
Securing the bridge between the cyber and
physical worlds: Cybersecurity for PLCs

David Formby, PhD
Cofounder and CEO/CTO Fortiphyd Logic

Background

Programmable Logic Controllers (PLCs)
Cyber/IT Physical/OT

Bridge between cyber and physical

Insecure by design
Most attention is paid to network

Outline

• Bio

• Threats to PLCs

• Secure PLC Coding Practices

• PLC Program Anomaly Detection

Bio – David Formby

• PhD Electrical & Computer Engineering, Georgia Tech
• PLC ransomware worm

• PLC anomaly detection

• Open source ICS security simulation

• Dozens of ICS-CERT vulnerabilities

• Cofounder and CEO/CTO of Fortiphyd Logic
• Network monitoring

• PLC endpoint security

• ICS security training

Threats to PLCs

Threat Timeline for PLCs (Purdue Level 1)

Stuxnet
2010

Ukraine attack
2015

CRASHOVERRIDE
2016

PLC Ransomware
(POC)
2018

TRITON
2018

Oldsmar
2021

Rockwell Hardcoded
Key Vuln

2021

• Target
• Iranian nuclear program

• Key points
• Jumped “air-gap”

• Reprogrammed PLC, and hid the
changes

• Effects
• Destroyed up to 1000 centrifuges

Stuxnet (2010)

• Target
• Ukrainian power distribution

companies

• Key points
• Stole operator remote credentials

• Used existing HMI

• Complex amplified attack
• DoS telephone service

• Bricked RTUs, disabled UPS

• Effects
• 225,000 customers lost power

Ukraine Attack (2015)

• Target
• Ukrainian transmission substation

• Key points
• Highly modular, complex malware

• Deep understanding of ICS
protocols

• Effects
• Section of capital city, Kiev, lost

power for one hour

• Large-scale testing of malware not
serious attempt

CRASHOVERRIDE (2016)

PLC Ransomware (Proof-of-concept)

• Georgia Tech research project

• Lack of ICS attacks because
financial motivation not secure
• Ransomware could be effective

monetization of insecurity

• Worm compromised one PLC
and spread to others, locking out
operators

• Target
• Saudi Arabian oil facility

• Key points
• Reverse engineered programming

software
• PLC “rootkit” remains even if

switch is in Run Mode
• Only detected because of attacker

programming mistake

• Effect
• Emergency shutdown and long

debug time

Trisis/Triton/HatMan (2018)

• Target
• Small water utility in Florida

• Key points
• Remote access to HMI

• Credentials compromised

• Attacker just played around on
HMI

• Effect
• Changed setpoint to dangerous

levels, but operator immediately
corrected

Oldsmar

• Vulnerable PLCs
• Entire Logix line of PLCs

• Key Points
• Hard coded key vulnerability

• Anyone on network with key can
reprogram PLC

• Official response – no patch in
sight

• Effect
• PLCs are still insecure by design

Rockwell Hardcoded Key Vulnerability

Top 20 Secure PLC Coding
Practices

Motivation

• Computer programming has well established guidelines for “secure
coding” to mitigate vulnerabilities and produce reliable software
• Software development life cycle (SDLC)

• OWASP Secure Coding Practices (web applications)

• Secure Coding Guidelines for Java SE

• Microsoft Security Development Lifecycle

• PLC programming lacks similar standards

Secure PLC Coding Practices

• Presentation at S4 Conference by Jake Brodsky
• Basic tips on what PLC programmers can do to add security

• First attempt at formalizing the tips
• Organizers

• Admeritia (Vivek Ponnada and Sarah Fluchs)

• S4 Conference (Dale Peterson)

• Other volunteers

• June 2021

• Top 20 Secure PLC Coding Practices

License

Copyright (c) 2021 admeritia GmbH, Langenfeld/Rheinland, Germany
Permission is hereby granted, free of charge, to any person obtaining a copy of

“Top 20 Secure PLC Coding Practices” and associated documentation files, to deal in the
“Top 20 Secure PLC Coding Practices” without restriction, including without limitation the rights to use, copy,

modify, merge, publish, distribute, sublicense, and/or sell copies of the “Top 20 Secure PLC Coding Practices”, and
to permit persons to whom the “Top 20 Secure PLC Coding Practices” is furnished to do so, subject to the

following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of

the “Top 20 Secure PLC Coding Practices”.
THE “Top 20 Secure PLC Coding Practices” IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR

ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE “Top 20 Secure PLC Coding Practices” OR THE USE OR

OTHER DEALINGS IN THE “Top 20 Secure PLC Coding Practices”.

