Data Modelling Tools

AUTMO08016

Topic 7
Front-end Application Development

|

Dr Diarmuid O Briain
Version 1.0 [01 January 2024]

TUS

Ollscoil Teicneolaiochta na Sionainne:
La&r Tire, An tlarthar Lair

Technological University of the Shannon:
Midlands Midwest

tus.ie | 7-2 AUTMO08016 — Data Modelling Tools

Copyright © 2024 C2S Consulting

Licenced under the EUPL, Version 1.2 or - as soon they will be approved by the European
Commission - subsequent versions of the EUPL (the "Licence");

You may not use this work except in compliance with the Licence.
You may obtain a copy of the Licence at:

https://joinup.ec.europa.eu/sites/default/files/custom-page/attachment/eupl_v1.2_en.pdf

Unless required by applicable law or agreed to in writing, software distributed under the Licence
is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied.

See the Licence for the specific language governing permissions and limitations under the
Licence.

Dr Diarmuid O Briain

CEng, FIEI CISSP*

Linux Version
~$ l1lsb_release —a | grep Description
Description: Ubuntu 22.04.3 LTS

Apache2 Version

~$ apache2 -v

Server version: Apache/2.4.52 (Ubuntu)
Server built: 2023-10-26T13:44:44

MariaDB Version

~$ mariadb —--version

mariadb Ver 15.1 Distrib 10.6.12-MariaDB, for debian-linux-gnu
(x86_64) using EditLine wrapper

python version
~$ python3 —--version
Python 3.10.12

TUS: MMW Front-end Application Development 08 Apr 2024

AUTMO08016 - Data Modelling Tools tus.ie | 7-3

Table of Contents

IO 0¥ o Yo 11 o= o o T 5
IO o =Tod 11 TP TP PP PR 5
2. MariaDB ConnecCtOr/PYthON........ccciiiiiiiiisnnseeerrrrsn s ssssssssssssssssssssssss s snnnnssssas 6
2.1 Default Data GENEIALOL.uueiiiiiiieeeeeei e s ieeste et e et e e teeee e e st e s anaanebeaaeeeeeeeeeeesnnaeeeeeensrnnaaeeees 7
3. Simple MariaDB Connector module..........cciiiimimmcirrirrrmescn s ere e s s snssnes 10
4. Custom Database interface........ccccceiiiiieciniiiecccrr s s s s e s e e e 12
4.1 Python Virtual ENVIFONMENT.........uuiiiiiiiiiiiae ettt e e e e e e e e st eeeeeaaa e e e aaaenees 12
4.2 Virtual ENVIronmMeNnt MOUUIES.......uuuiiiii i e e e e e e e eeaaa s 13
4.3 How the Database connector module WOTKS...........cooiiiiiieiiie e 14
4.4 L.0gin 10 the apPliCALION.........ccoi it e e e e e e e r e eaaaae 19
4.5 Read from the database.........ccccuuiiiiiiiiiiie e ene 20
4.6 WIite 10 the Database.........ueviiiiiiiiiiii et a e 21
4.7 Delete from the Database...........ccociiiiiii e 22
5. Moving the application into production on Apache2...........ccccccoieiiiiiiiiiniiinneasinin. 24
5.1 Apache2 site configuration fil€...........eeiiiiiii i 24
5.2 Install the WSGI and enable it for APache2...........cooiiiiiiiiiiiii e 25
5.3 LAUNCH APACNE2 SEIVET......eoiiiiiiiiiiee ettt e e e e e e e e e e e e e e e 25
5.4 Test the new Service in ProdUCTION............eiiiiiiiiiie et 26
LT =T o Lo 1 (o] oY 3 I 27
6.1 Create a custom interface to the counties database............occveeveiiiiiiiie i, 27

08 Apr 2024 Front-end Application Development TUS: MMW

tus.ie | 7-4 AUTMO08016 - Data Modelling Tools

Table

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:

of Figures

MariaDB Connector/PYTNON...........ooiiiiiiiii e 6
Basic query via MariaDB Connector/PYthoN..........ccccuuuiiiiiiiiiiiiiieeeeeecceeeii e 6
mariadb conNNEctor MOAUIE....... oo 10
Testing mariadb_CONN.PY ... 11
PYthON SYS.PatN.....coe 12
Connect to MariaDB Database............cooviiiiiiiiiiiiiiiiiiiieee e 14
Y= [T o i 0] o o4 1 o TR 14
T TST =T o O {1 o o) o 15
Delete fUNCHON. ... e e 15
Browse to development WEDSEIVEN.............uuviiiiiiiiiiieeeeeeee e 17
How indexX.html is DUIIL..........ooorii e e 18
RoOt of CUStOM @PPlICALION.......cooiiiiiiii e 19
Read from the Database..............uuueiiiiiiiiiii e 20
Write to the database..........oooviiiiiiiiii e 21
View the NeWly added USET..........uuiiiiiiiiiiiieeeee et 22
Delete from the database............coooiiiiiiiiiiiicce e 23
Read to confirm the delete............oouueiiiiiiii e 23
View service from another Workstation..............cooooviiiiiiiiii e, 26

