
AUTM08017 - Object Oriented Programming tus.ie | 1-1

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

Object Oriented Programming
based on Python 3

AUTM08017

Introduction to Python3

Dr Diarmuid Ó Briain
Version 2.0 [15 September 2024]

AUTM08017 - Object Oriented Programming tus.ie | 1-2

Copyright © 2024 C²S Consulting

Licenced under the EUPL, Version 1.2 or – as soon they will be approved by the European
Commission - subsequent versions of the EUPL (the "Licence");

You may not use this work except in compliance with the Licence.

You may obtain a copy of the Licence at:

https://joinup.ec.europa.eu/sites/default/files/custom-page/attachment/eupl_v1.2_en.pdf

Unless required by applicable law or agreed to in writing, software distributed under the Licence
is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied.

See the Licence for the specific language governing permissions and limitations under the
Licence.

Dr Diarmuid Ó Briain

~$ python3
>>> import sys
>>> sys.version
'3.12.3 (main, Jul 31 2024, 17:43:48) [GCC 13.2.0]'

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

AUTM08017 - Object Oriented Programming tus.ie | 1-3

Table of Contents

1. Tutorial: Flowcharts and Pseudocode...5

1.1 Rules For Creating Flowchart.. 6

1.2 Pseudocode... 6

1.3 Using a Flowchart to understand a program requirement..6

2. Exercise 1.1...8

3. Brief History of Python..9

4. Python home...10

5. Installing Python..11

5.1 Python on GNU/Linux..11

5.2 Python on Microsoft Windows...12

6. Running Python..13

6.1 The Python Interpreter on GNU/Linux - python3...13

6.2 The Python Interpreters on Microsoft Windows, python..14

6.3 iPython.. 14

6.4 bPython...15

7. Integrated Development and Learning Environment (IDLE)..................................16

7.1 Text editors and Integrated Development Environment (IDE)...18

7.1.1 CudaText...18

7.1.2 Sublime text..19

7.1.3 Notepad++ on Microsoft Windows..19

8. Running Programs...20

9. Mathematical Operators..24

10. Simple functions..25

11. Getting help on functions within a module..26

12. Bytecode files...26

13. Exercise #1.2...27

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

AUTM08017 - Object Oriented Programming tus.ie | 1-4

Table of Figures

Illustration 1: Basic Symbols used in Flowchart Designs...5

Illustration 2: Flowchart, Pseudocode and code for Hello World..6

Illustration 3: Flowchart for simple add program..7

Illustration 4: Another Flowchart to Python Code example..8

Illustration 5: Python documentation..10

Illustration 6: Python for Microsoft Windows..12

Illustration 7: Python installed on Microsoft Windows..12

Illustration 8: IDLE..16

Illustration 9: IDLE Editor and Run module option...16

Illustration 10: hello_world.py in gedit..17

Illustration 11: Gnome Gedit...18

Illustration 12: CudaText..18

Illustration 13: Sublime text..19

Illustration 14: Notepad++.. 19

Illustration 15: factorial.py flowchart...20

Illustration 16: factorial.py ran on GNU/Linux...21

Illustration 17: factorial.py loops through function..21

Illustration 18: factorial.py ran on Microsoft Windows..22

Illustration 19: RE-script.py..22

Illustration 20: unique_sorted_list.py..23

Illustration 21: Simple functions..25

Illustration 22: Python Virtual Machine...26

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

AUTM08017 - Object Oriented Programming tus.ie | 1-5

1. Tutorial: Flowcharts and Pseudocode

Flowcharts can be useful for planning programs. The flowchart is a form of graphical
representation of a program algorithm. The typical flowchart uses symbols which are
connected among them to indicate the flow of information and processing. The process
of drawing a flowchart for an algorithm is known as “flowcharting”.

As displayed in Illustration 1 each symbol has a particular function:

• Terminal: The oval symbol indicates Start, Stop and Halt in a program’s
logic flow. A pause/halt is generally used in a program logic under some error
conditions. Terminal is the first and last symbols in the flowchart.

• Input/Output: A parallelogram denotes any function of input/output type.
Program instructions that take input from input devices and display output on
output devices are indicated with parallelogram in a flowchart.

• Connectors: Whenever flowchart becomes complex or it spreads over more
than one page, it is useful to use connectors to avoid any confusions. It is
represented by a circle.

