

CMP3214 Computer Communication Networks

Lecture 6

Internet Protocol

Diarmuid Ó Briain CEng, FIEI, FIET, CISSP

diarmuid@obriain.com

- IPv4 defined in 1981 as RFC 791.
- Limited address space of 4.3 billion addresses (2³²) is now telling which is forcing change to IPv6 with its 3.4x10³⁸ addresses (21²⁸).
 - 0.0.0/0 Default address
 - 127.0.0.1/32 Localhost

- **Class A** (network.host.host.host):
 - 1.0.0.1 to 127.255.255.254
 - 126 networks, 16 million nodes.
 - The binary standard is: 0 + 7 network bits + 24 node bits.
- Class B (network.network.host.host):
 - 128.0.0.1 to 191.255.255.254
 - 16K networks, 65K nodes
 - The binary standard is 10 + 14 network bits + 16 node bits.
- Class C (net.net.net.host):
 - 192.0.0.1 to 223.255.255.254
 - 2 million of networks, 254 nodes.
 - The binary standard is 110 + 21 network bits + 8 node bits.

• Class D

- 224.0.0.1 to 239.255.255.255
- Reserved for Multicast
- Class E
 - 240.0.0.1 to 255.255.255.255 reserved for experimental purposes.

- Class A 10.0.0.0 to 10.255.255.255
- Class B 172.16.0.0 to 172.31.0.0
- Class C 192.168.0.0 to 192.168.255.0.

Routing

Address	Mask	Gateway	Interface
192.168.1.0	255.255.255.0 /24	-	eth1
192.168.4.0	255.255.255.0 /24	192.168.1.2	eth1
192.168.6.0	255.255.255.0 /24	192.168.1.3	eth1
0.0.0	0.0.0.0	192.168.1.1	eth1
192.168.2.0	255.255.255.0 /24	-	eth0

Diarmuid Ó Briain

CEng, FIEI, FIET, CISSP

diarmuid@obriain.com

Subnetting

10010110.11010111.**0001**0001.01100010 1111111.1111111.**1111**0000.0000000 10010110.11010111.**0001**0000.00000000

150.215.017.098IP Address255.255.240.000Subnet Mask150.215.016.000Network address

Step 1: Indentify "Interesting Octet".

			Interesting Octet	
Subnet mask	255	255	240	0
IP Address	150	215	17	9

Step 2: Indentify "Subnet differentiator".

Calculate the Network Components

Step 4: Drop down left hand side octets.

			Interesting Octet	
Subnet mask	255	255	240	0
IP Address	150	215	17	9
	Ļ	Ļ		
Resident Network	150	215		
Broadcast Address	150	215		
First Address	150	215		
Last Address	150	215		

Step 1: Make the right side octets zero.

Stan 2: Salaat naaraat (lawar) aubnat							
Siep 2. Selec	i nearest (iuwer) sur		Г		16	
						32	
			Interesting			48	
			Octet			64	
						80	
Subnet mask	255	255	240		0	96	
IP Address	150	215	17 —		9	-112	
						128	
						144	
Resident Network	150	215	16		0	⁻ 160	
Broadcast Address	150	215				176	
First Address	150	215				192	
Last Address	150	215				208	
						200	
						224	
						240	

256

Step 1: Make the right octet "255".

Step 2: Add the subnet differentiator & the interesting octet from the resident network and subtract "**1**".

Step 1: Copy resident network interesting octet to the first address interesting octet.

			Interesting Octet	
Subnet mask	255	255	240	0
IP Address	150	215	17	9
Resident Network	150	215	16	0
Broadcast Address	150	215	31	255
First Address	150	215	16 🖞	
Last Address	150	215		

Step 2: Add "1" to the last octet from the resident network and put in the last octet of the first address.

			Interesting Octet		
Subnet mask	255	255	240	0	
IP Address	150	215	17	9	
Resident Network	150	215	16	0 —	> 0 _
Broadcast Address	150	215	31	255	1 ⁺
First Address	150	215	16	1 <-	1
Last Address	150	215			
					-

Step 1: Copy the left interesting octet from the broadcast address to the interesting octet in the last address.