TUS: MMW

Front-end Application Development 08 Apr 2024

AUTMO08016 - Data Modelling Tools tus.ie | 7-5

1. Introduction

To this point the topics have focused on the database and the backend processes
responsible for processing data, handling logic, and communicating with external
systems. This topic considered a frontend, also known as the presentation layer, which
is the part of the application that users interact with directly. It comprises the Graphical
User Interface (GUI), the visual elements that allow users to navigate, input data, and
view outputs. The connection between the frontend and backend is crucial for enabling
data exchange and interaction. When a user performs an action on the frontend, such as
submitting a form or clicking a button, this event triggers a request to the backend. The
backend then retrieves or modifies data from the MariaDB database, processes it, and
sends the updated information back to the frontend for display.

To create a dynamic frontend that interacts with the MariaDB database, various web
frameworks and libraries can be employed. Flask, Django, and Web.py are popular
options that provide a structured framework for building web applications. By combining
Python's versatility and MariaDB's robust data management capabilities, powerful and
scalable web applications can be created that seamlessly deliver dynamic content to
users. Python's expressiveness empowers the backend to handle complex logic and
data manipulation, while MariaDB's efficiency ensures efficient storage and retrieval of
information.

1.1 Objectives

By the end of this topic the learner will be able to
+ Develop a front-end that interface to manage a back-end database.

08 Apr 2024 Front-end Application Development TUS: MMW

tus.ie | 7-6 AUTMO08016 — Data Modelling Tools

2. MariaDB Connector/Python

Yo /— \\
- import mariadb

mariadb <
Connector
N J & 4
Figure 1: MariaDB Connector/Python

(.venv)~$ sudo python3 -m pip install mariadb

The MariaDB connector/Python permits the use of Python to manage data stored in
MariaDB Platform. As in Figure 2, a python program that has imported the python
mariadb module has access to a connection class with the following methods.

connect (): Establishes a connection to a MariaDB database server and returns
a connection object.

cursor () : Returns a new cursor object for the current connection.
This keeps track of where an operation is taking place in the database.
close(): Closes the connection.

~$./basic_query.py
#!/usr/bin/env python3

import mariadb

query = ("SELECT * FROM EngProject;")

conn = mariadb.connect (user="enguser", password="engpass",
Host="127.0.0.1", port=3306,
database="Eng")

cur = conn.cursor ()

cur.execute (query)

print (cur.fetchall())

cur.close ()

conn.close ()

Figure 2: Basic query via MariaDB Connector/Python

~$./basic_query.py [(1, 'alovelace', 'Ada', 'Lovelace',
'ada@lovelace.com', 'Programmer'), (2, 'lmenabrea', 'Luigi',
'Menabrea', 'luigi@menabrea.it', 'Politician'), (3, 'equinn',
'Edel’', 'Quinn', 'edel@quinn.net', 'Nurse'), (4, 'vcunnane',
'Vincent', 'Cunnane', 'vc@tus.ie', 'Professor')]

TUS: MMW Front-end Application Development 08 Apr 2024

AUTMO08016 - Data Modelling Tools tus.ie | 7-7

2.1 Default Data Generator

The following Python program will use the MariaDB Connector/Python to populate the
database with sample data. It reads in the configuration information from the,
conf.yml, YAML file, requests the database password and if it is correctly supplied, it
will populate the database.

~$ sudo apt install tree

~$ tree data_gen
data_gen

F— conf.yml
L— default_dbsetup.py

The conf . yml supplies the basic configuration information to the main program. This is
in Yet Another Markup Language (YAML) format and is read by the main
program using the pyyaml module.

~$ cd data_gen
data_gen~$ cat conf.yml

Configuration

user: enguser # SQOL Username

host: 127.0.0.1 # SQL Database IP address
port: 3306 # SQOL TCP port

database: Eng # SOL Database

table: EngProject # SOL table name

Consider snippets from the main program, default_dbsetup.py. The configuration
information is read from the conf . ym1 file.