• File/Document: Programs often read in input or write output to a file or
document.

• Manual Input: Users maybe prompted for input from the program, from a
Graphical User Interface (GUI) or from a webpage.

• Process flow: Process flow lines indicate the exact sequence in which
instructions are executed. Arrows represent the direction of flow of control and
relationship among different symbols of flowchart.

• Processing: A box represents arithmetic instructions. All arithmetic processes
such as adding, subtracting, multiplication and division are indicated by action or
process symbol.

• Decision Diamond: represents a decision point. Decision based operations
such as yes/no question or true/false are indicated by diamond in
flowchart.

• Delay: It is often advantageous to include delays in the program processing.

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

Illustration 1: Basic Symbols used in Flowchart Designs

Start /
End

Input /
Output

Process

DecisionManual
Input

File /
Document

Process flow

Connector
Delay

AUTM08017 - Object Oriented Programming tus.ie | 1-6

1.1 Rules For Creating Flowchart

A flowchart is a graphical representation of an algorithm, it should therefore follow some
rules:

• Rule 1: Flowchart opening statement must be ‘start’ keyword.

• Rule 2: Flowchart ending statement must be ‘end’ keyword.

• Rule 3: All symbols in the flowchart must be connected with an arrow line.

1.2 Pseudocode

Pseudocode is a plain language description of the steps in an algorithm or another
system. Pseudocode often uses structural conventions of a normal programming
language, but is intended for human reading rather than machine reading.

Consider Illustration 2, The Flowchart and Pseudocode could apply to any of the “Hello
World” programs considered in the Introduction to Programming topic; however, the
code illustrated is specific to the Python3 programming language.

1.3 Using a Flowchart to understand a program requirement

Consider Illustration 3, this is the flowchart for a program to be developed.
Consider the steps:

1. Program starts.

2. Next, the program asks for a number.

3. 10 is added to the number.

4. Next, the resulting sum is printed.

5. Finally, the program ends.

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

Illustration 2: Flowchart, Pseudocode and code for Hello World

Start

Print STDOUT
(‘Hello, World’)

End

~$ cat hello_world.py
#! /usr/bin/env python3

""" My first program - hello world """

print("Hello, world!")

End

BEGIN
 STDOUT Hello World!
END

● Pseudocode

● Code

● Flowchart

AUTM08017 - Object Oriented Programming tus.ie | 1-7

Now building a python program to meet the Flowchart requirements.

~$ cat simple_add.py
#! /usr/bin/env python3

""" Simple add """

// Start //

num = 10
int_ = int(input("Enter a number: "))
ans = int_ + num
print (f"{int_} + {num} = {ans}")

// End //

~$ chmod +x simple_add.py
~$./simple_add.py
Enter an number: 3
3 + 10 = 13

Consider another example in Illustration 4.

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

Illustration 3: Flowchart for simple
add program

Start

Input
Ask user for a number

End

result = number + 10

Print STDOUT
(result)

AUTM08017 - Object Oriented Programming tus.ie | 1-8

2. Exercise 1.1

Draw a flowchart for the following program, and write the associated program.

• The program starts.

• Next, the program asks a user for a number.

• If the number is greater than zero, the program prints "Greater than 0".

• If the number is less than one, the program prints "Less than 1".

• Then the program prints "Done" and the program ends.

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

Illustration 4: Another Flowchart to Python Code example

Start

Input(‘number: ’)

End print(‘> 0’)

If
number > 0

True

False

~$ cat simple_test.py
#!/usr/bin/env python3

""" Simple test program """

// Start //

int_ = int(input("Enter a number: "))
if int_ > 0:
 print("Greater than 0\n")

#// End // ~$ chmod +x simple_test.py
~$./simple_test.py
Enter an number: 5
Greater than 0

~$./simple_test.py
Enter an number: -4
~$

AUTM08017 - Object Oriented Programming tus.ie | 1-9

3. Brief History of Python

The history of the Python programming language dates back to the late 1980s and its
implementation was started in December 1989 by Guido van Rossum at Centrum
Wiskunde & Informatica (CWI) which is the Dutch National Research Institute for
Mathematics and Computer Science. It was named after Monty Python, a British
comedy from the 1960s. Guido van Rossum is Python's principal author, and has
continued in a central role in deciding the direction of Python. He had the Python
community title of Benevolent Dictator for Life (BDFL), however; he stepped down from
the position in July 2018.