			Interesting Octet	
Subnet mask	255	255	240	0
IP Address	150	215	17	9
Resident Network	150	215	16	0
Broadcast Address	150	215	31	255
First Address	150	215	16	1
Last Address	150	215	31 V	

Step 2: Subtract "1" from the last octet from the broadcast address and put in the last octet of the last address.

			Interesting Octet		
Subnet mask	255	255	240	0	
IP Address	150	215	17	9	
Resident Network	150	215	16	0	
Broadcast Address	150	215	31	255	→> 255
First Address	150	215	16	1	1
Last Address	150	215	31	254 <-	254

			Interesting Octet	
Subnet mask	255	255	240	0
IP Address	150	215	17	9
Resident Network	150	215	16	0
Broadcast Address	150	215	31	255
First Address	150	215	16	1
Last Address	150	215	31	254

Subnetting

Breakdown 192.168.1.0/27 to show all its possible subnets							
		256 - 224 = 32	Interesting Octet				
Subnet mask	255	255	255	224			
Network	192	168	1	0	Zero Subnet		
Subnet 1	192	168	1	32			
Subnet 2	192	168	1	64			
Subnet 3	192	168	1	96			
Subnet 4	192	168	1	128			
Subnet 5	192	168	1	160			
Subnet 6	192	168	1	192			
	192	168	1	224	Broadcast Subnet		
	192	168	1	256			

- Subnet bits
 - 27 24 = 3
- No. of Subnets
 - $-2^{3}-2=6$
- How many hosts/subnet:
 - $-2^{5}-2=30$

Note: Some routers will allow the use the top and bottom subnet in reality however technically this is incorrect.

Subnetting

		Breakdown 172.1.0.0/20 to show all its possible subnets					
•	Subnet bits - $20 - 16 = 4$		256 - 240 = 16		Interesting Octet		
•	No. of Subnets	Subnet mask	255	255	- 240	0	
	$-2^4 - 2 = 14$	Network	172	1	0	0	Zero Subnet
•	How many hosts/subnet:						_
	$-2^{12}-2=4094$	Subnet 1	172	1	16	0	
		Subnet 2	172	1	32	0	
		Subnet 3	172	1	48	0	
		Subnet 4	172	1	64	0	
		Subnet 5	172	1	80	0	
		Subnet 6	172	1	96	0	
		Subnet 7	172	1	112	0	
		Subnet 8	172	1	128	0	
		Subnet 9	172	1	144	0	
		Subnet 10	172	1	160	0	
		Subnet 11	172	1	176	0	
		Subnet 12	172	1	192	0	
		Subnet 13	172	1	208	0	
		Subnet 14	172	1	224	0	
			172	1	240	0	Broadcast Subnet
			172	1	256	0	

Standard class C (/24) network /24 (255.255.255.0) from the network 195.1.1.0/24

Network: 195.1.1.0/24 Interesting octet: 4th NW: 0000000 (.0)

Net: 00000000 (0) → 195.1.1.0/24
IP1: 00000001 (1) → 195.1.1.1/24
IP2: 00000010 (2) → 195.1.1.2/24
IP254: 1111110 (254) → 195.1.1.254/24
BC: 1111110 (255) → 195.1.1.255/24

Subnetted /20 from /16 /20 (255.255.240.0) from the network 191.2.192.0/16

Network: 191.2.192.0/20 Interesting octet: 3rd Mask: 11110000 NW: 1100 | 0000 .0 (192.0)

(192)→ 191.2.192.0/20 1100 0000 Net: .0 .1 → 191.2.192.1/20 (193)**IP1**: 1100 0000 0010 (2) .2 → 191.2.192.2/20 **IP2**: 1100 1111 (207) .254 → 191.2.207.254/20 **IP254:** 1100 (207) .255 → 191.2.207.255/20 BC: 1100 1111

