication to a secondary source: either memory or disk-based. Finally, the data copies
at scheduled intervals to the target. This method can work over longer distances and
over slow speed links than synchronous replication, so at times it may be the only viable
option.

Type of Replication Synchronous Asynchronous
Recovery Point
Objective

Zero 15 minutes to a few hours

Distance Limitations Best if both SANs are in
the same datacentre.

Anywhere with a good data
connection.

Cost Most expensive type of
SAN solution.

Not as expensive as
Synchronous but more
expensive than basic SANs.

Figure 9: Summary of replication types

29 Dec 2023 Database Replication TUS: MMW

Figure 8: Replication

R1 R3 R1 R2
SITE A SITE B

tus.ie | 8-14 AUTM08016 – Data Modelling Tools

3. Distributed Database Security

Part of planning for a distributed relational database involves the decisions to be made
about securing distributed data.
These decisions include:

• What systems should be made accessible to users in other locations and
which users in other locations should have access to those systems.

• How tightly controlled access to those systems should be. For example,
should a user password be required when a conversation is started by a
remote user?

• Is it required that passwords flow over the wire in encrypted form?
• Is it required that a user profile under which a client job runs be mapped to a

different user identification or password based on the name of the relational
database being connected to?

• What data should be made accessible to users in other locations and which
users in other locations should have access to that data.

• What actions those users should be allowed to take on the data.
• Whether authorisation to data should be centrally controlled or locally

controlled.

3.1 MariaDB Security

When thinking about security within a MariaDB server the following topics come to the
fore.

3.1.1 General factors that affect security
These include choosing good passwords, not granting unnecessary privileges to users,
ensuring application security by preventing SQL injections and data corruption, and
others.

3.1.2 Security of the installation itself
The data files, log files, and the all the application files of the installation should be
protected to ensure that they are not readable or writeable by unauthorised parties.

3.1.3 Access control and security within the database system
Access control for database users and databases granted with access to the databases,
views and stored programs in use within the database.

TUS: MMW Database Replication 29 Dec 2023

AUTM08016 – Data Modelling Tools tus.ie | 8-15

3.1.4 Network security of MariaDB and the system.
The security is related to the grants for individual users, but it may also be beneficial to
restrict MariaDB so that it is available only locally on the MariaDB server host, or to a
limited set of other hosts.

3.1.5 Secure Sockets Layer (SSL)
MariaDB supports secure (encrypted) connections between MariaDB clients and the
server using the Secure Sockets Layer (SSL) protocol. Secure connections are based
on the OpenSSL API and are available through the MariaDB C API. Replication uses the
C API, so secure connections can be used between master and slave servers.
To check whether a MariaDB daemon supports SSL, examine the value of the
have_ssl system variable:

MariaDB [(none)]> SHOW VARIABLES LIKE 'have_ssl';
+---------------+-------+

| Variable_name | Value |

+---------------+-------+

| have_ssl | YES |

+---------------+-------+

If the value is YES, the server supports SSL connections. If the value is DISABLED, the
server is capable of supporting SSL connections but was not started with the
appropriate --ssl-xxx options to enable them to be used.

3.1.6 Backups
Ensure that there are adequate and appropriate backups of the database files,
configuration and log files. A recovery solution needs to be in place and tested so a
failed database can be successfully recovered from the information in the backups.

3.2 Securing Distributed Databases

Enterprise class distributed databases support all of the security features that are
available with a non-distributed database environment in a distributed database
systems, including:

• Password authentication for users and roles.
• Some types of external authentication for users and roles including:

◦ Kerberos for connected user links.
◦ Distributed Computing Environment (DCE) for connected user links.

• Login packet encryption for client-to-server and server-to-server
connections.

29 Dec 2023 Database Replication TUS: MMW

tus.ie | 8-16 AUTM08016 – Data Modelling Tools

3.2.1 Kerberos
Kerberos is a network authentication protocol which works on the basis of 'tickets' to
allow nodes communicating over a non-secure network to prove their identity to one
another in a secure manner. It's design is aimed primarily at a client–server model and it
provides mutual authentication, both the user and the server verify each other's identity.
Kerberos protocol messages are protected against eavesdropping and replay attacks.
Kerberos builds on symmetric key cryptography and requires a trusted third party, and
optionally may use public-key cryptography during certain phases of authentication.
Kerberos uses TCP port 88 by default.
The three elements of Kerberos comprise the Key Distribution Centre (KDC), the client
user and the server with the desired service to access, i.e. the Distributed Database.
The KDC is performs two service functions: the Authentication Service (AS) and the
Ticket-Granting Service (TGS).