Python has been Open Source from inception and while it is considered a scripting
language, it is in fact much more. It is scalable, object oriented and functional and has
been used by Google.

Python 2.0 was released on October 16, 2000 and a further major change was the
introduction of Python 3.0 on December 3, 2008. This is a major, backwards-
incompatible release. Many of Python3 features have been backported to the
backwards-compatible Python 2.6 and 2.7.

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

“Python is an experiment in how
much freedom programmers
need. Too much freedom and
nobody can read another's code;
too little and expressiveness is
endangered.”

 - Guido van Rossum

AUTM08017 - Object Oriented Programming tus.ie | 1-10

4. Python home

Python information can be found at http://docs.python.org/, the site also includes a good
Python tutorial.

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

Illustration 5: Python documentation

http://docs.python.org/

AUTM08017 - Object Oriented Programming tus.ie | 1-11

5. Installing Python

5.1 Python on GNU/Linux

Python comes pre-installed on most GNU/Linux, UNIX and MAC OS X systems. The
pre-installed version may not be the most recent one v3.12.3 (31/07/2024) and the latest
version can be downloaded from http://python.org/download/.

Upgrade the Package Installer for Python (pip).

~$ sudo apt upgrade python3-pip

Check outdated Python packages using pip.

~$ pip list --outdated
Package Version Latest Type
----------------- ---------- ----------- -----
attrs 23.2.0 24.2.0 wheel
Babel 2.10.3 2.16.0 wheel
blinker 1.7.0 1.8.2 wheel
certifi 2023.11.17 2024.8.30 wheel

Confirm the versions of python3 and pip.

~$ python3 --version
Python 3.12.3

~$ python3 -m pip --version
pip 24.0 from /usr/lib/python3/dist-packages/pip (python 3.12)

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

http://python.org/download/

AUTM08017 - Object Oriented Programming tus.ie | 1-12

5.2 Python on Microsoft Windows

Unlike GNU/Linux, Python does not come pre-installed on Microsoft Windows by
Default. Python for Windows can be downloaded from:

https://python.org/downloads/windows/

Download the Windows Installer (64-bit) and install it. Make sure to select the option
to Add Python 3.12 to PATH.

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

Illustration 6: Python for Microsoft Windows

Illustration 7: Python installed on Microsoft Windows

https://python.org/downloads/windows/

AUTM08017 - Object Oriented Programming tus.ie | 1-13

6. Running Python

6.1 The Python Interpreter on GNU/Linux - python3

Typical Python implementations offer both an interpreter and compiler. There is an
interactive interface to python with a Read – Evaluate - Print Loop (REPL) loop. Here
the current version python3 is demonstrated.

~$ python3
Python 3.12.3 (main, Jul 31 2024, 17:43:48) [GCC 13.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> xlist = list()
>>> for x in range(1,5):
... xlist.append(x*x)
...
>>> print(xlist)
[1, 4, 9, 16]
>>>
>>> [pow(x,2) for in range(1,5)]
[1, 4, 9, 16]
>>>

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

AUTM08017 - Object Oriented Programming tus.ie | 1-14

6.2 The Python Interpreters on Microsoft Windows, python

On Microsoft Windows the Python installation is also Python3; however, the interpreter
is simply called python.

6.3 iPython

iPython can be used as a replacement for the standard Python shell, or it can be used
as a complete working environment for scientific computing (like Matlab or
Mathematica) when paired with the standard Python scientific and numerical tools. It
supports dynamic object introspections, numbered input/output prompts, a macro
system, session logging, session restoring, complete system shell access, verbose and
coloured traceback reports, auto-parentheses, auto-quoting, and is embeddable in
other Python programs.

Install the iPython enhanced interactive Python3 shell.

~$ sudo apt install ipython3

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

C:\Users\LOVELACE\Desktop> python --version
Python 3.12.3

C:\Users\LOVELACE\Desktop> python -m pip --version
pip 22.2.1 from C:\Users\LOVELACE\AppData\Local\Programs\Python\Python310\
lib\site-packages\pip (python 3.12)

C:\Users\LOVELACE\Desktop> python
Python 3.12.3 (main, Jul 31 2024, 17:43:48) [MSC v.1932 64 bit (AMD64)] on
win32
Type "help", "copyright", "credits" or "license" for more information.