Interlink /30 (255.255.255.252) from 197.77.203.0/24

Network: 197.77.203.0/30, Interesting octet, 4th Mask: 1111100 NW: 000000 | 00 (0)

Net: 000000 | 00 (0) → 197.77.203.0/30 IP1: 000000 | 01 (1) → 197.77.203.1/30 IP2: 000000 | 10 (2) → 197.77.203.2/30 BC : 000000 | 11 (3) → 197.77.203.3/30

Host route /32 (255.255.255.255) from 10.0.0/8

10.0.0.1/32, Interesting octet, 4th Mask:11111111

- **Net:** 00000001 (0) → 10.0.0.1/32
- **IP1:** 0000001 (0) \rightarrow 10.0.0.1/32
- **BC** : 0000001 (0) $\rightarrow 10.0.0.1/32$

Diarmuid Ó Briain

CEng, FIEI, FIET, CISSP

diarmuid@obriain.com

CIDR blocks

• 62.168.1.42 in 62.168.1.32/27 but 62.168.1.72 is not.

Diarmuid Ó Briain

Assignment of CIDR blocks

- IANA issues to RIRs large, short-prefix CIDR blocks.
- RIRs subdivide these blocks and issue them publicly.
- Large ISPs obtain CIDR blocks from a RIR
 - Subdivide them for their subscribers.
- Networks served by a single ISP are encouraged by IETF to obtain IP address space from their ISP.
- Networks served by multiple ISPs often obtain independent CIDR blocks directly from the RIR.

- CIDR uses VLSM to allocate IP addresses to subnets according to individual need, rather than some general network-wide rule.
- Network/host division can occur at any bit boundary in the address.
- The process can be recursive, with further subdivision into even smaller portions.
- CIDR/VLSM network addresses are now used throughout the public Internet and in large private networks.

Prefix aggregation

- Another benefit of CIDR is the possibility of routing prefix aggregation (Supernetting / route summarisation)
 - Sixteen contiguous /24 networks as a single /20 route.
 - Two aligned contiguous /20s aggregated to a /19, etc..
 - Significant reduction in the number of routes advertised over the Internet
 - Preventing 'routing table explosions'.
- ISPs on the public Internet will typically not route anything smaller than a /19 prefix, effectively preventing small networks from Internet routing without going through a routing aggregator such as an ISP.

Internet Control Message Protocol

- Echo Reply
- Echo request
- Destination Unreachable
- Redirect Message
- Router Advertisement

- Router Solicitation
- Time Exceeded
- Parameter Problem
- Timestamp
- Timestamp Reply

Internet Control Message Protocol

f2:13:df:4a:ec:fe f8:1e:df:ec:22:cf **n1 n2** Echo (ping) request Echo (ping) reply Frame 1: 100 bytes on wire (800 bits) Frame 2: 100 bytes on wire (800 bits) Ethernet II Ethernet II Src f8:1e:df:ec:22:cf Src f2:13:df:4a:ec:fe Dst f2:13:df:4a:ec:fe Dst f8:1e:df:ec:22:cf Internet Protocol Version 4 Internet Protocol Version 4 Src: 192.168.10.2 Src: 192.168.10.1 Dst: 192.168.10.1 Dst: 192.168.10.4 Internet Control Message Protocol Internet Control Message Protocol Type: 8 (Echo (ping) request) Type: 0 (Echo (ping) reply) Code: 0 Code: 0 Checksum: 0x381e [correct] Checksum: 0x401e [correct] Identifier (BE): 19292 (0x4b5c) Identifier (BE): 19292 (0x4b5c) Identifier (LE): 23627 (0x5c4b) Identifier (LE): 23627 (0x5c4b) Sequence number (BE): 1 (0x0001) Sequence number (BE): 1 (0x0001) Sequence number (LE): 256 (0x0100) Sequence number (LE): 256 (0x0100) Data (48 bytes)

Data (48 bytes)

Thank You

Diarmuid Ó Briain CEng, FIEI, FIET, CISSP

diarmuid@obriain.com