// Get the configuration information from YAML //
with open(f"{__dir__}/conf.yml", "r") as fh:
try:
conf = yaml.safe_load(fh)
table = conf.pop("table")
time = conf.pop("time")
except yaml.YAMLError as err:
print (f"Error: {err}", file=sys.stderr)
sys.exit (1)

08 Apr 2024 Front-end Application Development TUS: MMW

tus.ie | 7-8 AUTMO08016 — Data Modelling Tools

Adding in the following lines after this section produces this output to demonstrate.

print (f"\ntable: {table}\nconf: {conf}")
exit ()

data_gen~$./default_dbsetup.py
table: EngProject

conf: {'user': 'enguser', 'host': '127.0.0.1', 'port': 3306, 'database': 'Eng'}

Remove these added lines again.

Using the mariadb module a connection is made to the database.

// Connect to the MariaDB database //

try:

conn = mariadb.connect (
user=conf ["user"],
password=conf ["password"],
host=conf["host"],
port=conf ["port"],
database=conf ["database"])

cur = conn.cursor ()

print (f"\nConnected to the {conf['database']} database\n")

except mariadb.Error as e:
print (f"\nError connecting to MariaDB Platform: {e}")
sys.exit (1)

Existing tables are deleted and new tables created.

// Delete the current database tables in MariaDB //
for key in db_tables.keys() :
query = f"DROP TABLE IF EXISTS Eng.{key};"
cur.execute (query)
print (query)

// Create tables //

for query in db_tables.values():
cur.execute (query)
print (query)

// Populate tables with some data //
for key, value in db_data.items():
for str_ in value:
query = f"INSERT INTO {key} VALUES ({str_})"
cur.execute (query)
conn.commit ()
print (query)

Connection is closed to the cursor and the database.

// Close connection to MariaDB //
cur.close ()
conn.close ()

TUS: MMW Front-end Application Development 08 Apr 2024

AUTMO08016 - Data Modelling Tools tus.ie | 7-9

~$ ecd data_gen
data_gen~$./default_dbsetup.py

Default engCORE Database generator

This program drops existing 'EngProject' and 'EngHobbies'
tables from the 'Eng' database, creates net tables and
populates them with some sample data.

Enter the password to access database: engpass
Connected to the Eng database

DROP TABLE IF EXISTS Eng.EngProject;
DROP TABLE IF EXISTS Eng.EngHobbies;

CREATE TABLE EngProject (Student_no INT NOT NULL, Username TEXT NULL,
FirstName TEXT NULL, LastName TEXT NULL, Email TEXT NULL, Role TEXT
NULL, PRIMARY KEY (Student_no));

CREATE TABLE EngHobbies (Student_no INT NOT NULL, Hobbies TEXT NULL,
PRIMARY KEY (Student_no));

INSERT INTO EngProject VALUES (000000, 'cbabage’', 'Charles’',
'Babbage', 'charles@babbage.com', 'Hardware')
INSERT INTO EngProject VALUES (000001, 'alovelace', 'Ada’',
'Lovelace', 'ada@lovelace.com', 'Programmer')
INSERT INTO EngProject VALUES (000002, 'lmenabrea’, 'Luigi’,
'Menabrea', 'luigi@menabrea.it', 'Politician')

INSERT INTO EngHobbies VALUES (000000, 'cricket, cards')
INSERT INTO EngHobbies VALUES (000001, 'camogie, horses')
INSERT INTO EngHobbies VALUES (000002, 'soccer, pasta')

Database Eng has now been populated.

08 Apr 2024 Front-end Application Development TUS: MMW

tus.ie | 7-10 AUTMO08016 - Data Modelling Tools

3. Simple MariaDB Connector module

Consider the file mariadb_conn.py in the files for this topic. Copy it to the python3
path for the VM.

~$ python3

Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] on
linux

Type "help", "copyright", "credits" or "license" for more
information.

>>> import mariadb_conn
>>> help (mariadb_conn)

Help on module mariadb_conn:

NAME
mariadb_conn - MariaDB connector program for SQL MasterClass

FUNCTIONS
db_connect (**kwargs)
MariaDB Connection

db_delete (conn, cur, query)
MariaDB DELETE Query

db_insert (conn, cur, query)
MariaDB INSERT Query

db_select (cur, table)
MariaDB SELECT Query

db_update (conn, cur, guery)
MariaDB UPDATE Query

FILE
/usr/lib/python3/dist-packages/mariadb_conn.py

Figure 3: mariadb connector module

It is important to gain an understanding of what this module does as it is used in the next
topic. As illustrated in Figure 3, mariadb_conn.py, has five functions that simplifies
the process of connecting to a database, selecting data from a database, inserting data
into the database and deleting data from a database.

The program incorporates a test feature to demonstrate it is working against the
database that has just been developed in this topic. This can be seen in Figure 4.

