

CMP3214 Computer Computer Communication Networks

Lecture 6

Internet Protocol – Next Generation

Diarmuid Ó Briain CEng, FIEI, FIET, CISSP

diarmuid@obriain.com

2 Billion users on the Internet

Diarmuid Ó Briain

IPv4 is has now exhausted

- RIRs are have also run out
- AFRINIC actually ran out on 3 April 2017 !!
- Black market €12/IP and NAT { Bad idea }

Where does she get her IP address ?

Solution ?

Solution ?

- IPv4 address exhaustion
 - 12 addresses per person in USA
 - 14 people per address outside USA
 - 0.62 addresses per person on the planet.
- IPv6
 - 4.9 x 10²⁸ address per person on the planet.
 - Greater than 1500 addresses per m2 of the planet.
 - Routing table growth and manageability.
 - Current addressing and routing are complicated.
 - Some routes can not be summarised effectively in IPv4.
 - NATs are disadvantageous for the Internet.

Why IPv6?

Multicast

- Multicast is part of the base protocol suite in IPv6. In IPv4 it is optional.
- Jumbograms
 - Packets payloads greater than 64 KB.
- Faster routing.
- Network Layer Security
 - IPSec.
- Mobility.

- Security features are standardised and mandated, i.e. all implementation must offer them.
- Extension of RFC-2401 Security Architecture for the Internet Protocol (IPSec)
 - Authentication and Encryption.
- Invisible to applications as it operates within the IP layer.
- It protects all upper layer protocols.
- It protects both end-to-end and router-to-router communication (secure gateway).

- IPv6 was designed to support mobility.
- Mobility is not an add-on feature
 - IPv6 Neighbour Discovery (ND) and Address Auto-configuration allow hosts to operate in any locations without any special support.
- It is more scalable and the performance is better because less traffic passes through the home link and less redirection and less rerouting.
- No single point of failure.

Address Format

Diarmuid Ó Briain CEng, FIEI, FIET, CISSP

diarmuid@obriain.com

- Separation of "who u are" from "where u are connected to"
 - Prefix: depends on the routing topology.
 - Interface ID: identifies a node (EUI-64 MAC Address).
- New Anycast addresses:
 - Unicast: from one host to another.
 - Multicast: from one to all belonging to a group.
 - Anycast: from one to the nearest belonging to a group.
- IPv4 Broadcast concept disappears
 - Replaced by All hosts multicast.

128 bits ↓ 32 nibbles ↓ 8 x 4 nibble groups

2a02:2158:0000:0000:0000:0000:ea21:b33f

Prefix

Interface ID

- The Zero Compression rule
 - Leading zeros in a group can be omitted.
- The Zero Compression rule
 - Contiguous groups of '0' can be replaced with '::' as long as there is only one double colon used in an address.

2a02:2158:0:0:0:0:ea21:b33f 2a02:2158:0::0:ea21:b33f 2a02:2158::ea21:b33f

Note: Having more than one double-colon abbreviation in an address is invalid.

2a02:2158:435a:330::9bc2:45/64

Special IPv6 addresses

Unspecified address

Default route address

0:0:0:0:0:0:0:0

Loopback

0:0:0:0: 0:0:0:1 ===> ::1

Link-local IPv6 Address (LLA)

fe80::9088:3062:ea21:b33f

::0

IPv6 packet architecture

Ver	Ver Traffic Class Flow Label					1
Payload Length			Next Header Hop Li		Hop Limit	
Source IP Address					IPv6	
Destination IP Address						
Ver	Hler	ngth	TOS	Data]	
Datagram ID			Flags	Flag Offset]	
TTL Prot		tocol	Checksum		IPv4	
Source IP Address]		
Destination IP Address						
IP Options						

Diarmuid Ó Briain

"IPv6 Packet

Ethernet II, Src: 00:16:17:ba:0e:74, Dst: 00:12:3f:dc:ab:47 Destination: 00:12:3f:dc:ab:47 Source: 00:16:17:ba:0e:74 Type: **IPv6** (0x86dd) **Internet Protocol Version 6** 0110 = Version: 6 0000 0000 = Traffic class: 0x0000000 0000 0000 0000 0000 0000 = Flowlabel: 0x00000000 Payload length: 40 Next header: ICMPv6 (0x3a) Hop limit: 128 Source: 2001::fff:10 Destination: 2001::ffff:20 Internet Control Message Protocol v6 Type: 128 (Echo request) Code: 0 Checksum: 0x94bb [correct] ID: 0x0001 Sequence: 0x000b Data (32 bytes)

ver	Hier	ngth	105	Datagram Length		
Datagram ID				Flags	Flag Offset	
TTL Protocol			ocol	Checksum		
Source IP Address						
Destination IP Address						
IP Options						

IPv4

Diarmuid Ó Briain

Diarmuid Ó Briain

Options

- IPv4 At end of IP Header.
- IPv6 Extensions Headers.
- Extension Headers
 - Only processed as necessary
 - i.e. Only routers process "Hop by Hop options header".
 - Easier to define new extensions and options.