>>> xlist = list()
>>> for x in range(1, 5):
... xlist.append(x*x)
...

>>> print(xlist)
[1, 4, 9, 16]

>>> [x*x for x in range(1, 5)]
[1, 4, 9, 16]
>>>

AUTM08017 - Object Oriented Programming tus.ie | 1-15

Running the iPython enhanced interactive Python3 shell.

~$ ipython3
Python 3.12.3 (main, Jul 31 2024, 17:43:48) [GCC 13.2.0]
Type 'copyright', 'credits' or 'license' for more information
IPython 8.20.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: for x in range(5):
 ...: print('iPython rocks')
 ...:
iPython rocks
iPython rocks
iPython rocks
iPython rocks
iPython rocks

In [2]: quit()

6.4 bPython

bPython is another replacement for the standard Python shell, it supports: In-line syntax
highlighting, Readline-like autocomplete with suggestions displayed as you type,
Expected parameter list for any Python function, "Rewind" function to pop the last line of
code from memory and re-evaluate, Send the code entered to a pastebin, save the code
entered to a file and auto-indentation.

Install the bPython enhanced interactive Python3 shell.

~$ sudo apt install bpython

Running the bPython enhanced interactive Python3 shell.

~$ bpython
bpython version 0.24 on top of Python 3.12.3 /usr/bin/python3
>>> for x in range(5):
... print('bPython rocks even more')
...
...
bPython rocks more
bPython rocks more
bPython rocks more
bPython rocks more
bPython rocks more
>>> quit()

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

AUTM08017 - Object Oriented Programming tus.ie | 1-16

7. Integrated Development and Learning Environment (IDLE)

Python comes with a large library of standard modules and there are several options for
an Integrated Development Environment (IDE). Integrated Development and Learning
Environment (IDLE) is an integrated development environment for Python, which has
been bundled with the default implementation of the language.

IDLE offers a python shell with syntax highlighting, an integrated debugger with
stepping, persistent breakpoints, and call stack visibility. It works well with Microsoft
Windows. On GNU/Linux and UNIX most editors, gedit, emacs, etc... can interpret
Python. Eclipse with Pydev (http://pydev.sourceforge.net/) is also an IDE option.

Python programs can also be edited by a variety of editors. Here is an example of
editing Python with gedit.

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

Illustration 8: IDLE

Illustration 9: IDLE Editor and Run module option

http://pydev.sourceforge.net/

AUTM08017 - Object Oriented Programming tus.ie | 1-17

~$ chmod +x hello_world.py
~$./hello_world.py
Hello world

Running interactively on GNU/Linux and UNIX.

~$ python3
>>> 3 + 3
6

In interactive mode python prompts with '>>>'. To exit Python (not Idle) in GNU/Linux or
UNIX, type CONTROL-D, while in Microsoft Windows, type CONTROL-Z + <Enter> is
required. An alternative is to type exit().

>>> exit()
~$

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

Illustration 10: hello_world.py in gedit

AUTM08017 - Object Oriented Programming tus.ie | 1-18

7.1 Text editors and Integrated Development Environment (IDE)

Python programs can be edited with IDLE or a simple text editor. However, it makes it
much easier if the editing tool has syntax highlighting, such an example is gedit, the in-
build text editor in the Gnome Desktop Environment, typically Linux only. This text editor
performs syntax highlighting for python2 and python3 and is easy to use.

An IDE on the other hand is a software application that provides comprehensive facilities
to programmers for software development. An IDE normally consists of at least a source
code editor, build automation tools and a debugger.

Two options to explore further are CudaText, and Sublime text.

7.1.1 CudaText

CudaText is an Open source project and free of cost. It is a cross-platform native GUI
text and source code editor. The program is extensible by Python add-ons (plugins,
linters, code tree parsers, external tools). It can be downloaded from:

http://uvviewsoft.com/cudatext/

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

Illustration 11: Gnome Gedit

Illustration 12: CudaText

http://uvviewsoft.com/cudatext/

AUTM08017 - Object Oriented Programming tus.ie | 1-19

7.1.2 Sublime text

Sublime text is a favourite among programmers for many years. it is a shareware cross-
platform source code editor with a Python application programming interface. It can be
tried for free however ongoing use requires a license which costs $80 USD. For
GNU/Linux it is located in the distribution repositories. For other platforms download and
install from: https://www.sublimetext.com

On Linux install:

~$ sudo apt-get install -y sublime-text

7.1.3 Notepad++ on Microsoft Windows

Notepad++ is a free open source GNU editor for Microsoft Windows that offers features
similar to editors on GNU/Linux.