TUS: MMW Front-end Application Development 08 Apr 2024

AUTMO08016 - Data Modelling Tools tus.ie

7-11

~$./mariadb_conn.py
Connected to the Eng Database

1. SELECT 2. INSERT 3. DELETE gq. QUIT Test What? : 1
Successfully read from the EngProject Table
[('Student_no', 'Username', 'FirstName', 'LastName', 'Email', 'Role'),
(0, 'cbabage', 'Charles', 'Babbage', 'charles@babbage.com', 'Hardware'),
(1, 'alovelace', 'Ada', 'Lovelace', 'ada@lovelace.com',6 'Programmer'),
(2, 'lmenabrea', 'Luigi', 'Menabrea', 'luigi@menabrea.it', 'Politician')]
1. SELECT 2. INSERT 3. DELETE gq. QUIT Test What? : 2
query: ('EngProject', (3, 'ddiddly', 'Diddly', 'Dee', 'dee@diddly.com',
'Programmer'))

Successfully inserted into the EngProject Table

Successfully read from the EngProject Table

[('Student_no', 'Username', 'FirstName', 'LastName', 'Email', 'Role'),
(0, 'cbabage', 'Charles', 'Babbage', 'charles@babbage.com', 'Hardware'),
(1, 'alovelace', 'Ada', 'Lovelace', 'ada@lovelace.com', 'Programmer'),
(2, 'lmenabrea', 'Luigi', 'Menabrea', 'luigi@menabrea.it', 'Politician'),
(3, 'ddiddly', 'Diddly', 'Dee', 'dee@diddly.com', 'Programmer')]

1. SELECT 2. INSERT 3. DELETE g. QUIT Test What? : 3

Successfully deleted from the EngProject Table

Successfully read from the EngProject Table

[('Student_no', 'Username', 'FirstName', 'LastName', 'Email', 'Role'),
(0, 'cbabage', 'Charles', 'Babbage', 'charles@babbage.com', 'Hardware'),
(1, 'alovelace', 'Ada', 'Lovelace', 'ada@lovelace.com',6 'Programmer'),
(2, 'lmenabrea', 'Luigi', 'Menabrea', 'luigi@menabrea.it', 'Politician')]
1. SELECT 2. INSERT 3. DELETE q. QUIT Test What? : Q

Testing completed!!

Figure 4: Testing mariadb_conn.py

08 Apr 2024 Front-end Application Development TUS: MMW

tus.ie | 7-12 AUTMO08016 - Data Modelling Tools

4. Custom Database interface

4.1 Python Virtual Environment

Python has a feature called virtual environments (venv). These are self-contained
directory trees that contains a Python installation for a particular version of Python, plus
any required additional packages. Different applications can then use different virtual
environments. This prevents conditions where one application requires a particular
version of Python or a Python module that is different to other applications. It also offers
a good place to store the module mariadb_conn.py created for this program as it
provides a consistent path.

This module is stored in the Python virtual environment sys.path, so it is available to
the web app program init .py that will be explained later in this document. This path
can be identified via the Python interactive interpreter as follows in Figure 5:

Install the Virtual Environment feature.

~$ sudo apt install -y python3-venv

Create a Virtual environment in the directory ~/.venv.

~$ python3 -m venv ~/.venv

Activate the virtual Environment.

~$ source ~/.venv/bin/activate
(.venv)~$ python3
Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] on linux

Type "help", "copyright", "credits" or "license" for more
information.
Type "help", "copyright", "credits" or "license" for more information.

Find the path to the modules in the Virtual Environment.

>>> import sys

>>> sys.path

['', '"/usr/lib/python310.zip', '/usr/lib/python3.10"',
'/usr/lib/python3.10/1lib-dynload"',
'/home/ada/.venv/1lib/python3.10/site-packages']

>>> quit ()

~$

Figure 5: Python sys.path

TUS: MMW Front-end Application Development 08 Apr 2024

AUTMO08016 - Data Modelling Tools tus.ie | 7-13

4.2 Virtual Environment modules

The following three Python modules are installed by default when the virtual
environment is created.

(.venv)~$ python3 -m pip list

Package Version
pip 20.3.4
pkg-resources 0.0.0
setuptools 44.1.1

Install the following Python modules.

(.venv)~$ python -m pip install flask jinja2 mariadb pyyaml

(.venv)~$ python3 -m pip list
Package Version

1
8
Flask 3
itsdangerous 2.
Jinja2 3.
mariadb 1
MarkupSafe 2
packaging 2
pip 2 .
PyYAML 6.0.1
setuptools 59.6.0
Werkzeug 3.0.1

The directory where these packages are installed is important, please note it.