Security Objectives

• Integrity (Practices 1-12)
• PLC Logic – Detecting/preventing unauthorized changes to program

• PLC variables - Detecting/preventing unauthorized changes to variables

• IO values - Detecting/preventing unauthorized changes to IO values

• Hardening (Practices 13,14)
• Make initial compromise more difficult

• Resilience (Practices 15,7)
• Assuming compromise, mitigate threat to continuing mission/operation

• Monitoring (Practices 16-20)
• Detect incident as soon as possible to mitigate damage

Benefits

• Security
• Mitigating threat from intentional attackers

• Reliability
• Mitigating threat from accidents

• Maintenance
• Making code easier to debug and maintain

Additional References

• MITRE ATT&CK for ICS
• Formal descriptions of attacks on ICS and mitigations

• Tactics, Techniques, Procedures, Mitigations

• ISA 62443
• 3-3 System security requirements and security levels

• 4-1 Secure product development lifecycle requirements

• 4-2 Technical security requirements for IACS components

• MITRE CWE
• Common weakness enumeration

Limitations

• Secure PLC Coding Practices are only one layer of defense
• Good network security and monitoring still necessary

• Most PLCs are still insecure by design

• Secure practices only make it harder for the attacker, not impossible
• Many can be worked around by attacker with complete control of PLC

• Monitoring is only useful if someone watches it, or gets alerts

• Only a first pass, still looking for user feedback and refinement

1. Modularize PLC Code

• Break PLC logic down into function blocks or subroutines that are:
• Re-usable

• Testable

• Independent

• For each FB or subroutine:
• Test thoroughly, ranges of inputs

• Record execution time, size in rungs or kB, checksum/signature if available

• Lock with password/certificate if possible and it makes sense

• Track changes

Integrity of PLC Logic

• Gas turbine startup sequence
• Function block for general turbine,

instantiate for each turbine
• Made of smaller function blocks for

each component

1. Modularize PLC Code - Example

2. Track operating modes

• Most PLCs have RUN and PROGRAM modes, and only can be
programmed with normal software in PROGRAM mode

• Keep PLCs in RUN mode as much as possible

• Display current mode on HMI

• Alarm on mode changes, and continuously for PROGRAM mode
• Exception – extended maintenance windows, extra precautions elsewhere

Integrity of PLC Logic

2. Track operating modes - Example

2. Track operating modes - Example

2. Track operating modes - Example

3. Leave operational logic in the PLC

• HMIs have some programmability

• Leave safety and key operational logic in PLC
• Summarizing/totaling logic

• Logic to enable/disable buttons (timers, counters…)

• Thresholds to trigger alarms

Integrity of PLC Logic

5. Use crypto/checksum integrity checks

• Cryptographic hashes, checksums, audit values, signatures
• Methods for “fingerprinting” PLC program and configuration

• Available on most PLCs, some more secure than others

• Log checksum/hash as part of SAT, documentation of final product
• Alarm when it changes

Integrity of PLC Logic

5. Use crypto/checksum integrity checks

Package Checksums Signing Project Files with Certificates

https://help.codesys.com/api-content/2/codesys/3.5.12.0/en/_cds_encrypting_signing_with_cerificates/

7 / 11 / 12 - Plausibility

• Paired IO – physically cannot happen at the same time
• Start/stop, forward/reverse, open/close

• Cross check multiple sources of sensor data for related plausibility
• Compare integrated/summed measurements with instantaneous values

• Flow rates with volumes

• Compare different sensors that should be related
• Valve open & flow rate > 0 / valve closed & flow rate = 0

• Only allow inputs that are physically possible/safe
• Set a timer for longer operations to verify it completes in physically plausible

amount of time
Integrity of PLC Variables

Resilience

7. Validate and alert for paired IO

8. Validate HMI inputs at PLC

• Values should be limited to safe ranges not just at HMI, but also in
the PLC logic

• Limiting ranges in the HMI only prevents accidental attacks
• Moderately skilled attackers can bypass HMI checks

• If invalid value is received in PLC, log it
• Use a default safe value

• Use last valid value

• Limit to closest max

Integrity of PLC Variables

8. Validate HMI inputs at PLC

11. Instrument for plausibility checks

12. Validate inputs for physical plausibility

13. Disable unneeded ports and protocols

• PLCs, especially newer ones, come with multiple protocols supported

• Disable ports and protocols that are not needed
• Web server configuration

• SNMP, Telnet, FTP

• Modbus, OPC UA

• Develop data flow diagram showing required communication for PLCs
and physical ports