3.2.2 Distributed Computing Environment (DCE)
DCE from the Open Software Foundation (OSF) is a set of integrated network services
that work across multiple systems to provide a distributed environment. The network
services include Remote Procedure Calls (RPC), directory service, security service,
threads, distributed file service, disk-less support, and distributed time service.
DCE is the middleware between distributed applications and the system/network
services and is based on a client/server model. By using the services and tools that DCE
provides, users can create, use, and maintain distributed applications that run across a
heterogeneous environment.

TUS: MMW Database Replication 29 Dec 2023

AUTM08016 – Data Modelling Tools tus.ie | 8-17

4. Database Replication

4.1 Installation of software

Follow the same process as used on the server in Workshop 2/3, which now becomes
the Primary (Master) Server build a Replica (Slave) Server:

• mariadb-server

• mariadb-client

• libmariadb3

• libmariadb-dev

• openssh-server

• apache2

4.2 MariaDB Database Replication

Considering a MariaDB database replication setup and how to get everything working
smoothly again after a server crash, or for whatever reason it is necessary to have a
replica database that maintains its mirror with the primary database.

In Figure 10 there are two MariaDB servers, one which is the Primary (Master)
MariaDB daemon and the other which is the Replica (Slave) MariaDB daemon. The
Master maintains a log of every action performed on it in a binary file and the Slave
monitors the binary log on the Master and whenever a new event happens, it will copy
the event in the Processor database. Let the database Eng created on the Raspberry Pi
be the Primary (Master). Install MariaDB on a second computer on the network. For the
purpose of this workshop a Virtual Machine (VM) on a computer.

29 Dec 2023 Database Replication TUS: MMW

Figure 10: Database replication

MariaDB
daemon

PRIMARY (MASTER) SERVER

server-id=1

MariaDB
daemon

REPLICA (SLAVE) SERVER

server-id=2

SSL

TCP
3306

tus.ie | 8-18 AUTM08016 – Data Modelling Tools

4.3 Test network

For the purpose of demonstration, the following network, in Figure 11 will be used.

4.4 Configuring the Primary Server

4.4.1 Replication user on Primary Server
Create a user on the Primary (Master) server that the Replica (Slave) can connect as. In
this case I will use the username 'replication_user'. Log into MariaDB as root and
create the user:

[Primary]~$ sudo mysql -u root

MariaDB [(none)]> GRANT REPLICATION SLAVE ON *.* TO

 -> 'replication_user'@'%'

 -> IDENTIFIED BY 'replication_pass';

Query OK, 0 rows affected (0.002 sec)

Reload the privileges from the grant tables in the MariaDB database.
MariaDB [(none)]> FLUSH PRIVILEGES;

MariaDB [(none)]> SELECT User, Host FROM mysql.user;

+------------------+-----------+

| User | Host |

+------------------+-----------+

| replication_user | % |

| admin | localhost |

| enguser | localhost |

| mariadb.sys | localhost |

| mysql | localhost |

| phpmyadmin | localhost |

| root | localhost |

+------------------+-----------+

7 rows in set (0.005 sec)

TUS: MMW Database Replication 29 Dec 2023

Figure 11: Database Replication Network

CONTROLLER
(MASTER)

server-id=1

PROCESSOR
(SLAVE)

server-id=2

192.168.0.23 192.168.0.40

AUTM08016 – Data Modelling Tools tus.ie | 8-19

4.4.2 Primary Server Binary log
Stop the Primary (Master) Server.

[Primary]~$ sudo systemctl stop mariadb.service

Edit the configuration by adding the following section:

[Primary]~$ cd /etc/mysql/mariadb.conf.d

[Primary]/etc/mysql/mariadb.conf.d$ sudo vi 50-server.cnf

~~~~
[mariadb]
log_bin
server_id=1
log_basename=master1
binlog_format=mixed
binlog_do_db=Eng

bind_address=0.0.0.0

~~~~

:wq!

• log-bin - Enable binary logging
• server_id - Unique Server ID
• log-basename - Unique name for replication logs
• binlog-format - Statement-Based, Row-Based or Mixed Logging
• binlog_do_db - allow master to write statements and transactions

affecting databases that match a specified name into its binary log
• bind-address - An IP address or 0.0.0.0 as a wildcard.