~$ 1ls ~/.venv/lib/python3.10/site-packages/

blinker jinjaz pkg_resources
blinker-1.7.0.dist-info Jinja2-3.1.2.dist-info PyYAML-
6.0.1.dist-info click mariadb
setuptools click-8.1.7.dist-info mariadb-
1.1.8.dist-info setuptools-59.6.0.dist-info
_distutils_hack markupsafe werkzeug
distutils-precedence.pth MarkupSafe-2.1.3.dist-info
werkzeug-3.0.1.dist-info flask

packaging _yaml

flask-3.0.0.dist-info packaging-23.2.dist-info yaml
itsdangerous pip

itsdangerous—-2.1.2.dist-info pip-22.0.2.dist-info

08 Apr 2024 Front-end Application Development TUS: MMW

tus.ie | 7-14 AUTMO08016 - Data Modelling Tools

4.3 How the Database connector module works

This program supplies functions to the init .py program that can read, write or delete
data from the database. The complete program is available in the associated files. This
section explores the functionality through various snippets.

// Connect to MariaDB Platform //
def db_connect (**kwargs) :
"""MariaDB Connection"""
try:
conn = mariadb.connect (
user=kwargs["user"],
password=kwargs|["password"],
host=kwargs["host"],
port=kwargs|["port"],
database=kwargs|["database"],
)
print (f"Connected to the {kwargs|['database']} Database\n")
except mariadb.Error as e:
print (f"Error connecting to MariaDB Platform: {e}")
sys.exit (1)
return (conn, conn.cursor())

Figure 6: Connect to MariaDB Database

The snippet in Figure 6 demonstrates how the program establishes a database
connection with the mariadb modules connect () function. This function takes the
arguments necessary to connect to the mariadb database and returns a
mariadb.connection object which provides an interface for the connection to the
MariaDB Server. The cursor () method on the connection object retrieve a cursor, a
particular interface for interaction with the Server, such as running SQL queries and
managing transactions. This is a class of type mariadb.connection.cursor.

// SELECT Query to MariaDB Platform //
def db_select (cur, table):
"""MariaDB SELECT Query"""

def db_select_query (cur, query):
"""Execute the SQL SELECT Query"""

try:
cur.execute (query)
return cur.fetchall ()
except:
print ("Error: Failed to get return to SELECT query")
sys.exit (1)

list_ = list()
col_query = f"SHOW COLUMNS FROM {table};"
list_ = [tuple([x[0] for x in db_select_query (cur, col_query)])]

main_query = f"SELECT * FROM {table};"
list_.extend(db_select_query(cur, main_query))

return list_

Figure 7: Select function

TUS: MMW Front-end Application Development 08 Apr 2024

AUTMO08016 - Data Modelling Tools tus.ie | 7-15

The db_select () function, in Figure 7, is called with the cursor, cur, and a query
consisting of a SQL SELECT query and a table name. This function has an inner function
db_select_query () which is in fact called twice, once to retrieve the table column
names and a second time to retrieve the table data. These are assembled into a list of
tuples and returned from where they are called.

// INSERT Query to MariaDB Platform //

def db_insert (conn, cur, query):
"""MariaDB INSERT Query"""

insert_query = f"INSERT INTO {query[1]} VALUES {query[2]};"

try:
cur.execute (insert_query)
conn.commit ()
print (f"Successfully inserted into the {query[1]} Database")
return (True, insert_query)
except:
print (f"Error: Could not add data to {query[1l]}")
return (False, insert_qguery)

Figure 8: Insert function

The INSERT function, db_insert (), illustrated in Figure 8, receives the connection
object, conn, the cursor object, cur, and a query tuple consisting of the table name and
a tuple of values. These are assembled into a query, the query is executed and
committed on the connection.
// DELETE Query to MariaDB Platform //

)t

def db_delete(conn, cur, query
"""MariaDB DELETE Query"""

delete_query = f"DELETE FROM {query[l1]} WHERE {query[2]
[01}={query[2][1]};"

try:
cur.execute (delete_query)
conn.commit ()
print (f"Successfully deleted from the {query[l1]} Database")
return True

except:
print (f"Error: Could not delete data from {query[1]}")
sys.exit (1)

return True
Figure 9: Delete function

In a similar way, the db_delete function, illustrated in Figure 9, given the table name, a
column name and a value will delete the row from the table. Where possible it makes
sense to use the Student_no as the field as this is the primary key in the database and
therefore is unique.

The code after the if _ _name__ == "_ _main__": loop is only ran if the
mariadb_conn.py module is ran standalone, as shown in Figure 4. This is only for
testing the module, under normal operation the module is called from the init.py

program and this part is ignored.

08 Apr 2024 Front-end Application Development TUS: MMW

tus.ie | 7-16 AUTMO08016 - Data Modelling Tools

Consider the files in the web_main directory. This is the Python Flask web app for the
device holding the main database.

