

What steps are used to carry out pen test

- Planning and Preparation
- Information Gathering and Analysis
- Vulnerability Detection
- Penetration attempt
- Analysis and Reporting
- Cleaning up

Planning and Preparation

Kick-off meeting

- Clear objective for pen-test
- Timing and duration allowed for the pen-tests
- Personnel involved
- Are staff being informed of the tests?
- Network and Computers involved
- Operational requirements during the pen-test
- How the results are to be presented at the conclusion of the test.

Planning and Preparation

- Penetration Test Plan
 - Detailed plan
 - Confidentiality Statement
 - Acceptance Sign-off Sheet

INSPIRING FUTURES

setu.ie 5 INSPIRING FUTURES

setu.ie 6

Information gathering and analysis

- Gathering of as much information as possible as a reconnaissance is essential.
 - What does the network look like?
 - What devices are on the network?
 - Who works at the company?
 - What does the organogram of the company look like?

Vulnerability detection

• Once a picture of the target organisation has been compiled a scan of vulnerabilities is the next step.

Penetration attempt

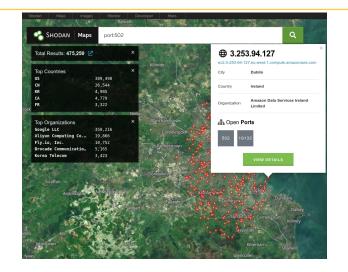
- Identifying the best targets from the machines showing vulnerability is important particularly if the time given is short.
- IT personnel nomenclature to use functional names like MAILSVR or FTPSERVER etc...
- Define the list of machines that are to be given special additional treatment.
- Try password cracking tools, dictionary, brute force and hybrid attacks.

Analysis and Reporting

- A detailed report must be furnished to the client at the conclusion of the tests. It should include:
 - A summary of successful penetration tests.
 - A list of all information gathered during the pen-test.
 - A complete list and description of vulnerabilities found.
 - A suggested list of next steps to close the vulnerabilities and increase security at the client company.

setu.ie 9 INSPIRING FUTURES

setu.ie


setu.ie | 10

Tidy up

- During the pen-testing a detailed list of steps taken should be maintained.
- Pen-testers work with the client staff ensure that the steps have not left any residual issues
 - entries in configuration files
 - new users
 - groups
 - etc...

Shodan

Shodan

- Search engine that finds devices connected to the Internet
- Scans the Internet for devices that respond to ICMP ping requests
- Collects information, and indexes the banners that devices send out
- Used to find a wide variety of devices, including:
 - Switches
 - Routers
 - Webcams
 - Security cameras
 - IACS
 - HVAC
 - Smart TVs
- Refrigerators