- Hop by Hop options header.
- Destination options header.
- Routing header.
- Fragment header.
- Authentication header (AH).
- Encapsulation security payload (ESP) header.

Use the nm-connection-editor

Debian # ping6 2001::ffff:10

PING 2001::ffff:10(2001::ffff:10) 56 data bytes 64 bytes from 2001::ffff:10: icmp_seq=1 ttl=128 time=1.44 ms 64 bytes from 2001::ffff:10: icmp_seq=2 ttl=128 time=0.458 ms 64 bytes from 2001::ffff:10: icmp_seq=3 ttl=128 time=0.477 ms 64 bytes from 2001::ffff:10: icmp_seq=4 ttl=128 time=0.456 ms 64 bytes from 2001::ffff:10: icmp_seq=5 ttl=128 time=0.463 ms

--- 2001::ffff:10 ping statistics ---5 packets transmitted, 5 received, 0% packet loss, time 3998ms rtt min/avg/max/mdev = 0.456/0.660/1.446/0.393 ms

Use the command shell

ip -6 addr add 2001::ffff:0020/112 dev eth0 # ip -6 route add ::/0 via 2001::ffff:0001

review

ip -6 addr show dev eth0
ip -6 route show

GNU/Linux persistent change edit

/etc/network/interfaces

```
# vi /etc/network/interfaces
iface eth0 inet6 static
   address 2001::ffff:0020
   netmask 112
   gateway 2001::ffff:0001
~
```

:wq!

ip link set dev eth0 down
ip link set dev eth0 up

- Add the following line to the /etc/resolv.conf file.
 - # vi /etc/resolv.conf
 nameserver 2001::ffaa:00fe
 ~
 ~
 .wq!

Configuring IPv6 Address on Windows

Start → Settings → Network Connections

	In	ternet Protocol Version 6 (TCP/IP	vo) Properties	
Local Area Connection Network 5 VIA Rhine II Compatible Fart Disable Status Diagnose Bridge Connections Create Shortcut Delete		General You can get IPv6 settings assigned Otherwise, you need to ask your n Obtain an IPv6 address autor Use the following IPv6 address IPv6 address:	d automatically if your network supports t network administrator for the appropriate matically ss: 2001::ffff:10	his capability. IPv6 settings.
Rename		Default gateway:	2001::ffff:1	
Imperites Imperites		 Obtain DNS server address at Obtain DNS server Preferred DNS server: Alternate DNS server: Alternate DNS server: Server: Server:	1::fff:10 with 32 bytes of data: <ims <ims <ims <ims< th=""><th>Advanced OK Cancel</th></ims<></ims </ims </ims 	Advanced OK Cancel
OK Cancel	P	Packets: Sent = 4, Received pproximate round trip times i Minimum = 0ms, Maximum	= 4, Lost = 0 (0% loss), n milli-seconds: = 0ms, Average = 0ms	

. .

Diarmuid Ó Briain

• Prefix Terms

Prefix Term	Assigned by	Example prefix
Registry Prefix	Assigned to regional registry	2a02::/12
ISP Prefix	Assigned to ISP	2a02:2158::/32
Site Prefix	Assigned to Large Company	2a02:2158:1111/48
Site Prefix	Assigned to Smaller Company	2a02:2158:1111:100::/56
Subnet Prefix	Internal subnet within company	2a02:2158:1111:110::/64
A host address	IT Department in a company	2a02:2158:1111:110::10/128

IPv6 Relative Network Sizes

/128	1 IPv6 address	A network interface
/64	1 IPv6 subnet	18,446,744,073,709,551,616 IPv6 addresses
/56	256 LAN segments	Popular prefix size for smaller subscriber site
/48	65,536 LAN segments	Popular prefix size for larger subscriber site
/32	65,536 /48 subscriber sites	Minimum IPv6 allocation
/24	16,777,216 subscriber sites	256 times larger than the minimum IPv6 allocation

Link Local Addresss (LLA)

CEng, FIEI, FIET, CISSP

diarmuid@obriain.com

EUI-48 MAC to EUI-64 to LLA

• EUI-48 : 34ed:8432:5476

- EUI-64 : 36ed:84ff:fe32:5476
- IPv6 Host ID : ff80::36ed:84ff:fe32:5476

Diarmuid Ó Briain

CEng, FIEI, FIET, CISSP

diarmuid@obriain.com

Multicast address

IPv6 Addressing model

Multicast

fi	0 X::/ 8	
	ĮĮ.	<u>Multicast Scope</u>
	0x1	Interface local
	0x2	Link local
	<mark>0x</mark> 4	Admin local
	<mark>0x</mark> 5	Site local
	0x8	Organisation local
	0xE	Global
	0x0	Reserved
	0xF	Reserved

- i.e. **ff02::1**
 - All nodes on the local link.