(.venv)~$ tree ~/web_main
/home/ada/web_main
— app.wsgi
—— conf.yml
— init.py
— README. txt
— static
—— Css
L— main.css
— images
L— TUS_White.png
— templates
—— about.html
— delete.html
— home.html
— index.html
— layout.html
— login.html
— read.html
— write.html
— tools
default_dbsetup.py
mariadb_conn.py

Move the mariadb_conn.py module in the python virtual environment sys.path as
the Apache2 webserver WSGI has been supplied with that path:

~$ cp ~/web_main/mariadb_conn.py ~/.venv/lib/python3.10/site—packages/

The app can be tested using a development environment before being moved to
production on the Apache2 webserver.

(.venv)~$ python3 ~/web_main/init.py
* Serving Flask app 'init'
* Debug mode: on

WARNING: This 1is a development server. Do not wuse it 1in a production
deployment. Use a production WSGI server instead.

* Running on http://127.0.0.1:5000
Press CTRL+C to quit

* Restarting with stat

* Debugger is active!

* Debugger PIN: 460-699-611

Using a browser on the same device browse to the URL indicated in Figure 11. Note the
following lines appear in the terminal.

127.0.0.1 [15/0ct /2022 14:31:18] "GET / HTTP/1.1" 200 -

127.0.0.1 - - [15/0ct/2022 14:31:18] "GET /static/css/main.css HTTP/1.1" 200 -
1 []
1 []

127.0.0. 15/0ct /2022 14:31:18] "GET /static/images/TUS_White.png HTTP/1.1" 200 -
127.0.0. 15/0ct /2022 14:31:18] "GET /favicon.ico HTTP/1.1" 404 -

TUS: MMW Front-end Application Development 08 Apr 2024

AUTMO08016 - Data Modelling Tools tus.ie | 7-17

4.4 The creation of index.html from templates

Extract from: init.py
title = "TUS Database"

@app.route ("/")
def index():
"""The main index page'""
return render_template ("index.html", title=title)

S D

index.html layout.html main.css

~$ cat index.html
{% include "layout.html" %}

block content %}
<diwv>
<h1>{{ title }}</hil>
<p>This is a utility to manage the {{ title }}.</p> ¢—
<p>Login with the password to access the database.</p>
</div>
endblock %}

© oo

-~
o\

—~
o\°

Figure 10: How index.html is built

index.html in the templates directory is only part of the page presented. As shown in
Figure 10, using Jinja2 templating, index.html includes that 1ayout . html template
which in turn uses the Cascading Style Sheet (CSS), static/css/main.css. Jinja2
allows for the embedding of layout .html at the top of index.html and allows for
variable interpolation inside {{ }}. This can be seen for the string variable title. A
similar process is carried out for the 1ogin, home, read, write, delete and about
routes from init . py.

08 Apr 2024 Front-end Application Development TUS: MMW

tus.ie | 7-18 AUTMO08016 - Data Modelling Tools

2 TUS Database Manager x ar ' = (=) g

<« C O [127.0.0.1:5000/login? ¥ 5 =

Login || Read || Write || Delete About || Logouk

Authentication

Enter password for the database.

Password:

Submit

Figure 11: Browse to development webserver

// Flask app //
app = Flask (__name_)

@app.route ("/")
def index():
"""The main index page'""
return render_template ("index.html", title=title)

The webserver is driven by the init.py python program. When init.py is called

Flask () is instantiated as app. This presents the default route which renders the
index.html page.

TUS: MMW Front-end Application Development 08 Apr 2024

AUTMO08016 - Data Modelling Tools tus.ie | 7-19

4.5 Login to the application

Select the Login button and a password box is presented, which is expecting the
password for the enguser user in the database. Without this, the application will not be
able to connect to the database. Be careful not to hardcode the password for the
database into the code as this is a clear security issue. The sample program stores the
password in a hidden temporary file /tmp/ . pass when using the development server.
When moved to apache the webserver establishes a temporary file for its process.

~$ cat /tmp/.pass
engpass

~$ sudo -s

~# cat /tmp/systemd-private—aedf7ba0df264e66a949a17912810802-
apache2.service-Cgcetf/tmp/.pass

engpass

"3 TUS Database Manager x ar e - O x

&« C O O 127.0.0.1:5000/login? ¥ & =

Login || Read || Write || Delete About || Logout

Authentication

Enter password for the database.
Password: engpass

Submit

Figure 12: Root of custom application

Now the user can select Read, Write, Delete, About or Logout buttons.