setu.ie | 13 INSPIRING FUTURES

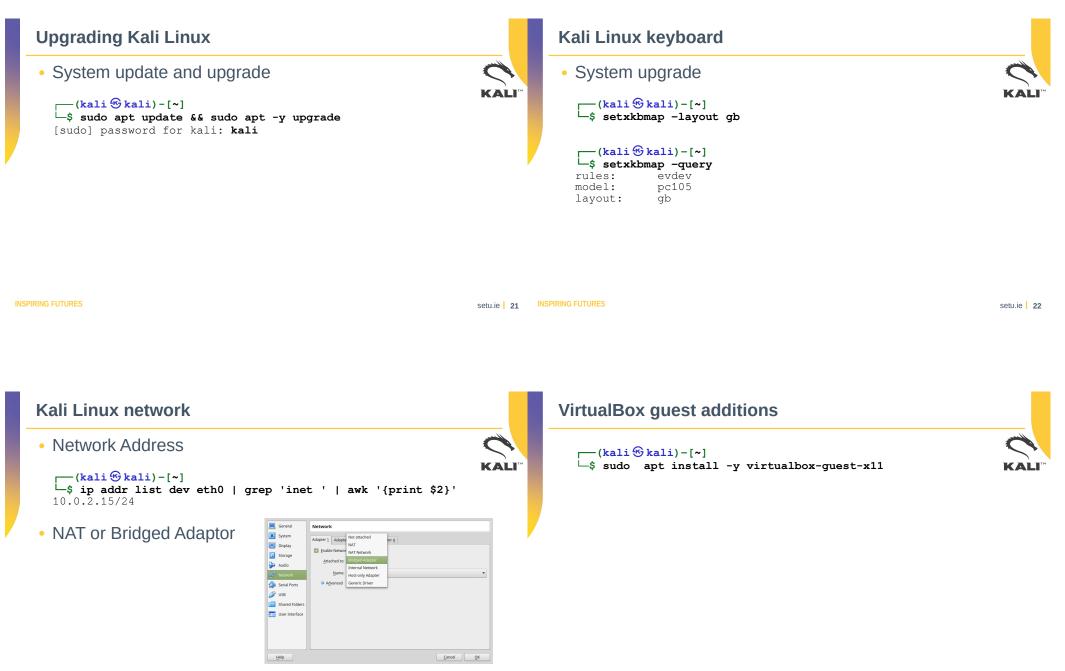
setu.ie 14

Shodan

INSPIRING FUTURES

- Valuable tool for security researchers, as it can help them to discover new vulnerabilities and to track the deployment of malware
- It is not a hacking tool, it is a search engine that helps people to find devices connected to the Internet
- Here are some examples of how Shodan can be used:
 - Find all of the Modbus devices that are publicly accessible on the Internet
 - Find all of the routers that are using a specific firmware with a known vulnerability
 - Identify all of the devices on a network that are exposed to the Internet to mitigate security risks

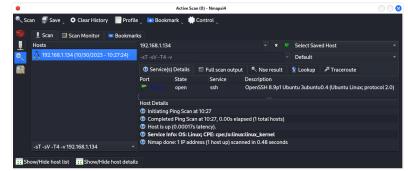



Exercise #9.1

- Create a personal Shodan account.
- Login to Shodan.
- Discover the TCP port number for the DNP3 protocol.
- Search for DNP3 in the Ireland and copy down the information relating to the nearest one to your current location.
 - Who owns it?
 - What is the device?
 - What is the device Internet Protocol (IP) Address?

<section-header><section-header><section-header><section-header><section-header><text><text><equation-block>

Network Mapper (nmap)


- Open source network exploration and security auditing tool
- Designed to rapidly scan large networks
- Uses raw IP packets in novel ways to determine:
 - What hosts are available on the network
 - What services (application name and version) those hosts are offering
 - What operating systems (and OS versions) they are running
 - What type of packet filters/firewalls are in use
 - ... and many more functions
- **nmap** is commonly used for security audits as well as routine tasks such as network inventory, managing service upgrade schedules, and monitoring host or service uptime.

nmapsi4

• **nmapsi4** graphical utility

[---(kali⊕kali)-[~]

└─\$ sudo apt install -y nmapsi4

Installing nmap

-(kali 🏵 kali)-[~] L-\$ sudo apt install nmap nmapsi4

-(kali 🏵 kali)-[~] └-\$ python3 -m pip install

— (kali 🏵 kali) - [~]

L-\$ nmap --version

Nmap version 7.80 (https://nmap.org) Platform: x86_64-pc-linux-gnu Compiled with: liblua-5.3.3 openssl-1.1.1d nmap-libssh2-1.8.2 libz-1.2.11 libpcre-8.39 libpcap-1.9.1 nmap-libdnet-1.12 ipv6 Compiled without: Available nsock engines: epoll poll select

INSPIRING FUTURES

nmap states

Open

 Application is actively accepting TCP connections, UDP datagrams or SCTP associations on this port

Closed

- Port is accessible, but there is no application listening on it.
- Filtered
 - Cannot determine whether the port is open because packet filtering prevents its probes from reaching the port.
- Unfiltered
 - Port is accessible, but unable to determine whether it is open or closed.
- Open | filtered
- Unable to determine whether a port is open or filtered.
- Closed | filtered
- Unable to determine whether a port is closed or filtered.

INSPIRING FUTURES setu.ie 29

0

0

Testing with nmap

-(kali 🏵 kali)-[~]

└_\$ nmap 10.0.2.7 Starting Nmap 7.80 (https://nmap.org) at 2021-03-11 14:42 GMT Nmap scan report for 10.0.2.7 Host is up (0.00087s latency). Not shown: 998 closed ports PORT STATE SERVICE 22/tcp open ssh 80/tcp open http

Testing with nmap

-(kali⊕kali)-[~]

(kali ** kali) - [~] \$ nmap 10.0.2.0/24 Starting Nmap 7.80 (https://nmap.org) at 2021-03-11 14:46 GMT Nmap scan report for _gateway (10.0.2.1) Host is up (00.00058s latency). Not shown: 999 closed ports PORT STATE SERVICE 53/tcp open domain