Start the Primary (Master) Server

[Primary]~$ sudo systemctl start mariadb.service

Confirm the configuration changes were made.

[Primary]~$ sudo mysql -u root

MariaDB [(none)]> SHOW VARIABLES LIKE 'bind%';

+---------------+---------+

| Variable_name | Value |

+---------------+---------+

| bind_address | 0.0.0.0 |

+---------------+---------+

1 row in set (0.008 sec)

29 Dec 2023 Database Replication TUS: MMW

tus.ie | 8-20 AUTM08016 – Data Modelling Tools

MariaDB [(none)]> SHOW VARIABLES LIKE 'binlog_format';

+---------------+-------+

| Variable_name | Value |

+---------------+-------+

| binlog_format | MIXED |

+---------------+-------+

1 row in set (0.009 sec)

MariaDB [(none)]> SHOW VARIABLES LIKE 'server%';

+---------------+-------+

| Variable_name | Value |

+---------------+-------+

| server_id | 1 |

+---------------+-------+

1 row in set (0.009 sec)

4.4.3 Clean the logs on Primary and restart the server
Determine the log directory for the database.

MariaDB [(none)]> SHOW VARIABLES LIKE 'log_bin_basename';

+------------------+----------------------------+

| Variable_name | Value |

+------------------+----------------------------+

| log_bin_basename | /var/lib/mysql/master1-bin |

+------------------+----------------------------+

1 row in set (0.008 sec)

Clear out any logs from /var/log/mysql as indicated by the previous command:

[Primary]~$ sudo rm /var/log/mysql/*

Restart the MariaDB Service and confirm status.

[Primary]~$ sudo systemctl restart mariadb.service

[Primary]~$ sudo systemctl status mariadb.service
● mariadb.service - MariaDB 10.3.29 database server

 Loaded: loaded (/lib/systemd/system/mariadb.service; enabled; vendor preset:

 Active: active (running) since Tue 2021-08-31 17:48:20 IST; 4s ago

 Docs: man:mysqld(8)

 https://mariadb.com/kb/en/library/systemd/

 Process: 19333 ExecStartPre=/usr/bin/install -m 755 -o mysql -g root -d /var/r

 Process: 19334 ExecStartPre=/bin/sh -c systemctl unset-environment _WSREP_STAR

 Process: 19336 ExecStartPre=/bin/sh -c [! -e /usr/bin/galera_recovery] && VA

 Process: 19433 ExecStartPost=/bin/sh -c systemctl unset-environment _WSREP_STA

 Process: 19435 ExecStartPost=/etc/mysql/debian-start (code=exited, status=0/SU

 Main PID: 19401 (mysqld)

 Status: "Taking your SQL requests now..."

 Tasks: 32 (limit: 2059)

 CGroup: /system.slice/mariadb.service

 └─19401 /usr/sbin/mysqld

TUS: MMW Database Replication 29 Dec 2023

AUTM08016 – Data Modelling Tools tus.ie | 8-21

4.4.4 Lock the Primary while configuring the Replica Database
Prevent any new data being added on the Primary (Master) Server. Log into MariaDB
and flush tables with a read lock. Note the File and Position details.

[Primary]~$ sudo mysql -u root

MariaDB [(none)]> FLUSH TABLES WITH READ LOCK;

Query OK, 0 rows affected (0.003 sec)

MariaDB [(none)]> SHOW BINLOG STATUS;

+--------------------+----------+--------------+------------------+

| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |

+--------------------+----------+--------------+------------------+

| master1-bin.000002 | 330 | Eng | |

+--------------------+----------+--------------+------------------+

1 row in set (0.001 sec)

4.4.5 Dump a copy of the Primary Database
Dump the existing data from the Primary (Master) Server to a file and SFTP the file over
to the Replica (Slave) Server.

[Primary]~$ sudo mysqldump -u root Eng > Eng.sql

[Primary]~$ ls

Eng.sql

4.5 Configuring the Replica Server

4.5.1 Confirm connection to Primary Server over the network
Before configuring the Replica (Slave) Server, confirm that from the Replica (Slave)
Server it is possible to connect to the Primary (Master) Server with the user configured
for replication.