08 Apr 2024 Front-end Application Development TUS: MMW

tus.ie | 7-20 AUTMO08016 - Data Modelling Tools

4.6 Read from the database

@ | TUS Database Manager x + e = = &

¢« C O O or 127.0.0.1:5000/read s & =

Login || Read || Write || Delete About || Logout

TUS Database Manager

Student no |Username|First name|Last name e-Mail Role
0 chabage | Charles | Babbage |charles@babbage.com| Hardware
1 alovelace Ada Lovelace ada@lovelace.com |Programmer
2 Imenabrea Luigi Menabrea | luigi@menabrea.it Politician

Figure 13: Read from the Database

By selecting the Read button the db_connect () followed by the db_select ()
functions in the mariadb_conn.py module are called. This creates a connection to
the database and executes the SQL Query:

SELECT * FROM 'EngProject';

TUS: MMW Front-end Application Development 08 Apr 2024

AUTMO08016 - Data Modelling Tools tus.ie | 7-21

4.7 Write to the Database

@ | Tus Database Manager X | + ~

&« C O O 127.0.0.1:5000/write? o7 gy =

Login || Read || Write || Delete About || Logout

Add entry to the Database

Add new entry to the database.

Username equinn

First name Edel

Last name Quinn

e-mail address | edel@quinn.net
Role Murse

Submit

Figure 14: Write to the database

As illustrated in Figure 14, upon selecting the Write button, a form is presented,
once filled and the submit button is selected the db_connect () followed by the
db_insert () functions in the mariadb_conn.py module are called. This finds the

Student_no for the existing entries, sorts them and selects the next available
number. It then executes the query:

INSERT INTO 'EngProject’ VALUES (<next number>, 'equinn’,
'Edel’', 'Quinn', 'eden@quinn.net’', 'Nurse'’);

If the Read button is selected, and as illustrated in Figure 15, the newly added user can
be seen within the database.

08 Apr 2024 Front-end Application Development TUS: MMW

tus.ie | 7-22 AUTMO08016 - Data Modelling Tools

@ | TUS Database Manager X | + ~ - o0 x

«c 3 O O 127.0.0.1:5000/read b 8 =

Login || Read || Write || Delete About || Logout

TUS Database Manager

Student Username First Last e-Mail Role
no name name
0 chabage | Charles | Babbage |charles@babbage.com| Hardware
1 alovelace Ada Lovelace | ada@lovelace.com |Programmer
2 Imenabrea| Luigi |[Menabrea| Iuigi@menabrea.it Politician
3 equinn Edel Quinn edel@quinn.net Nurse

Figure 15: View the newly added user

4.8 Delete from the Database

As shown in Figure 11, upon selecting the Delete button, a form is presented
requesting a Student number for deletion. For example to delete Ada Lovelace from
the database, enter her number 0, and select the Submit button. The
db_connect () followed by the db_delete () functions in the mariadb_conn.py
module are called. This executes the query:

DELETE FROM EngProject WHERE 'Student_no'=0;

TUS: MMW Front-end Application Development 08 Apr 2024

AUTMO08016 - Data Modelling Tools tus.ie | 7-23

@ | TUus Database Manager X | + ~ - o x

< & O DO 127.0.0.1:5000/delete? e N =

Login || Read || write || Delete About || Logouk

Delete entry from the Database

Delete a user from the database.

Student number |0
Submit

Figure 16: Delete from the database

Again a Read of the database confirms the delete, this is illustrated in Figure 17.

2 TUS Database Manager x ar ' - o x

&« &) QO [127.0.0.1:5000/read 7 g =

Login || Read || Write || Delete About || Logout

TUS Database Manager

Student no |Username |First name|Last name e-Mail Role
1 alovelace Ada Lovelace |ada@lovelace.com|Programmer
2 Imenabrea Luigi Menabrea | luigi@menabrea.it | Politician
3 equinn Edel Quinn edel@quinn.net Nurse

Figure 17: Read to confirm the delete

08 Apr 2024 Front-end Application Development TUS: MMW

tus.ie | 7-24 AUTMO08016 - Data Modelling Tools

5. Moving the application into production on Apache2

Now the Python web application is running it is necessary to move it from the
development server into production. Move the web app under the Apache2 server root.
~$ sudo cp -r ~/web_main /var/www/html/web

~$ sudo chown -R www—data: /var/www/html/web

Give the website user access to the group hosting the virtual environment and
vicaversa.

~$ sudo usermod -a -G ada www-—data
~$ sudo usermod —-a -G www—data ada

~$ cat /etc/group | grep “www
www—data:x:33:ada

~$ cat /etc/group | grep “ada
ada:x:1000:www—-data

5.1 Apache2 site configuration file

Create an Apache?2 site configuration file by replacing the default file, this points to the
Web Server Gateway Interface (WSGI), app.wsgi and the directory for the Python
app.