Solicited-Node Multicast Address (SNMA)

• EUI-48 : 34ed:8432:5476

- EUI-48: 34ed:8432:5476
- SNMA : ff02::1::ff32:5476

IPv6 Assigned Prefixes

Address Type indicated by Format Prefix (FP).

Туре	Format Prefix (FP)	Fraction	Prefix
Loopback			::1/128
IPX	0000 101	1/128	0400::/7
GUA	001	1/8	2000::/3
LLA	1111 1110 10	1/1024	fe80::/10
Local unicast	1111 110	1/128	fc00::/7
Multicast	1111 1111	1/256	ff00::/8
Pre-defined Multicast	1111 1111 0000 0001	1/4096	ff01::/12
IPv4		1/5.90e ²⁰	::ffff:0:0/96
6to4 Translation	0000 0000 0110 0100 1111 1111 1001 1011	1/5.90e ²⁰	64:ff9b::/96

- Anycast addresses allocated from unicast prefixes.
 - Assigning a unicast address to more than one interface turns a unicast address into an anycast address.
- Approx 1/8 of the available addressing space has been allocated.

Applications

Diarmuid Ó Briain

CEng, FIEI, FIET, CISSP

diarmuid@obriain.com

IPv6 EGP Routing Protocols

- DHCPv6
 - Stateless
 - Stateful
- DNSv6
- ICMPv6

Stateless Autoconfiguration (SLAAC) Neighbour Discovery (ND)

CEng, FIEI, FIET, CISSP

diarmuid@obriain.com

- Stateless auto-configuration (SLAAC)
 - Creation of Global Unique Address (GUA).
 - Based in ICMPv6.
 - Creation of Link-local Address (LLA)
 - Assumes that each interface can provide a unique identifier.
 - With duplicate address detection.
 - Security to disable hackers plug & play.
- Stateful auto-configuration
 - Use of Stateful DHCPv6.

IPv6 SLAAC process

- Host creates a Solicited-Node Multicast Address (SNMA)
- Host registers a Multicast Listener Report for SNMA to join group
 - from (::) to ff02::16 Multicast Listener Discovery (MLD)
- Host creates a LLA
 - Sends Neighbour Solicitation (NS) (135) from (::) to SNMA with LLA target
 - If Neighbour Advertisement (NA) (136) received auto-configuration stops.
- Host registers a Multicast Listener Report for SNMA address to join group
 - from LLA to ff02::16 MLD
- Host sends Router Solicitation (133) to ff02::2 'All routers' from LLA
- Router sends Router Advertisement (134) to ff02::1 'All nodes' from its LLA with prefix
- Host creates GUA from prefix and MAC
 - Sends NS (135) from (::) to SNMA with GUA target
 - If NA (136) received auto-configuration stops.
- Finish SLAAC.

MLD to join multicast group

Neighbour Solicitation (135)

- No Neighbour Advertisement (136) is received
- No duplicate for LLA detected

MLD to join multicast group

Router Solicitation (135)

Router Advertisement (134)

Diarmuid Ó Briain

RA Flags

- M Managed Address Configuration Flag
- O Other Configuration Flag
- H Mobile IPv6 Home Agent Flag
- Prf Router Selection Preferences
- P Neighbour Discovery Proxy Flag
- R Reserved

```
ICMPv6 Option (Prefix information)

Type: Prefix information (3)

Length: 32

Prefix length: 64

Flags: 0xc0

0... ... = IP Address not DHCPv6

.1. ... = Other config on DHCPv6

.0. ... = Not router address

...0 ... = Not site prefix

Valid lifetime: 86400

Preferred lifetime: 86400

Prefix: 2001:a::
```

• If the M flag is set to 0 & the O flag is set to 1, use DHCPv6 to obtain additional configuration parameters.

RA Flags – Additional Prefix flags

- L Flag indicates whether or not the option even applies to stateless autoconfiguration.
- **A Flag -** indicate a prefix identifying a range of addresses that should be considered on-link.