Nmap scan report for 10.0.2.2 Host is up (0.00061s latency). Not shown: 998 closed ports PORT STATE SERVICE 22/tcp open ssh 631/tcp open ipp

Nmap scan report for scapy (10.0.2.6) Host is up (0.00025s latency). Not shown: 999 closed ports PORT STATE SERVICE 22/tcp open ssh

Nmap scan report for 10.0.2.7 Host is up (0.00020s latency). Not shown: 998 closed ports PORT STATE SERVICE 22/tcp open ssh 80/tcp open http

Nmap done: 256 IP addresses (4 hosts up) scanned in 3.15 seconds

INSPIRING FUTURES setu.ie 31

setu.ie 30

Testing and Scan techniques with nmap

Switch	Example	Description
	nmap 192.168.1.1	Scan a single IP
	nmap 192.168.1.1 192.168.2.1	Scan specific IPs
	nmap 192.168.1.1-254	Scan a range
	nmap scanme.nmap.org	Scan a domain
	nmap 192.168.1.0/24	Scan using CIDR notation
-iL	nmap -iL targets.txt	Scan targets from a file
-iR	nmap -iR 100	Scan 100 random hosts
exclude	nmapexclude 192.168.1.1	Exclude listed hosts

Switch	Example	Description
-sS	nmap 192.168.1.1 -sS	TCP SYN port scan (Default)
-sT	nmap 192.168.1.1 -sT	TCP connect port scan (Default without root privilege)
-sU	nmap 192.168.1.1 -sU	UDP port scan
-sA	nmap 192.168.1.1 -sA	TCP ACK port scan
-sW	nmap 192.168.1.1 -sW	TCP Window port scan
-sM	nmap 192.168.1.1 -sM	TCP Maimon port scan

INSPIRING FUTURES

MAC Address: 08:00:27:A3:92:BA (Oracle VirtualBox virtual NIC)

Nmap done: 1 IP address (1 host up) scanned in 0.73 seconds

Scan techniques – TCP SYN port scan

(kali (kali) - [~] \$ sudo nmap 10.0.2.7 - sU

(kali ^{(kali}) - [~] \$ sudo nmap 10.0.2.7 -sS

Host is up (0.00016s latency). Not shown: 998 closed ports PORT STATE SERVICE 22/tcp open ssh 80/tcp open http

Starting Nmap 7.80 (<code>https://nmap.org</code>) at 2021-03-11 17:23 GMT Nmap scan report for 10.0.2.7

setu.ie | 33 INSPIRING FUTURES

setu.ie 34

Host discovery

Switch	Example	Description
-sL	nmap 192.168.1.1-3 -sL	No Scan. List targets only
-sn	nmap 192.168.1.1/24 -sn	Disable port scanning. Host discovery only.
-Pn	nmap 192.168.1.1-5 -Pn	Disable host discovery. Port scan only.
-PS	nmap 192.168.1.1-5 -PS22-25,80	TCP SYN discovery on port x. Port 80 by default
-PA	nmap 192.168.1.1-5 -PA22-25,80	TCP ACK discovery on port x. Port 80 by default
-PU	nmap 192.168.1.1-5 -PU53	UDP discovery on port x. Port 40125 by default
-PR	nmap 192.168.1.1-1/24 -PR	ARP discovery on local network
-n	nmap 192.168.1.1 -n	Never do DNS resolution

Port specification

Switch	Example	Description
-р	nmap 192.168.1.1 -p 21	Port scan for port x
-р	nmap 192.168.1.1 -p 21-100	Port range
-р	nmap 192.168.1.1 -p U:53,T:21-25,80	Port scan multiple TCP and UDP ports
-p-	nmap 192.168.1.1 -p-	Port scan all ports
-р	nmap 192.168.1.1 -p http, https	Port scan from service name
-F	nmap 192.168.1.1 -F	Fast port scan (100 ports)
top-ports	nmap 192.168.1.1 top-ports 2000	Port scan the top x ports
-p-65535	nmap 192.168.1.1 -p-65535	Leaving off initial port in range makes the scan start at port 1
-p0-	nmap 192.168.1.1 -p0-	Leaving off end port in range makes the scan go through to port 65535