~$ ed /etc/apache2/sites-available/
/etc/apache2/sites—-available$ sudo mv 000-default.conf 000-default.conf.orig
/etc/apache2/sites—available$ cat <<EOM | sudo tee 000-default.conf

<VirtualHost *:80>
ServerAdmin webmaster@localhost

WSGIScriptAlias / /var/www/html/web/app.wsgi
<Directory /var/www/html/web>

Order allow,deny

Allow from all
</Directory>

ErrorLog /error.log
CustomLog /access.log combined

</VirtualHost>
EOM

TUS: MMW Front-end Application Development 08 Apr 2024

AUTMO08016 - Data Modelling Tools tus.ie | 7-25

For the python3 instance employed by the Apache2 server, the app.wsgi file adds to
the Python path the virtual environment path created earlier as that is the source of the
python modules as well as the root of the app, on the Apache2 webserver, as that is the
location of the init .py and all its associated files. It then imports app, the Flask ()
instance from the init . py file acting as a module init in this instance.

~$ sudo cat /var/www/html/web/app.wsgi
import sys

sys.path.insert (0, "/home/ada/.venv/lib/python3.10/site-packages")
sys.path.insert (0, "/var/www/html/web")

from init import app as application

5.2 Install the WSGI and enable it for Apache2

Install the Apache2 WSGI library and, using a2enmod enable the library module within
the apache?2 configuration.

~$ sudo apt install libapache2-mod-wsgi-py3
~$ sudo a2enmod wsgi
Enabling module wsgi.

5.3 Launch Apache2 Server

Relaunch the Apache2 Server to read in the library module configuration and therefore
enable the python application.

~$ sudo systemctl restart apache2

~$ sudo systemctl status apache2
® apache2.service - The Apache HTTP Server
Loaded: loaded (/lib/systemd/system/apache2.service; enabled; vendor prese>
Active: active (running) since Thu 2023-12-28 13:32:10 GMT; 17s ago
Docs: https://httpd.apache.org/docs/2.4/
Process: 7948 ExecStart=/usr/sbin/apachectl start (code=exited, status=0/SU>
Main PID: 7953 (apache2)
Tasks: 6 (limit: 9430)
Memory: 29.2M
CPU: 219ms
CGroup: /system.slice/apache2.service
[—7953 /usr/sbin/apache2 -k start
[—=7955 /usr/sbin/apache2 -k start
[—7956 /usr/sbin/apache2 -k start
7957 /usr/sbin/apache2 -k start
[—7958 /usr/sbin/apache2 -k start
L-7959 /usr/sbin/apache2 -k start

Dec 28 13:32:10 ada-VirtualBox systemd[1]: Starting The Apache HTTP Server...
Dec 28 13:32:10 ada-VirtualBox apachectl[7952]: AH00558: apache2: Could not rel>
Dec 28 13:32:10 ada-VirtualBox systemd[1l]: Started The Apache HTTP Server.

08 Apr 2024 Front-end Application Development TUS: MMW

tus.ie | 7-26 AUTMO08016 - Data Modelling Tools

5.4 Test the new service in production

As illustrated in Figure 18, from another workstation, browse to the host with the
Apache2 service. The TUS Database application can be accessed and operates in the
same way the development one did locally.

TUS Database Manager — Mozilla Firefox — O ﬁ

File Edit View History Bookmarks Tools Help

El TUS Database Manager * + o

< C O & 192.168.0.23 &N » =

': TUS TUS Database

Login || Read || Write || Delete About || Logout

TUS Database

This is a utility to manage the TUS Database.

Login with the password to access the database.

Figure 18: View service from another workstation

TUS: MMW Front-end Application Development 08 Apr 2024

AUTMO08016 - Data Modelling Tools tus.ie | 7-27

6. Laboratory #1

6.1 Create a custom interface to the counties database

+ Create a web based interface to the database.
* Permit input of County capitals, rivers, mountains and sports.

+ Do no permit removal of county information from the Counties table once
entered.

* Have a mechanism to change the county sport if it is wrong.
* Document each stage.

Notes:

08 Apr 2024 Front-end Application Development TUS: MMW

tus.ie | 7-28 AUTMO08016 - Data Modelling Tools

This page is intentionally blank

TUS: MMW Front-end Application Development 08 Apr 2024

	1. Introduction
	1.1 Objectives

	2. MariaDB Connector/Python
	2.1 Default Data Generator

	3. Simple MariaDB Connector module
	4. Custom Database interface
	4.1 Python Virtual Environment
	4.2 Virtual Environment modules
	4.3 How the Database connector module works
	4.4 The creation of index.html from templates
	4.5 Login to the application
	4.6 Read from the database
	4.7 Write to the Database
	4.8 Delete from the Database

	5. Moving the application into production on Apache2
	5.1 Apache2 site configuration file
	5.2 Install the WSGI and enable it for Apache2
	5.3 Launch Apache2 Server
	5.4 Test the new service in production

	6. Laboratory #1
	6.1 Create a custom interface to the counties database