М	Α	Resulting non-Link Local addresses on client			
0	0	No addresses will be auto-configured			
0	1	Address generated from prefix in RAs			
1	1	Address generated from prefix) in RAs Full address from DHCP server			
1	0	Full address(es) from DHCP server			

• Note

- The hosts must be set to obtain IP address 'automatically'
- All hosts always generate and use a Link Local address.

Neighbour Solicitation (135)

- No Neighbour Advertisement (136) is received
- No duplicate for GUA detected

MLD to join multicast group

- Stateless DHCPv6 is an extension of SLAAC to pass information like the DNS Servers and the domain name for the network to hosts.
- Because IPv6 has SLAAC the DHCPv6 server can remain stateless as it does not need to record leases as it would for IPv4.

- Stateful autoconfiguration requires access to a network DHCPv6 server to provide the addressing much like for IPv4.
- Address assignment is centrally managed and clients must obtain configuration information not available through protocols such as address autoconfiguration and neighbour discovery.

Address Resolution and Redirection

Diarmuid Ó Briain CEng, FIEI, FIET, CISSP

diarmuid@obriain.com

Address Resolution

- Host sends a NS (135) message.
- Host retains packets for the requested host in a queue.
- Host received NA (136) from distant host.
- NA (136) is added to the Neighbour cache.

Neighbour Unreachability Detection (NUD)

- D)
- Solicit a NA using a unicast probe (NS)

Diarmuid Ó Briain

ICMPv6 Redirect

Best practice

Diarmuid Ó Briain

CEng, FIEI, FIET, CISSP

diarmuid@obriain.com

- Don't fit your network into RIR minimums
 - (/32, /36 & /48)
- Typical prefix lengths
 - Multi-host LAN subnets: /64
 - Inter-router links: /127
 - Loopback addresses: /128
- Plan a hierarchical scheme to optimise for aggregation
- Ensure all prefixes fall on nibble (4 bit) boundaries

Configuration best practice - Inter-router links

- Improves security by eliminating
 - Forwarding loops (ping pong) on some p2p links
 - Neighbour Exhaustion Attacks
- Addresses with the following 64 bits must NOT be used:
 - 0000:0000:0000:0000
 - ffff:ffff:ffff:ff7f ➡ 0000:0000:0000:ffff

Configuration best practice - Inter-router links

- Improves security by eliminating
 - Forwarding loops (ping pong) on some p2p links
 - Neighbour Exhaustion Attacks
- Addresses with the following 64 bits must NOT be used:
 - 0000:0000:0000:0000
 - ffff:ffff:ffff:ff7f ➡ 0000:0000:0000:ffff

IP Address planning

- How many addresses to request from the RIR needs to plan their address space.
- ISP
 - 10 regions
 - 50 Points of Presence (POP)
 - 3,500 clients/POP.
- Calculate the number of bits in the mask for each tier in multiples of 4 (i.e. nibbles).
 - Take the value that gives a result higher that the requirement.
- A similar process is carried out for each item as outlined below.
 - Assuming each client is assigned a /48 the mask
 - POPs can be determined by subtracting 12 from 48 giving a /36
 - Subtract 8 from 36 to give a /28 for Regions
 - Subtract 4 from 28 gives a /24 for the ISP.
 - Therefore in this example the IPS requires a /24 from the RIR.

Item	#	Bits (multiple of 4)	Possible #	Mask
ISP	1	1	2	/24
Regions	10	4	16	/28
POPs	50	8	256	/36
Clients	3,500	12	4,096	/48
		24		

Diarmuid Ó Briain

CEng, FIEI, FIET, CISSP

diarmuid@obriain.com

IPv6 IGP Routing Protocols

- RIPng (RFC 2080)
 - Distance vector algorithm like the IPv4 version.
 - Implementations: GateD, MRTd, Kame, route6d, Zebra, Cisco, Juniper, MikroTik.
- OSPFv3 (RFC 2740)
 - Link State algorithm like the IPv4 version.
 - Recommended IGP of IETF.
 - Changes from OSPFv2
 - Security removed (it uses IPv6's security).
 - Format of addresses for IPv6.
 - Implementations: GateD, MRTd, Kame, route6d, Zebra, Ericsson-Telebit, IBM, Cisco, Juniper, MikroTik.

- BGP4+ (RFC 2545 and RFC 2858)
 - Inter domain routing protocol.
 - Used between ISPs and carriers.
 - RFC 2858 defines BGP4 extensions (IPX, IPv6 etc).
 - RFC 2545 defines how to use IPv6 extensions (Scopes, next hop etc).
 - Used in 6BONE.
 - Implementations: GateD, MTRd, Kame, BGPd, Zebra, Cisco, Juniper, MikroTik.