Service and Version Detection

Switch	Example	Description
-sV	nmap 192.168.1.1 -sV	Attempts to determine the version of the service running on port
-sV version-intensity	nmap 192.168.1.1 -sV version-intensity 8	Intensity level 0 to 9. Higher number increases possibility of correctness
-sV version-light	nmap 192.168.1.1 -sV version-light	Enable light mode. Lower possibility of correctness. Faster
-sV version-all	nmap 192.168.1.1 -sV version-all	Enable intensity level 9. Higher possibility of correctness. Slower
-A	nmap 192.168.1.1 -A	Enables OS detection, version detection, script scanning, and traceroute

Operating System Detection

Switch	Example	Description
-0	nmap 192.168.1.1 -0	Remote OS detection using TCP/IP stack fingerprinting
-0 osscan-limit	nmap 192.168.1.1 -0 osscan-limit	If at least one open and one closed TCP port are not found it will not try OS detection against host
-0 osscan-guess	nmap 192.168.1.1 -0 osscan-guess	Makes nmap guess more aggressively
-O max-os-tries	nmap 192.168.1.1 -0 max-os-tries 1	Set the maximum number x of OS detection tries against a target
-A	nmap 192.168.1.1 -A	Enables OS detection, version detection, script scanning, and traceroute

INSPIRING FUTURES

setu.ie | 37 INSPIRING FUTURES

setu.ie 38

Timing

Switch	Example	Description
-T0	nmap 192.168.1.1 -T0	Paranoid (0) Intrusion Detection System evasion
-T1	nmap 192.168.1.1 -T1	Sneaky (1) Intrusion Detection System evasion
-T2	nmap 192.168.1.1 -T2	Polite (2) slows down the scan to use less bandwidth and use less target machine resources
-т3	nmap 192.168.1.1 -T3	Normal (3) which is default speed
-T4	nmap 192.168.1.1 -T4	Aggressive (4) speeds scans; assumes you are on a reasonably fast and reliable network
-T5	nmap 192.168.1.1 -T5	Insane (5) speeds scan; assumes you are on an extraordinarily fast network

Performance

Switch	Example input	Description
host-timeout <time></time>	1s; 4m; 2h	Give up on target after this long
min-rtt-timeout/ max-rtt-timeout/ initial-rtt-timeout <time></time>	1s; 4m; 2h	Specifies probe round trip time
min-hostgroup/ max-hostgroup <size<size></size<size>	50; 1024	Parallel host scan group sizes
min-parallelism/max-parallelism <numprobes></numprobes>	10; 1	Probe parallelisation
scan-delay/ max-scan-delay <time></time>	20ms; 2s; 4m; 5h	Adjust delay between probes
max-retries <tries></tries>	3	Specify the maximum number of port scan probe retransmissions
min-rate <number></number>	100	Send packets no slower than <number> per second</number>
max-rate <number></number>	100	Send packets no faster than <number> per second</number>

Nmap Scripting Engine (NSE)

- Powerful and flexible feature of nmap.
- Users can write simple scripts, using the Lua programming language, to automate a wide variety of networking tasks.
- Efficiency and speed are gained as these scripts are executed in parallel.

INSPIRING FUTURES

(kali ③ kali) - [~] \$ ls /usr/share/nmap/scripts | grep .nse | wc -1 598

NSE Scripts

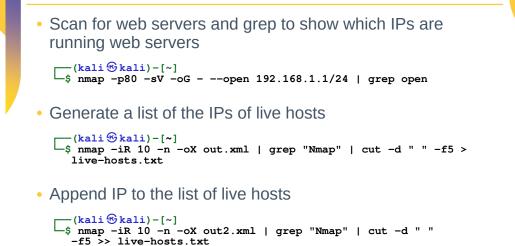
Switch	Example	Description
-sC	nmap 192.168.1.1 -sC	Scan with default NSE scripts. Considered useful for discovery and safe
script default	nmap 192.168.1.1script default	Scan with default NSE scripts. Considered useful for discovery and safe
script	nmap 192.168.1.1script=banner	Scan with a single script. Example banner
script	nmap 192.168.1.1script=http*	Scan with a wildcard. Example http
script	nmap 192.168.1.1script=http,banner	Scan with two scripts. Example http and banner
script	nmap 192.168.1.1script "not intrusive"	Scan default, but remove intrusive scripts
script-args	<pre>nmapscript snmp-sysdescrscript-args snmpcommunity=admin 192.168.1.1</pre>	NSE script with arguments