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

Illustration 13: Sublime text

Illustration 14: Notepad++

https://www.sublimetext.com/

AUTM08017 - Object Oriented Programming tus.ie | 1-20

8. Running Programs

On GNU/Linux and UNIX call the python program via the python interpreter as follows:

~$ python my_program.py

Make a python file directly executable by adding the appropriate path to the python
interpreter as the first line of the file (#! shebang line). The use of env as an executable
in /usr/bin, is constant in all GNU/Linux and UNIX distributions. Using #!/usr/bin/env
python instead of the absolute path #!/usr/bin/python ensures that python is found, in
case it might not be in exactly the same location across different GNU/Linux or UNIX
distributions.

#! /usr/bin/env python3

 or
#! /usr/bin/python3

The next step is to make the file executable.

~$ chmod a+x my_program.py

It is not possible to invoke the Python program file from GNU/Linux or UNIX command
line without calling python3 or in Microsoft Windows shell, python.

~$./my_program.py

Take this example script: factorial.py. Here is the flowchart. Note the function is
shown, almost as another program. The function f(X)is both from within the main
program and from within the function itself.

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

Illustration 15: factorial.py flowchart

X == 0 return(1)
T

F

return(X x f(X-1))

f(X)

END

F

T

START

N == 3

END

print(N, f(N))

N+1

N=0

print (""
 "N fact(N)"
 "---------")

AUTM08017 - Object Oriented Programming tus.ie | 1-21

Consider the execution, how was the output achieved.

Consider Illustration 17, in the case of the first loop in the main program the fact(N)
function is called with N = 0, therefore the function returns a 1 as the if x == 0 is true.
The main program prints 0 1

However, when N = 1, fact(N) tries to return 1 + fact(1-1), it cannot so it calls
another instance of fact(N) with N = 0, which returns a 1. Now the first instance of the
fact(N) function returns 1x1 or simply 1. The main program prints 1 1.

In the third case when N = 2, there is a requirement for 3 instances of the fact(N)
function, one called from the main program, one from the first fact(N) function instance
and another from the second fact(N) function instance. The third fact(N) function
instance returns 1. The second fact(N) function instance multiplies the 1 received with
the 1 it has and returns 1 to the first instance. This inner instance multiplies 1 to the 2 it
has and returns 2 to the main program which prints 2 2.

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

Illustration 16: factorial.py ran on GNU/Linux

~$ chmod a+x factorial.py
~$./factorial.py

N fact(N)

0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880

 1 #! /usr/bin/env python3
 2
 3
 4 def fact(x):
 5 # Returns the factorial of its argument
 6 if x == 0:
 7 return 1
 8 return x * fact(x - 1)
 9
10
11 print("")
12 print("N fact(N)")
13 print("---------")
14
15 for n in range(10):
16 print(n, fact(n))
17
18 # End

Illustration 17: factorial.py loops through function

def fact(0):
 """ Factorial f """
 if x == 0:
 return 1
 return x * fact(x-1)

START

#! /usr/bin/env python3

print("")
print("N fact(N)")
print("---------")

for n in range(3):
 print(0, fact(0))

 print(1, fact(1))

 print(2, fact(2)) def fact(2):
 """ Factorial f """
 if x == 0:
 return 1
 return 2 * fact(1)

def fact(1):
 """ Factorial f """
 if x == 0:
 return 1
 return 1 * fact(0)

1

12

END

0 1

1 1

2 2

def fact(1):
 """ Factorial f """
 if x == 0:
 return 1
 return 1 * fact(0)

def fact(0):
 """ Factorial f """
 if x == 0:
 return 1
 return x * fact(x-1)
1

1

def fact(0):
 """ Factorial f """
 if x == 0:
 return 1
 return x * fact(x-1)
1

AUTM08017 - Object Oriented Programming tus.ie | 1-22

Here the factorial.py program is ran on Microsoft Windows.

When a Python program is called from the shell or command line, the interpreter
evaluates each expression in the file. Familiar mechanisms are used to provide
command line arguments and/or redirect input and output. Python also has mechanisms
to allow a program to act both as a script and as a module to be imported and used by
another python program.