[Replica]~$ sudo mysql -h 192.168.0.23 -u replication_user -p

Enter password: replication_pass

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 32

Server version: 10.6.12-MariaDB-0ubuntu0.22.04.1-log Ubuntu 22.04

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

MariaDB [(none)]> QUIT;

bye

29 Dec 2023 Database Replication TUS: MMW

tus.ie | 8-22 AUTM08016 – Data Modelling Tools

4.5.2 Create a local version of the database on the Replica Server
Create a local version of the database on the Replica (Slave), create a local user with
rights to the local version of the database also.

MariaDB [(none)]> CREATE DATABASE Eng;

Query OK, 1 row affected (0.000 sec)

MariaDB [(none)]> SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| Eng |

| information_schema |

| mysql |

| performance_schema |

+--------------------+

4 rows in set (0.000 sec)

MariaDB [(none)]> CREATE USER 'replicauser'@'localhost' IDENTIFIED BY
'replicapass';

Query OK, 0 rows affected (0.013 sec)

MariaDB [(none)]> GRANT ALL ON Eng.* TO 'replicauser'@'localhost';

Query OK, 0 rows affected (0.12 sec)

MariaDB [(none)]> QUIT;

Bye

4.5.3 MariaDB Replica Server configuration file
Stop the Replica (Slave) server.

[Replica]~$ sudo systemctl stop mariadb.service

Edit the configuration by adding the following section:

[Replica]~$ cd /etc/mysql/mariadb.conf.d

/etc/mysql/mariadb.conf.d$ sudo vi 50-server.cnf

~~~~

~~~~

[mariadb]

server_id = 2

replicate_do_db = Eng
~~~~

~~~~

:wq!

• server_id - Unique Server ID
• replicate_do_db – Database to replicate

TUS: MMW Database Replication 29 Dec 2023

AUTM08016 – Data Modelling Tools tus.ie | 8-23

4.5.4 Clean the logs on the Replica Server before starting
Clear any replication logs from /var/lib/mysql.

[Replica]~$ sudo rm /var/log/mysql/*

[Replica]~$ sudo systemctl restart mariadb.service

[Replica]~$ sudo systemctl status mariadb.service
● mariadb.service - MariaDB 10.6.12 database server

 Loaded: loaded (/lib/systemd/system/mariadb.service; enabled; vendor prese>

 Active: active (running) since Fri 2023-12-29 08:09:27 GMT; 5s ago

 Docs: man:mariadbd(8)

 https://mariadb.com/kb/en/library/systemd/

 Process: 3401 ExecStartPre=/usr/bin/install -m 755 -o mysql -g root -d /var>

 Process: 3402 ExecStartPre=/bin/sh -c systemctl unset-environment _WSREP_ST>

 Process: 3404 ExecStartPre=/bin/sh -c [! -e /usr/bin/galera_recovery] && >

 Process: 3475 ExecStartPost=/bin/sh -c systemctl unset-environment _WSREP_S>

 Process: 3477 ExecStartPost=/etc/mysql/debian-start (code=exited, status=0/>

 Main PID: 3463 (mariadbd)

 Status: "Taking your SQL requests now..."

 Tasks: 12 (limit: 14110)

 Memory: 67.3M

 CPU: 252ms

 CGroup: /system.slice/mariadb.service

 └─3463 /usr/sbin/mariadbd

4.5.5 Confirm configuration
Confirm the configuration.

MariaDB [(none)]> SHOW VARIABLES LIKE 'server_id';

+---------------+-------+

| Variable_name | Value |

+---------------+-------+

| server_id | 2 |

+---------------+-------+

1 row in set (0.002 sec)

MariaDB [(none)]> SHOW VARIABLES LIKE 'replicate_do_db%';

+-----------------+-------+

| Variable_name | Value |

+-----------------+-------+

| replicate_do_db | Eng |

+-----------------+-------+

1 row in set (0.002 sec)

29 Dec 2023 Database Replication TUS: MMW

tus.ie | 8-24 AUTM08016 – Data Modelling Tools

4.5.6 Getting the current data onto the Replica Database
Connect to the Primary (Master) using a file transfer program like Secure File Transfer
Protocol (SFTP) and copy the Eng.sql dump file created earlier.

[Replica]~$ sftp ada@192.168.0.23

ada@192.168.0.23's password: ada_pass

Connected to 192.168.0.23.

sftp> ls

Eng.sql

sftp> get Eng.sql

Fetching /home/ada/Eng.sql to Eng.sql

/home/ada/Eng.sql 100% 2807 440.0KB/s 00:00

sftp> quit

On the Replica (Slave) Server import the database dump file from the Primary (Master)
server.