Hardening

13. Disable unneeded ports and protocols -
Examples

• Disable OPC UA if not used

• Don’t add protocols unless you are using them

• Configure host firewall to only allow needed ports for CODESYS and
whatever protocols

15. Define a safe process state for reboots

• PLCs can unexpectedly reboot
• Accidental power loss

• Exploit attempt

• In case of PLC reboot, start into a safe output state
• Valves closed/open, motors on/off

Resilience

16. Summarize cycle times and trend them

• Program execution times usually measured as system variable

• Program execution times are relatively consistent unless
• PLC program changes

• Physical process changes significantly

• Network changes significantly

• Monitor average, max, and min scan cycle times
• Trend on HMI to visually detect unusual program behavior

• Automatically detect changes
• Fortiphyd’s LogicWatch Pro

Monitoring

16. Summarize cycle times and trend them

17. Log uptime and trend it

• PLC reboots can indicate maintenance problems or exploit attempts

• Monitor time since last reboot to detect reboots
• In PLC logic

• From network using SNMP

Monitoring

17. Log uptime and trend it

18. Log hard stops and trend them

• Hard stops from faults can indicate maintenance problems or attacks

• Log hard stops for investigation before continuing operations
• Accurate timestamping important for debugging

• Log which error codes

Monitoring

19. Monitor memory usage and trend it

• Two types of memory
• Storage

• RAM

• Change in program memory indicates change in program
• More or less running code

• Track what is normal and alert on thresholds

Monitoring

19. Monitor memory usage and trend it

PLC Anomaly Detection

Motivation

• Vendors cannot secure their PLCs on their own

• Give operators a tool to add strong security themselves

• Leverage the limitations of PLCs as a strength
• Single purpose programming -> predictable program execution

• Slow processors -> changes in programming more noticeable

• Limited memory -> incapable of storing large amounts of data

• Result
• “Temporal Execution Behavior for Host Anomaly Detection in Programmable

Logic Controllers” IEEE TIFS 2019

• Patent, LogicWatch Pro

Change Detection

• Change in PLC program results in
change in execution time

• Small change not noticeable in
one scan cycle
• Over thousands of cycles,

accumulates into detectable change

• Tested across 3 main vendors
• Rockwell, Siemens, Modicon

• Single instruction change was
detectable on sample programs

Change Detection

Proof of Work

• Limitations
• Attacker with knowledge of algorithm can bypass it

• Harder to fake than static value, but still feasible to repeat previous values

• Proof of work (POW) function
• Computationally expensive to solve, but easy to verify

• Give PLC an “alibi”, to prove it was busy doing POW and did not have time to
execute anything else

• Discrete logarithm
• xy mod p = z

• To solve:
• General approach – brute force

multiply base over and over again

• O(n), n size of modulus group

• Best approaches O(sqrt(n))

• To verify:
• Exponentiation by squaring -

O(log(n))

Proof of Work

• Changes to underlying firmware
contribute to program execution
time

• Different firmware versions were
found to be detectable changes

Firmware Modification

White Box Modeling

• Rare branches of code not executed very often

• Some PLCs list instruction execution time
• With full “white box” knowledge of PLC program, can estimate execution time

of rare branches

• Results
• White box not as accurate, but viable approach

Conclusion

• Threats to PLCs are increasing, but they are
still insecure by design

• PLC programmers can add security
• PLC programming

• Integrity – Don’t trust anything from the network

• Hardening – Remove unnecessary functionality

• Resilience – Assume attack/misuse, try to fail safe

• Monitoring – Trend KPI of PLC to detect incidents

• PLC program anomaly detection
• Program execution time and proof of work functions

David Formby
dformby@fortiphyd.com

Twitter: @fortiphyd
LinkedIn

mailto:dformby@fortiphyd.com

References

• Fortiphyd Training Grounds Course on Secure PLC Coding
• https://fortiphyd.talentlms.com/catalog/info/id:166

• Top 20 Secure PLC Coding Practices
• https://plc-security.com/

• ISA 62443 Standards
• https://www.isa.org/standards-and-publications/isa-standards/find-isa-standards-

in-numerical-order

• MITRE ATT&CK for ICS
• https://collaborate.mitre.org/attackics/index.php/Main_Page

• MITRE CWE
• https://cwe.mitre.org/

https://fortiphyd.talentlms.com/catalog/info/id:166
https://collaborate.mitre.org/attackics/index.php/Main_Page
https://collaborate.mitre.org/attackics/index.php/Main_Page
https://collaborate.mitre.org/attackics/index.php/Main_Page
https://cwe.mitre.org/