setu.ie | 41 INSPIRING FUTURES

setu.ie 42

Useful NSE Scripts

Command	Description
nmap -Pnscript=http-sitemap-generator scanme.nmap.org	http site map generator
nmap -n -Pn -p 80open -sV -vvvscript banner,http- title -iR 1000	Fast search for random web servers
nmap -Pnscript=dns-brute domain.com	Brute forces DNS hostnames guessing subdomains
nmap -n -Pn -vv -O -sVscript smb-enum*,smb-ls,smb- mbenum,smb-os-discovery,smb-s*,smb-vuln*,smbv2* -vv 192.168.1.1	Safe SMB scripts to run
nmapscript whois* domain.com	Whois query
nmap -p80script http-unsafe-output-escaping scanme.nmap.org	Detect cross site scripting vulnerabilities
<pre>nmap -p80script http-sql-injection scanme.nmap.org</pre>	Check for SQL injections


Firewall / IDS Evasion and Spoofing

Switch	Example	Description
-f	nmap 192.168.1.1 -f	Requested scan (including ping scans) use tiny fragmented IP packets. Harder for packet filters
mtu	nmap 192.168.1.1mtu 32	Set your own offset size
-D	nmap -D 192.168.1.101,192.168.1.102, 192.168.1.103,192.168.1.23 192.168.1.1	Send scans from spoofed IPs
-D	<pre>nmap -D decoy-ip1,decoy-ip2,your-own- ip,decoy-ip3,decoy-ip4 remote-host-ip</pre>	Above example explained
-S	nmap -S www.microsoft.com www.facebook.com	Scan Facebook from Microsoft (-e eth0 -Pn may be required)
-g	nmap -g 53 192.168.1.1	Use given source port number
proxies	<pre>nmapproxies http://192.168.1.1:8080, http://192.168.1.2:8080 192.168.1.1</pre>	Relay connections through HTTP/SOCKS4 proxies
data-length	nmapdata-length 200 192.168.1.1	Appends random data to sent packets

Output

Switch	Example	Description
-oN	nmap 192.168.1.1 -oN normal.file	Normal output to the file normal.file
-oX	nmap 192.168.1.1 -oX xml.file	XML output to the file xml.file
-oG	nmap 192.168.1.1 -oG grep.file	Grepable output to the file grep.file
-oA	nmap 192.168.1.1 -oA results	Output in the three major formats at once
-oG -	nmap 192.168.1.1 -oG -	Grepable output to screenoN -, -oX - also usable
append-output	<pre>nmap 192.168.1.1 -oN file.fileappend- output</pre>	Append a scan to a previous scan file
-v	nmap 192.168.1.1 -v	Increase the verbosity level (use -vv or more for greater effect)
-d	nmap 192.168.1.1 -d	Increase debugging level (use -dd or more for greater effect)
reason	nmap 192.168.1.1reason	Display the reason a port is in a particular state, same output as -vv
open	nmap 192.168.1.1open	Only show open (or possibly open) ports
packet-trace	nmap 192.168.1.1 -T4packet-trace	Show all packets sent and received
iflist	nmapiflist	Shows the host interfaces and routes
resume	nmapresume results.file	Resume a scan

Output

INSPIRING FUTURES

setu.ie | 45 INSPIRING FUTURES

setu.ie 46

Output

• Compare output from nmap using the ndiff

(kali & kali) - [~]
\$ ndiff scan1.xml scan2.xml

• Convert nmap xml files to html files

```
(kali (kali) - [~]
$ xsltproc nmap.xml -o nmap.html
```

· Reverse sorted list of how often ports turn up

```
(kali <sup>®</sup> kali) - [~]

$ grep " open " results.nmap | sed -r 's/ +/ /g' |

sort | uniq -c | sort -rn | less
```

Miscellaneous and other useful commands

Switch	Example	Description	
-6	nmap -6 2607:f0d0:1002:51::4	Enable IPv6 scanning	
-h	nmap -h	nmap help screen	

Command	Description
nmap -iR 10 -PS22-25,80,113,1050,35000 -v -sn	Discovery only on ports x, no port scan
nmap 192.168.1.1-1/24 -PR -sn -vv	ARP discovery only on local network, no port scan
nmap -iR 10 -sn -traceroute	Traceroute to random targets, no port scan
nmap 192.168.1.1-50 -sL dns-server 192.168.1.1	Query the Internal DNS for hosts, list targets only