[Replica]~$ ls

Eng.sql

[Replica]~$ sudo mysql -u root Eng < ./Eng.sql

Confirm that the tables have been imported.

[Replica]~$ mysql -u root -p

MariaDB [(none)]> USE Eng;

Database changed

MariaDB [Eng]> SHOW TABLES;

+---------------+

| Tables_in_Eng |

+---------------+

| EngHobbies |

| EngProject |

+---------------+

2 rows in set (0.001 sec)

MariaDB [Eng]> SELECT Firstname, Lastname FROM EngProject;

+-----------+----------+

| Firstname | Lastname |

+-----------+----------+

| Ada | Lovelace |

+-----------+----------+

1 row in set (0.001 sec)

TUS: MMW Database Replication 29 Dec 2023

AUTM08016 – Data Modelling Tools tus.ie | 8-25

4.5.7 Matching Replica Server with the Primary Server
On the Replica (Slave) Server and define the Primary (Master) using the information
retained from from configuring it.

MariaDB [(none)]> CHANGE MASTER TO MASTER_HOST='192.168.0.23',
 -> MASTER_USER='replication_user',

 -> MASTER_PASSWORD='replication_pass',
 -> MASTER_LOG_FILE='master1-bin.000002',
 -> MASTER_LOG_POS=330;

Query OK, 0 rows affected (0.11 sec)

Start Replica (Slave).

MariaDB [(none)]> START SLAVE;

Query OK, 0 rows affected (0.003 sec)

4.5.8 Unlock the Primary Database
Unlock the Primary (Master).

[Primary]~$ sudo mysql -u root

MariaDB [(none)]> UNLOCK TABLES;

Query OK, 0 rows affected (0.001 sec)

On the replica database, confirm Replica (Slave) is connected to Primary (Master) by
reviewing the status.

MariaDB [(none)]> SHOW REPLICA STATUS \G;
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: 192.168.0.23
 Master_User: replication_user
 Master_Port: 3306
 Connect_Retry: 60
 Master_Log_File: master1-bin.000003
 Read_Master_Log_Pos: 330
 Relay_Log_File: mysqld-relay-bin.000003
 Relay_Log_Pos: 631
 Relay_Master_Log_File: master1-bin.000003
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 Replicate_Do_DB: Eng
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 330
 Relay_Log_Space: 1242
 Until_Condition: None
 Until_Log_File:

29 Dec 2023 Database Replication TUS: MMW

tus.ie | 8-26 AUTM08016 – Data Modelling Tools

 Until_Log_Pos: 0
 Master_SSL_Allowed: No
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: 0
 Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids:
 Master_Server_Id: 1
 Master_SSL_Crl:
 Master_SSL_Crlpath:
 Using_Gtid: No
 Gtid_IO_Pos:
 Replicate_Do_Domain_Ids:
 Replicate_Ignore_Domain_Ids:
 Parallel_Mode: optimistic
 SQL_Delay: 0
 SQL_Remaining_Delay: NULL
 Slave_SQL_Running_State: Slave has read all relay log; waiting
for more updates
 Slave_DDL_Groups: 0
Slave_Non_Transactional_Groups: 0
 Slave_Transactional_Groups: 0
1 row in set (0.001 sec)

Confirm the connection from the Replica (Slave) on the Primary (Master)
[Primary]~$ ss -at '(sport = :3306)'
State Recv-Q Send-Q Local Address:Port Peer Address:Port Process

LISTEN 0 80 0.0.0.0:mysql 0.0.0.0:*

ESTAB 0 0 192.168.0.23:mysql 192.168.0.40:34364

Using the browser tool created, add a user to the Primary (Master) EngProject table.

TUS: MMW Database Replication 29 Dec 2023

AUTM08016 – Data Modelling Tools tus.ie | 8-27

Confirm the user has been added to the Primary (Master) EngProject table and has
been replicated to the EngProject table on the Replica (Slave) database.