Transition mechanisms

Diarmuid Ó Briain CEng, FIEI, FIET, CISSP

diarmuid@obriain.com

IPv6 transition mechanisms

- RFC 4213 Dual stack
 - Currently most common implementation.
 - Hosts have IPv4 and IPv6 IP Address.
 - OS has hybrid sockets designed to accept both IPv4 and IPv6 packets.
 - When used in IPv4 communications, hybrid stacks use an IPv6 API and represent IPv4 addresses in a special address format, the IPv4-mapped IPv6 address.

IPv6 IPv4 ::::::195.74.32.21 195.74.32.21

 IPv4 compatible address prefix ::ffff:0:0:0/96 or ::ffff:0:a.b.c.d

::fff: 195.74.32.21

- RFC 2765 Stateless IP/ICMP Translation (SIIT)
 - SIIT translates between the packet header formats in IPv6 and IPv4.
 - SIIT can be used to allow IPv6 hosts, that are not Dual Stack, to communicate with IPv4-only hosts.

- Network Address Translation/Protocol Translation (NAT-PT)
 - Protocol translator between IPv6 and IPv4.

NAT-PT Router(config-if)# exit NAT-PT Router(config)# interface ethernet 1/1 NAT-PT Router(config-if)# ip address 195.74.32.9 255.255.255.0 NAT-PT Router(config-if)# ipv6 nat NAT64 / DNS64

NAT64 / DNS64

- NAT64 enables v6 only host to communicate with v4 only servers
- Uses the IPv6 prefix 64:ff9b::/96

IPIPv6 IPv6 tunnelling over IPv4

Diarmuid Ó Briain CEng, FIEI, FIET, CISSP

diarmuid@obriain.com

IPv6 tunnelling mechanisms

- Manual tunnelling
- Automatic 6to4 tunnelling
 - Allows isolated IPv6 sites to easily connect together without having to wait for IPv4 ISPs to deliver native IPv6 services.
 - This is very well suited for extranet and virtual private networks.
 - RFC 3056 Connection of IPv6 Domains via IPv4 Clouds (protocol 41 encapsulation)
 - RFC 4380/5991 Teredo: Tunnelling IPv6 over UDP through NATs.
 - RFC 4214 Intra-Site Automatic Tunnel Addressing Protocol (ISATAP).

Overlay Tunnels for IPv6

IPv6 tunnelling mechanisms

- RFC 3053 Tunnel Broker (TB)
 - Allows isolated users/routers to connect to the IPv6 network via a TB.
 - The router or host establishes an IPv6 encapsulation over IPv4 to the TB.
 - The TB authenticates the connection using RADIUS.
 - The router or host is assigned an IPv6 address and can now route IPv6.

IPIPv6 – IPv6 traffic over IPv4

Frame: 138 bytes on wire (1104 bits), **Ethernet II**, Src: 00:0c:42:5e:9e:ff, Dst: 00:0c:42:b4:46:ee Internet Protocol Version 4, Src: 200.200.200.11, Dst: 200.200.200.12 Version: 4 Header length: 20 bytes Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00: Not-ECT (Not ECN-Capable Transport)) Total Length: 124 Identification: 0x0000 (0) Flags: 0x02 (Don't Fragment) Fragment offset: 0 Time to live: 64 Protocol: IPv6 (41) Header checksum: 0x18b0 [correct] Source: 200.200.200.11 Destination: 200.200.200.12 Internet Protocol Version 6, Src: 2002:aaaa:1:0:212:3fff:fedc:ab47, Dst: 2002:aaaa:2:0:224:1dff:fel1:30d7 0110 = Version: 6 0000 0000 = Traffic class: 0x0000000 0000 0000 0000 0000 0000 = Flowlabel: 0x00000000 Payload length: 64 Data Next header: ICMPv6 (0x3a) Hop limit: 254 Source: 2002:aaaa:1:0:212:3fff:fedc:ab47 ICMPv6 [Source 6to4 Gateway IPv4: 170.170.0.1] [Source 6to4 SLA ID: 0] [Source SA MAC: Dell dc:ab:47] IPv6 Destination: 2002:aaaa:2:0:224:1dff:fe11:30d7 [Destination 6to4 Gateway IPv4: 170.170.0.2] IPv4 [Destination 6to4 SLA ID: 0] [Destination SA MAC: Giga-Byt 11:30:d7] Internet Control Message Protocol v6 Ethernet

Thank You

CEng, FIEI, FIET, CISSP

diarmuid@obriain.com