Debugging, Verbosity and Reason

-(kali 😚 kali)-[~]

\$ mmap 192.168.0.1 --reason -vv -d Starting Nmap 7.80 (https://nmap.org) at 2021-07-06 09:14 IST PORTS: Using top 1000 ports found open (TCP:1000, UDP:0, SCTP:0)

ma.-retries: 10, host-timeout: 0
int-rate: 0
int-

Read from /usr/bin/../share/nmap: nmap-payloads nmap-services Nmap done: 1 IP address (1 host up) scanned in 1.25 seconds

INSPIRING FUTURES

-d: Increase debugging level -v: Increase verbosity level --reason: Reason a port is in a particular state Try -dd, -ddd and -vv, -vvv

XML Output

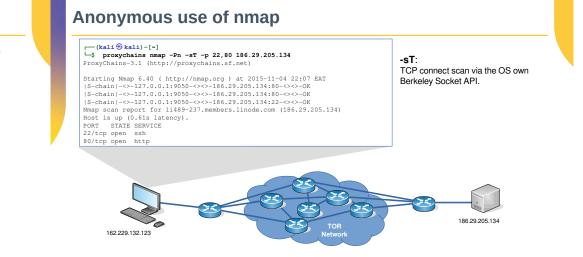
-(kali 🏵 kali)-[~]

2021 version="..ov" xmcoutputversion="..04"> <scaninfo type="connect" protocol="tcp" numservices="1003" services="22-1024"/> <verbose level="0"/> <debugging level="0"/> <host starttime="1625561529" endtime="1625561536"><status state="up" reason="syn-ack" reason_ttl="0"/> <address addr="192.168.0.1" addrtype="ipv4"/> <hostnames> -oX <file>: Output scan in format <hostname name="_gateway" type="PTR"/> -[dash] in lieu of <file> redirects to stdout. </hostnames> -p 22-1024: The well-known port range. <ports><extraports state="closed" count="998"> <extrareasons reason="conn-refused" count="998"/> -sv: Enables version detection. </extraports> /cyclassical content of the state state filtered reason="no-response" reason_ttl="0"/><service name="ssh"
method="table" conf="3"/></port> cyport protocol="tcp" portid="23"><state state="filtered" reason="no-response" reason_ttl="0"/><service name="telnet"
method="table" conf="3"/></port> metnod="table" cont="3"/></port> <port protocol="tcp" portid="53"><state state="open" reason="syn-ack" reason_ttl="0"/><service name="domain" product="dnsmasg" version="2.78" method="probed" conf="10"><cpa>cpe:/atthekelleys:dnsmasg:2.78</cpe></service</port> <port protocol="tcp" portid="80"><state state="open" reason="syn-ack" reason_ttl="0"/><service name="http" product="lightpd" method="probed" conf="10"><cpa>cpe:/attlightpd://service</port> <prt protocol="tcp" portid="80"><state state="open" reason="syn-ack" reason_ttl="0"/><service name="http" product="lightpd" method="probed" conf="10"><cpa>cpe:/attlightpd://cpe></service</port> <prt protocol="tcp" portid="11"><state state="filtered" reason="no-response" reason_ttl="0"/><service name="rpcbind" //conf="table" conf="3"/></port>

</ports> <times srtt="5523" rttvar="178" to="100000"/> </host>

</rinstats><finished time="1625561536" timestr="Tue Jul 6 09:52:16 2021" elapsed="7.53" summary="Nmap done at Tue Jul 6</pre> 09:52:16 2021; 1 IP address (1 host up) scanned in 7.53 seconds" exit="success"/><hosts up="1" down="0" total="1"/> </runstats> </nmaprun>

INSPIRING FUTURES setu.ie 49


setu.ie 50

Anonymous use of nmap

- For anonymous use of nmap it is possible to do so using "The Onion Router" (TOR) and ProxyChains.
- ProxyChains redirects TCP connections through proxy servers.