[Primary]~$ mysql -u enguser -p

Enter password: newengpass

MariaDB [None]> USE Eng;

MariaDB [Eng]> SELECT * FROM EngProject;
+------------+-----------+-----------+----------+-------------------+------------+

| Student_no | Username | FirstName | LastName | Email | Role |

+------------+-----------+-----------+----------+-------------------+------------+

| 1 | alovelace | Ada | Lovelace | ada@lovelace.com | Programmer |

| 2 | lmenabrea | Luigi | Menabrea | luigi@menabrea.it | Politician |

| 3 | equinn | Edel | Quinn | edel@quinn.net | Nurse |

| 4 | vcunnane | Vincent | Cunnane | vc@tus.ie | Professor |

+------------+-----------+-----------+----------+-------------------+------------+

4 rows in set (0.000 sec)

29 Dec 2023 Database Replication TUS: MMW

Figure 12: Add a new user to the Primary database

tus.ie | 8-28 AUTM08016 – Data Modelling Tools

[Replica]~$ mysql -u enguser -p

Enter password: newengpass

MariaDB [None]> USE Eng;

MariaDB [Eng]> SELECT * FROM EngProject;
+------------+-----------+-----------+----------+-------------------+------------+

| Student_no | Username | FirstName | LastName | Email | Role |

+------------+-----------+-----------+----------+-------------------+------------+

| 1 | alovelace | Ada | Lovelace | ada@lovelace.com | Programmer |

| 2 | lmenabrea | Luigi | Menabrea | luigi@menabrea.it | Politician |

| 3 | equinn | Edel | Quinn | edel@quinn.net | Nurse |

| 4 | vcunnane | Vincent | Cunnane | vc@tus.ie | Professor |

+------------+-----------+-----------+----------+-------------------+------------+

4 rows in set (0.001 sec)

4.6 Recovery in case of failure

If for some reason the database replication were to fail or crash. It can be difficult for
replication to restart. Stop both databases, clear the logs as shown on the both servers.
Restart the Primary (Master) and then restart the Replica (Slave) database.

4.7 Custom tool to view the Replica database

Add a new user to the Replica (Slave) database with access to the Eng database.

[Replica]~$ mysql -u root

MariaDB [(none)]> CREATE USER 'enguser'@'localhost' IDENTIFIED BY
'engpass';

Query OK, 0 rows affected (0.010 sec)

MariaDB [(none)]> GRANT ALL ON Eng.* TO 'enguser'@'localhost';

Query OK, 0 rows affected (0.00 sec)

Create a Python Virtual Environment and make it active.

~$ python3 -m venv ~/.venv
~$ source ~/.venv/bin/activate
(.venv)[Replica]~$

TUS: MMW Database Replication 29 Dec 2023

AUTM08016 – Data Modelling Tools tus.ie | 8-29

Determine the directory on the path to host mariadb_conn.py and copy it in.

(.venv)[Replica]~$ python3
Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] on linux
Type "help", "copyright", "credits" or "license" for more
information.
>>> import sys
>>> sys.path
['', '/usr/lib/python310.zip', '/usr/lib/python3.10',
'/usr/lib/python3.10/lib-dynload',
'/home/labuser/.venv/lib/python3.10/site-packages']
>>> quit()
(.venv)[Replica]~$ cp ~/web_repl/tools/mariadb_conn.py
/home/labuser/.venv/lib/python3.10/site-packages

Install the mariadb Connector/Python module, the Flask framework and yaml.

(.venv)[Replica]~$ python3 -m pip install flask mariadb pyyaml

Deactivate from the virtual environment.

(.venv)[Replica]~$ deactivate

[Replica]~$

Move the web_repl to the root of the Apache2 webserver.
[Replica]~$ sudo cp -r ~/web_repl /var/www/html/web

[Replica]~$ sudo chown -R www-data: /var/www/html/web

Give the website user access to the group hosting the virtual environment and vica
versa.

~$ sudo usermod -a -G ada www-data

~$ sudo usermod -a -G www-data ada

~$ cat /etc/group | grep ^www

www-data:x:33:ada

~$ cat /etc/group | grep ^ada

ada:x:1000:www-data

29 Dec 2023 Database Replication TUS: MMW

tus.ie | 8-30 AUTM08016 – Data Modelling Tools

Create an Apache2 site configuration file by replacing the default file, this points to the
Web Server Gateway Interface (WSGI), app.wsgi and the directory for the Python
app.