Consider this example script that reads in emails and extracts email addresses from the
file using regular expressions. While the detail of the regular expression will not make
sense as yet it will be covered in a later section of the course.

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

~$ cat RE-script.py
 1 #! /usr/bin/env python3
 2
 3 """
 4 Reads text from standard input and outputs any email
 5 addresses it finds, one to a line.
 6 """
 7
 8 import re
 9 from sys import stdin
10
11 # a regular expression ~ for a valid email address
12 pat = re.compile(r"([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)")
13
14 for line in stdin.readlines():
15 for address in pat.findall(line):
16 print(address)
17
18 # // End //

Illustration 19: RE-script.py

Illustration 18: factorial.py ran on Microsoft Windows

C:\Users\LOVELACE\Desktop> python factorial.py

N fact(N)

0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880

AUTM08017 - Object Oriented Programming tus.ie | 1-23

 ~$./RE-script.py < email.txt
ame-bounces@tus.ie
tom.ryan@tus.ie
EEINC@tus.ie
electronics@tus.ie
michelle.cleare@tus.ie
tom.ryan@tus.ie

Further enhancing the script to return a unique, sorted list as shown. Line 9 creates an
empty set called found. A set is an unordered collection of items. Each element is
unique. The set is mutable in that items can be added or removed from the set. Line 10
is a loop that reads in lines from the email.txt file and assigns each line to the variable
line. An inner loop at line 11 checks the line for the presence of email addresses via the
regular expression pat and if found line 12 adds the address to the set found.

Line 14 loops through a list created by a sort of the set found and line 15 prints each
email in turn.

~$./unique_sorted_list.py < email.txt
EEINC@tus.ie
ame-bounces@tus.ie
electronics@tus.ie
michelle.cleare@tus.ie
tom.ryan@tus.ie

Question: Why do you think the address EEINC@tus.ie is at the top of the list?

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

~$ cat unique-sorted.py
 1 #! /usr/bin/env python3
 2
 3 import re
 4 from sys import stdin
 5
 6 # a regular expression ~ for a valid email address
 7 pat = re.compile(r"([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)")
 8 # found is an initially empty set (a list w/o duplicates)
 9 found = set()
10 for line in stdin.readlines():
11 for address in pat.findall(line):
12 found.add(address)
13 # sorted() takes a sequence, returns a sorted list of its elements
14 for address in sorted(found):
15 print(address)
16
17 # // End //

Illustration 20: unique_sorted_list.py

AUTM08017 - Object Oriented Programming tus.ie | 1-24

9. Mathematical Operators

Python has basic mathematical operators. It is simple to execute simple mathematical
operations on the Python shell as follows. Note that there are two divide operators, one
returns a number of type float even if there is no remainder and the other returns an
integer.

>>> 5+3 # Add
8

>>> 5-3 # Subtract
2

>>> 5*3 # Multiply
15

>>> 5**3 # Exponent
125

>>> 27/4 # Divide, returns a float
6.75

>>> 27//4 # Divide, returns integer
6

>>> 27%4 # Modulo, returns the remainder
3

It is even possible to run a single line command without calling the inline interpreter.

~$ python3 -c 'print(3+5)'
8

Assigning mathematical results to variables

>>> a = 5+3
>>> b = a-3
>>> c = b%2

>>> print(a, b, c)
8 5 1

>>> d = a/2
>>> e = a//2

>>> print(type(d),d)
<class 'float'> 4.0
>>> print(type(e),e)
<class 'int'> 4

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

AUTM08017 - Object Oriented Programming tus.ie | 1-25

10. Simple functions

It is possible for a python script to import code from another python script. This is very
common with functions. Here exmod.py is called by execute-exmod.py which imports
the code of exmod.py into the execute-exmod.py code. Running the execute-
exmod.py program demonstrates that it in fact used the functions from within
exmod.py.

~$./execute-exmod.py
1296

7886578673647905035523632139321850622951359776871732632947425332443
5944996340334292030428401198462390417721213891963883025764279024263
7105061926624952829931113462857270763317237396988943922445621451664
2402540332918641312274282948532775242424075739032403212574055795686
6022603190417032406235170085879617892222278962370389737472000000000
 00

 <function fact1 at 0x7fca6dc048c8>

Note that python automatically compiles a script to compiled byte code, before running
it. When a module is imported for the first time a bytecode, .pyc, file, in a directory
__pycache__ containing the compiled code will appear in the same directory as the .py
file. Note the exmod.cpython-312.pyc file created in the __pycache__ directory.