-(kali 🏵 kali)-[~]

└-\$ sudo apt install tor proxychains

Anonymous use of nmap

┌──(kali ☜ kali)-[~]

\$ proxychains nmap -Pn -sV -sT -p 22,80 186.29.205.134
ProxyChains-3.1 (http://proxychains.sf.net)

Starting Nmap 6.40 (http://nmap.org) at 2015-11-04 22:07 EAT |S-chain|-<>-127.0.0.1:9050-<>>-186.29.205.134:80-<>>-0K |S-chain|-<>-127.0.0.1:9050-<>>-186.2.9.205.134:80-<>>-0K |S-chain|-<>-127.0.0.1:9050-<>>-186.2.9.205.134:82-<>>-0K Nmap scan report for 11489-237.members.linode.com (186.29.205.134) Host is up (0.61s latency). PORT STATE SERVICE 22/tcp open sch 80/tcp open http

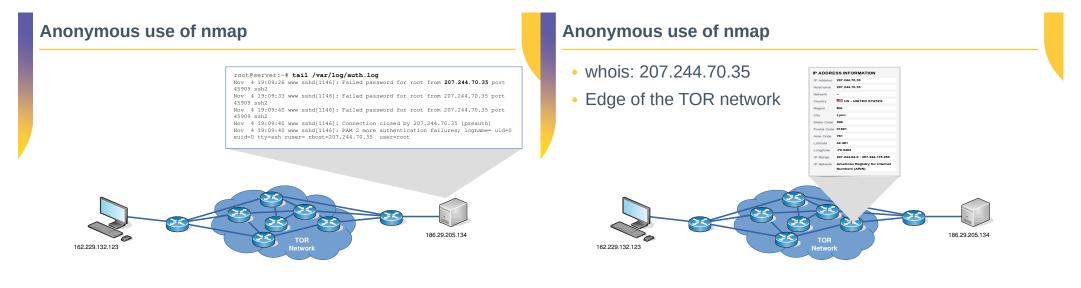
-sV:

Enable version detection. It can be used to help differentiate the truly open ports from the filtered ones.

Anonymous use of nmap

┌── (kali ⊕ kali) - [~]

\$ proxychains ssh root@186.29.205.134


ProxyChains-3.1 (http://proxychains.sf.net)
|S-chain|-<>-127.0.0.1:9050-<><>-186.29.205.134:22-<>>-0K
root@186.29.205.134's password:
Permission denied, please try again.
root@186.29.205.134's password:
Permission denied, please try again.
root@186.29.205.134's password:
Permission denied (publickey,password).

INSPIRING FUTURES

setu.ie | 53 INSPIRING FUTURES

setu.ie 54

INSPIRING FUTURES

Public key, possible IDentifier

- Public key possible Identifier if traffic is being monitored in TOR.
- · Generate new key for use over TOR.

(kali (kali) - [~] \$ ssh-keygen

-> ssn-keygen Generating public/private rsa key pair. Enter file in which to save the key (/home/ada/.ssh/id_rsa): id_rsa_ANONY Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in id_rsa_ANONY. Your public key has been saved in id_rsa_ANONY.pub. The key fingerprint is: bc:34:b1:23:fd:5a:f2:4b:d9:88:af:70:f7:d6:39:a2 The key's randomart image is:

+--[RSA 2048]----+ | 000 | | S | | 0*+ | | 000+ | 0.0+ |

INSPIRING FUTURES

Anonymous use of nmap

┌──(kali 🏵 kali)-[~]

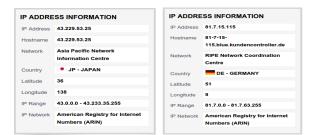
L\$ proxychains ssh -i /home/ada/.ssh/id_rsa_ANONY root@186.29.205.134

ProxyChains-3.1 (http://proxychains.sf.net)
|S-chain|-<>-127.0.0.1:9050-<><>-186.29.205.134:22-<><>-OK
root@176.58.111.237's password: BADPASS
Permission denied, please try again.
root@176.58.111.237's password: GOODPASS
Linux www 4.1.5-x86_64-linode61 #7 SMP Mon Aug 24 13:46:31 EDT 2015 x86_64

The programs included with the Debian GNU/Linux system are free software; the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law. Last login: Mon Nov 9 03:20:34 2015 from 160.242.131.178

setu.ie | 57 INSPIRING FUTURES


setu.ie 59

setu.ie 58

Anonymous use of nmap

root@ece:~# tail /var/log/auth.log

Nov 10 09:46:10 ece sshd[21706]: Failed password for root from **43.229.53.25** port 11978 ssh2 Nov 10 09:46:12 ece sshd[21706]: Failed password for root from 43.229.53.25 port 11978 ssh2 Nov 10 09:46:12 ece sshd[21706]: Received disconnect from 43.229.53.25: 11: [preauth] Nov 10 09:46:12 ece sshd[21706]: PAM 2 more authentication failures; logname= uid=0 euid=0 tty=ssh ruser= rhost=43.229.53.25 user=root