[Replica]~$ cd /etc/apache2/sites-available/

/etc/apache2/sites-available$ sudo mv 000-default.conf 000-default.conf.orig

/etc/apache2/sites-available$ cat <<EOM | sudo tee 000-default.conf

<VirtualHost *:80>

 ServerAdmin webmaster@localhost

 WSGIScriptAlias / /var/www/html/web/app.wsgi

 <Directory /var/www/html/web>

 Order allow,deny

 Allow from all

 </Directory>

 ErrorLog /error.log

 CustomLog /access.log combined

</VirtualHost>

EOM

Update the path in the app.wsgi file to reflect the path noted above.

[Replica]~$ sudo vi /var/www/html/web/app.wsgi

import sys

sys.path.insert(0, "/home/labuser/.venv/lib/python3.10/site-packages")

sys.path.insert(0, "/var/www/html/web")

from init import app as application

Install the Apache2 WSGI library and, using a2enmod enable the library module within
the apache2 configuration.

[Replica]~$ sudo apt install apache2-utils libapache2-mod-wsgi-py3

[Replica]~$ sudo a2enmod wsgi

Enabling module wsgi.

Enable and start the Apache2 server.

[Replica]~$ sudo systemctl enable apache2

[Replica]~$ sudo systemctl start apache2

TUS: MMW Database Replication 29 Dec 2023

AUTM08016 – Data Modelling Tools tus.ie | 8-31

Browse to the IP address of the Replica (Slave) Server. Login with the enguser
credentials and the updated replica can be observed in Figure 13.

http://<Replica Server URL or address>

29 Dec 2023 Database Replication TUS: MMW

Figure 13: Select data from Replica Database

newengpass

tus.ie | 8-32 AUTM08016 – Data Modelling Tools

5. Laboratory #1

5.1 Create a Replica database using MariaDB

• Create a replica address database using MariaDB on a different server that
mirrors the database created in the previous topic.

• Establish replication to this database to the other database such that this is
the Replica (Slave) and the database from the previous topic is the Primary
(Master).

• Document each stage

5.2 Create a custom interface to the database

• Create a web based interface to the database built in 5.1 that has read-only
access to the data.

• Document each stage.

Notes:

TUS: MMW Database Replication 29 Dec 2023

AUTM08016 – Data Modelling Tools tus.ie | 8-33

This page is intentionally blank

29 Dec 2023 Database Replication TUS: MMW

	1. Introduction
	1.1 Objectives

	2. Distributed Databases
	2.1 Distributed Data Independence
	2.2 Distributed Transaction Atomicity
	2.3 Distributed Databases on slow networks
	2.4 Types of Distributed Databases
	2.4.1 Homogeneous
	2.4.2 Heterogeneous

	2.5 Distributed Database Architectures
	2.5.1 Client – Server Architecture
	2.5.2 Collaborated Server Architecture
	2.5.3 Middleware

	2.6 High Availability Cluster Architecture
	2.7 Storing data
	2.7.1 Horizontal Fragmentation (HF)
	2.7.2 Vertical Fragmentation (VF)

	2.8 Replication
	2.8.1 Synchronous/Asynchronous replication

	3. Distributed Database Security
	3.1 MariaDB Security
	3.1.1 General factors that affect security
	3.1.2 Security of the installation itself
	3.1.3 Access control and security within the database system
	3.1.4 Network security of MariaDB and the system.
	3.1.5 Secure Sockets Layer (SSL)
	3.1.6 Backups

	3.2 Securing Distributed Databases
	3.2.1 Kerberos
	3.2.2 Distributed Computing Environment (DCE)

	4. Database Replication
	4.1 Installation of software
	4.2 MariaDB Database Replication
	4.3 Test network
	4.4 Configuring the Primary Server
	4.4.1 Replication user on Primary Server
	4.4.2 Primary Server Binary log
	4.4.3 Clean the logs on Primary and restart the server
	4.4.4 Lock the Primary while configuring the Replica Database
	4.4.5 Dump a copy of the Primary Database

	4.5 Configuring the Replica Server
	4.5.1 Confirm connection to Primary Server over the network
	4.5.2 Create a local version of the database on the Replica Server
	4.5.3 MariaDB Replica Server configuration file
	4.5.4 Clean the logs on the Replica Server before starting
	4.5.5 Confirm configuration
	4.5.6 Getting the current data onto the Replica Database
	4.5.7 Matching Replica Server with the Primary Server
	4.5.8 Unlock the Primary Database

	4.6 Recovery in case of failure
	4.7 Custom tool to view the Replica database

	5. Laboratory #1
	5.1 Create a Replica database using MariaDB
	5.2 Create a custom interface to the database