Function files that are accessible by python programs should be placed in the python
path.

>>> import sys
>>> sys.path
['', '/usr/lib/python312.zip', '/usr/lib/python3.12', '/usr/lib/python3.12/lib-
dynload', '/home/ubuntu/.local/lib/python3.12/site-packages',
'/usr/local/lib/python3.8/dist-packages', '/usr/lib/python3/dist-packages']

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

Illustration 21: Simple functions

~$ cat exmod.py
 1 """factorial done recursively and iteratively"""
 2
 3
 4 def fact1(n):
 5 """First factorial function"""
 6 ans = 1
 7 for i in range(2, n):
 8 ans = ans * n
 9 return ans
10
11
12 def fact2(n):
13 """Second factorial function"""
14 if n < 1:
15 return 1
16 else:
17 return n * fact2(n - 1)
18
19
20 # // End //

~$ cat execute-exmod.py
 1 #! /usr/bin/env python3
 2
 3 import exmod
 4
 5 print(exmod.fact1(6))
 6 print("\n")
 7 print(exmod.fact2(200))
 8 print("\n")
 9 print(exmod.fact1)
10
11 # // End //

AUTM08017 - Object Oriented Programming tus.ie | 1-26

11. Getting help on functions within a module

Help can easily be obtained for functions within a module.

>>> import exmod
>>> help(exmod)
Help on module exmod:

NAME
 exmod - factorial done recursively and iteratively

FUNCTIONS
 fact1(n)
 First factorial function

 fact2(n)
 Second factorial function

FILE
 /usr/lib/python3/dist-packages/exmod.py

12. Bytecode files

At runtime python compiles the .py files and saves the result as as .pyc files, so it can
reference them in subsequent invocations. The .pyc file contains compiled bytecode of
python source files output from the python interpreter. This code is then executed by
Python's Virtual Machine (PVM).

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

Illustration 22: Python Virtual Machine

Run
Operating System

Dependent

Operating System
Independent

Compiler

Hardware
(Processor)

Language source code
(python)

Interpreted

Python Virtual Machine
(PVM)

Compiled
Python Modules

.pyc

__pycache__

CPython

AUTM08017 - Object Oriented Programming tus.ie | 1-27

While python is an interpreted language, as opposed to a compiled one such as C/C++,
the distinction is blurred due to the presence of the bytecode compiler. Compiling means
converting a program to machine code. Interpreters, however, take the text form of the
program and execute it statement by statement.

For example, When the hello_world.py source file is ran, the python interpreter first
looks to see if any hello_world.pyc exists, and if it is more recent than hello_world.py.
If so, the interpreter runs it. If it not, or hello_world.py is more recent than it, the
interpreter first compiles hello_world.py to hello_world.pyc before execution.

13. Exercise #1.2

1. Install python3 and pip3.

2. Review help for the print() function.

3. Print the sys.path to the shell.

4. Write a small program to print your name to the shell.

5. Make the program executable.

6. Run the program.

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

AUTM08017 - Object Oriented Programming tus.ie | 1-28

This page is intentionally blank

15 Sep 2024 Introduction to Python3 Programming TUS: MMW

	1. Tutorial: Flowcharts and Pseudocode
	1.1 Rules For Creating Flowchart
	1.2 Pseudocode
	1.3 Using a Flowchart to understand a program requirement

	2. Exercise 1.1
	3. Brief History of Python
	4. Python home
	5. Installing Python
	5.1 Python on GNU/Linux
	5.2 Python on Microsoft Windows

	6. Running Python
	6.1 The Python Interpreter on GNU/Linux - python3
	6.2 The Python Interpreters on Microsoft Windows, python
	6.3 iPython
	6.4 bPython

	7. Integrated Development and Learning Environment (IDLE)
	7.1 Text editors and Integrated Development Environment (IDE)
	7.1.1 CudaText
	7.1.2 Sublime text
	7.1.3 Notepad++ on Microsoft Windows

	8. Running Programs
	9. Mathematical Operators
	10. Simple functions
	11. Getting help on functions within a module
	12. Bytecode files
	13. Exercise #1.2