<image><image><text>

INSPIRING FUTURES

Legacy Systems

- The Problem with Scanning Legacy Devices
 - Device freezing
 - Permanent malfunction (bricking)
- The absence of sufficient security mechanisms and the utilisation of outdated software significantly contribute to these issues, especially when the system receives an NMAP-TCP packet
- Legacy IACS are primarily engineered for real-time functionality, lacking inherent security features.
- Even as minimal as an NMAP scan, carries potentially severe consequences

INSPIRING FUTURES

IACS Specific scripts for NSE

NSE Redpoint repository

(kali 😚 kali)-[~]
_\$ cd /usr/share/nmap/scripts

(kali 😚 kali) - [/usr/share/nmap/scripts]

L-\$ sudo git clone https://github.com/digitalbond/Redpoint.git Cloning into 'Redpoint'... remote: Enumerating objects: 343, done. remote: Total 343 (delta 0), reused 0 (delta 0), pack-reused 343 Receiving objects: 100% (343/343), 191.10 KiB | 1.59 MiB/s, done. Resolving deltas: 100% (194/194), done.

atg-info.nse dnp3-info.nse modicon-info.nse proconos-info.nse BACnet-discover-enumerate.nse enip-enumerate.nse omrontcp-info.nse README.md codesysv2-discover.nse fox-info.nse omronudp-info.nse s7-enumerate.nse cspv4-info.nse LICENSE pcworx-info.nse

Scanning IACS in a Penetration Test

- Never scan a live system
- Tailor the scans aggressiveness and mitigate risks
 - Scan Option: Timing -Tx
- Specify a TCP connect scan, which is generally safer than other scan types
 - Scan Option: Full TCP handshake -ST
- Limit parallel operations to one at a time
 - Scan Option: --max-parallelism 1

setu.ie 61 INSPIRING FUTUR

setu.ie 62

IACS Specific scripts for NSE

NSE Redpoint repository

[--- (kali 😚 kali) - [/usr/share/nmap/scripts]

L-\$ sudo nmap -p 502 --script Redpoint/modicon-info.nse -sV 192.168.1.134 Starting Nmap 7.94 (https://nmap.org) at 2023-10-30 11:21 EDT NSE: DEPRECATION WARNING: bin.lua is deprecated. Please use Lua 5.3 string.pack Nmap scan report for riomhaire-OB (192.168.1.134) Host is up (0.00050s latency).

PORT STATE SERVICE VERSION 502/tcp open mbap?

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ . Nmap done: 1 IP address (1 host up) scanned in 135.69 seconds

Learning objectives

- The Anatomy of a Cyber attack \checkmark
- Introduction to Penetration testing
- Kali Linux 🗸
- Using nmap for reconnaissance ✓

Answer the following questions

• Which scan timing options are recommended for OT environments to balance thoroughness and caution?

□ -T1 □ -T2 □ -T3 □ -T4 □ -T5

- What does the **-st** option in NMAP signify for enhancing scanning safety in OT networks?
- O UDP Connect Scan O TCP Connect Scan O SYN Stealth Scan
- How does the **--max-parallelism 1** option in a scan configuration contribute to safe scanning in OT environments?
- O It increases the number of parallel operations, enhancing scan speed.
- O It limits parallel probing to one at a time, reducing the risk of disruptions
- O It scans multiple hosts simultaneously to save time.

Answer the following questions

 Which scan timing options are recommended for OT environments to balance thoroughness and caution?

□ -T1 ☑ -T2 □ -T3 □ -T4

- B □ −T4 □ −T5
- What does the **-ST** option in NMAP signify for enhancing scanning safety in OT networks?
- O UDP Connect Scan TCP Connect Scan SYN Stealth Scan
- How does the **--max-parallelism 1** option in a scan configuration contribute to safe scanning in OT environments?
 - O It increases the number of parallel operations, enhancing scan speed.
 - It limits parallel probing to one at a time, reducing the risk of disruptions
- O It scans multiple hosts simultaneously to save time.

INSPIRING FUTURE

setu.ie 67 INSPIRING FUTURES

Answer the following questions

• Carry out a pen-test reconnaissance on the IP address given to you by the lecturer.

setu.ie 70

INSPIRING FUTURES

setu.ie 69